xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 #define pr_fmt(fmt) "SMP alternatives: " fmt
2 
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/memory.h>
11 #include <linux/stop_machine.h>
12 #include <linux/slab.h>
13 #include <linux/kdebug.h>
14 #include <linux/kprobes.h>
15 #include <asm/text-patching.h>
16 #include <asm/alternative.h>
17 #include <asm/sections.h>
18 #include <asm/pgtable.h>
19 #include <asm/mce.h>
20 #include <asm/nmi.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/io.h>
24 #include <asm/fixmap.h>
25 
26 int __read_mostly alternatives_patched;
27 
28 EXPORT_SYMBOL_GPL(alternatives_patched);
29 
30 #define MAX_PATCH_LEN (255-1)
31 
32 static int __initdata_or_module debug_alternative;
33 
34 static int __init debug_alt(char *str)
35 {
36 	debug_alternative = 1;
37 	return 1;
38 }
39 __setup("debug-alternative", debug_alt);
40 
41 static int noreplace_smp;
42 
43 static int __init setup_noreplace_smp(char *str)
44 {
45 	noreplace_smp = 1;
46 	return 1;
47 }
48 __setup("noreplace-smp", setup_noreplace_smp);
49 
50 #define DPRINTK(fmt, args...)						\
51 do {									\
52 	if (debug_alternative)						\
53 		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
54 } while (0)
55 
56 #define DUMP_BYTES(buf, len, fmt, args...)				\
57 do {									\
58 	if (unlikely(debug_alternative)) {				\
59 		int j;							\
60 									\
61 		if (!(len))						\
62 			break;						\
63 									\
64 		printk(KERN_DEBUG fmt, ##args);				\
65 		for (j = 0; j < (len) - 1; j++)				\
66 			printk(KERN_CONT "%02hhx ", buf[j]);		\
67 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
68 	}								\
69 } while (0)
70 
71 /*
72  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
73  * that correspond to that nop. Getting from one nop to the next, we
74  * add to the array the offset that is equal to the sum of all sizes of
75  * nops preceding the one we are after.
76  *
77  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
78  * nice symmetry of sizes of the previous nops.
79  */
80 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
81 static const unsigned char intelnops[] =
82 {
83 	GENERIC_NOP1,
84 	GENERIC_NOP2,
85 	GENERIC_NOP3,
86 	GENERIC_NOP4,
87 	GENERIC_NOP5,
88 	GENERIC_NOP6,
89 	GENERIC_NOP7,
90 	GENERIC_NOP8,
91 	GENERIC_NOP5_ATOMIC
92 };
93 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
94 {
95 	NULL,
96 	intelnops,
97 	intelnops + 1,
98 	intelnops + 1 + 2,
99 	intelnops + 1 + 2 + 3,
100 	intelnops + 1 + 2 + 3 + 4,
101 	intelnops + 1 + 2 + 3 + 4 + 5,
102 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
103 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
104 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
105 };
106 #endif
107 
108 #ifdef K8_NOP1
109 static const unsigned char k8nops[] =
110 {
111 	K8_NOP1,
112 	K8_NOP2,
113 	K8_NOP3,
114 	K8_NOP4,
115 	K8_NOP5,
116 	K8_NOP6,
117 	K8_NOP7,
118 	K8_NOP8,
119 	K8_NOP5_ATOMIC
120 };
121 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
122 {
123 	NULL,
124 	k8nops,
125 	k8nops + 1,
126 	k8nops + 1 + 2,
127 	k8nops + 1 + 2 + 3,
128 	k8nops + 1 + 2 + 3 + 4,
129 	k8nops + 1 + 2 + 3 + 4 + 5,
130 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
131 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
132 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
133 };
134 #endif
135 
136 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
137 static const unsigned char k7nops[] =
138 {
139 	K7_NOP1,
140 	K7_NOP2,
141 	K7_NOP3,
142 	K7_NOP4,
143 	K7_NOP5,
144 	K7_NOP6,
145 	K7_NOP7,
146 	K7_NOP8,
147 	K7_NOP5_ATOMIC
148 };
149 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
150 {
151 	NULL,
152 	k7nops,
153 	k7nops + 1,
154 	k7nops + 1 + 2,
155 	k7nops + 1 + 2 + 3,
156 	k7nops + 1 + 2 + 3 + 4,
157 	k7nops + 1 + 2 + 3 + 4 + 5,
158 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
159 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
160 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
161 };
162 #endif
163 
164 #ifdef P6_NOP1
165 static const unsigned char p6nops[] =
166 {
167 	P6_NOP1,
168 	P6_NOP2,
169 	P6_NOP3,
170 	P6_NOP4,
171 	P6_NOP5,
172 	P6_NOP6,
173 	P6_NOP7,
174 	P6_NOP8,
175 	P6_NOP5_ATOMIC
176 };
177 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
178 {
179 	NULL,
180 	p6nops,
181 	p6nops + 1,
182 	p6nops + 1 + 2,
183 	p6nops + 1 + 2 + 3,
184 	p6nops + 1 + 2 + 3 + 4,
185 	p6nops + 1 + 2 + 3 + 4 + 5,
186 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
187 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
188 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
189 };
190 #endif
191 
192 /* Initialize these to a safe default */
193 #ifdef CONFIG_X86_64
194 const unsigned char * const *ideal_nops = p6_nops;
195 #else
196 const unsigned char * const *ideal_nops = intel_nops;
197 #endif
198 
199 void __init arch_init_ideal_nops(void)
200 {
201 	switch (boot_cpu_data.x86_vendor) {
202 	case X86_VENDOR_INTEL:
203 		/*
204 		 * Due to a decoder implementation quirk, some
205 		 * specific Intel CPUs actually perform better with
206 		 * the "k8_nops" than with the SDM-recommended NOPs.
207 		 */
208 		if (boot_cpu_data.x86 == 6 &&
209 		    boot_cpu_data.x86_model >= 0x0f &&
210 		    boot_cpu_data.x86_model != 0x1c &&
211 		    boot_cpu_data.x86_model != 0x26 &&
212 		    boot_cpu_data.x86_model != 0x27 &&
213 		    boot_cpu_data.x86_model < 0x30) {
214 			ideal_nops = k8_nops;
215 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
216 			   ideal_nops = p6_nops;
217 		} else {
218 #ifdef CONFIG_X86_64
219 			ideal_nops = k8_nops;
220 #else
221 			ideal_nops = intel_nops;
222 #endif
223 		}
224 		break;
225 
226 	case X86_VENDOR_HYGON:
227 		ideal_nops = p6_nops;
228 		return;
229 
230 	case X86_VENDOR_AMD:
231 		if (boot_cpu_data.x86 > 0xf) {
232 			ideal_nops = p6_nops;
233 			return;
234 		}
235 
236 		/* fall through */
237 
238 	default:
239 #ifdef CONFIG_X86_64
240 		ideal_nops = k8_nops;
241 #else
242 		if (boot_cpu_has(X86_FEATURE_K8))
243 			ideal_nops = k8_nops;
244 		else if (boot_cpu_has(X86_FEATURE_K7))
245 			ideal_nops = k7_nops;
246 		else
247 			ideal_nops = intel_nops;
248 #endif
249 	}
250 }
251 
252 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
253 static void __init_or_module add_nops(void *insns, unsigned int len)
254 {
255 	while (len > 0) {
256 		unsigned int noplen = len;
257 		if (noplen > ASM_NOP_MAX)
258 			noplen = ASM_NOP_MAX;
259 		memcpy(insns, ideal_nops[noplen], noplen);
260 		insns += noplen;
261 		len -= noplen;
262 	}
263 }
264 
265 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
266 extern s32 __smp_locks[], __smp_locks_end[];
267 void *text_poke_early(void *addr, const void *opcode, size_t len);
268 
269 /*
270  * Are we looking at a near JMP with a 1 or 4-byte displacement.
271  */
272 static inline bool is_jmp(const u8 opcode)
273 {
274 	return opcode == 0xeb || opcode == 0xe9;
275 }
276 
277 static void __init_or_module
278 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
279 {
280 	u8 *next_rip, *tgt_rip;
281 	s32 n_dspl, o_dspl;
282 	int repl_len;
283 
284 	if (a->replacementlen != 5)
285 		return;
286 
287 	o_dspl = *(s32 *)(insnbuf + 1);
288 
289 	/* next_rip of the replacement JMP */
290 	next_rip = repl_insn + a->replacementlen;
291 	/* target rip of the replacement JMP */
292 	tgt_rip  = next_rip + o_dspl;
293 	n_dspl = tgt_rip - orig_insn;
294 
295 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
296 
297 	if (tgt_rip - orig_insn >= 0) {
298 		if (n_dspl - 2 <= 127)
299 			goto two_byte_jmp;
300 		else
301 			goto five_byte_jmp;
302 	/* negative offset */
303 	} else {
304 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
305 			goto two_byte_jmp;
306 		else
307 			goto five_byte_jmp;
308 	}
309 
310 two_byte_jmp:
311 	n_dspl -= 2;
312 
313 	insnbuf[0] = 0xeb;
314 	insnbuf[1] = (s8)n_dspl;
315 	add_nops(insnbuf + 2, 3);
316 
317 	repl_len = 2;
318 	goto done;
319 
320 five_byte_jmp:
321 	n_dspl -= 5;
322 
323 	insnbuf[0] = 0xe9;
324 	*(s32 *)&insnbuf[1] = n_dspl;
325 
326 	repl_len = 5;
327 
328 done:
329 
330 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
331 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
332 }
333 
334 /*
335  * "noinline" to cause control flow change and thus invalidate I$ and
336  * cause refetch after modification.
337  */
338 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
339 {
340 	unsigned long flags;
341 	int i;
342 
343 	for (i = 0; i < a->padlen; i++) {
344 		if (instr[i] != 0x90)
345 			return;
346 	}
347 
348 	local_irq_save(flags);
349 	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
350 	local_irq_restore(flags);
351 
352 	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
353 		   instr, a->instrlen - a->padlen, a->padlen);
354 }
355 
356 /*
357  * Replace instructions with better alternatives for this CPU type. This runs
358  * before SMP is initialized to avoid SMP problems with self modifying code.
359  * This implies that asymmetric systems where APs have less capabilities than
360  * the boot processor are not handled. Tough. Make sure you disable such
361  * features by hand.
362  *
363  * Marked "noinline" to cause control flow change and thus insn cache
364  * to refetch changed I$ lines.
365  */
366 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
367 						  struct alt_instr *end)
368 {
369 	struct alt_instr *a;
370 	u8 *instr, *replacement;
371 	u8 insnbuf[MAX_PATCH_LEN];
372 
373 	DPRINTK("alt table %px, -> %px", start, end);
374 	/*
375 	 * The scan order should be from start to end. A later scanned
376 	 * alternative code can overwrite previously scanned alternative code.
377 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
378 	 * patch code.
379 	 *
380 	 * So be careful if you want to change the scan order to any other
381 	 * order.
382 	 */
383 	for (a = start; a < end; a++) {
384 		int insnbuf_sz = 0;
385 
386 		instr = (u8 *)&a->instr_offset + a->instr_offset;
387 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
388 		BUG_ON(a->instrlen > sizeof(insnbuf));
389 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
390 		if (!boot_cpu_has(a->cpuid)) {
391 			if (a->padlen > 1)
392 				optimize_nops(a, instr);
393 
394 			continue;
395 		}
396 
397 		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
398 			a->cpuid >> 5,
399 			a->cpuid & 0x1f,
400 			instr, instr, a->instrlen,
401 			replacement, a->replacementlen, a->padlen);
402 
403 		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
404 		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
405 
406 		memcpy(insnbuf, replacement, a->replacementlen);
407 		insnbuf_sz = a->replacementlen;
408 
409 		/*
410 		 * 0xe8 is a relative jump; fix the offset.
411 		 *
412 		 * Instruction length is checked before the opcode to avoid
413 		 * accessing uninitialized bytes for zero-length replacements.
414 		 */
415 		if (a->replacementlen == 5 && *insnbuf == 0xe8) {
416 			*(s32 *)(insnbuf + 1) += replacement - instr;
417 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
418 				*(s32 *)(insnbuf + 1),
419 				(unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
420 		}
421 
422 		if (a->replacementlen && is_jmp(replacement[0]))
423 			recompute_jump(a, instr, replacement, insnbuf);
424 
425 		if (a->instrlen > a->replacementlen) {
426 			add_nops(insnbuf + a->replacementlen,
427 				 a->instrlen - a->replacementlen);
428 			insnbuf_sz += a->instrlen - a->replacementlen;
429 		}
430 		DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr);
431 
432 		text_poke_early(instr, insnbuf, insnbuf_sz);
433 	}
434 }
435 
436 #ifdef CONFIG_SMP
437 static void alternatives_smp_lock(const s32 *start, const s32 *end,
438 				  u8 *text, u8 *text_end)
439 {
440 	const s32 *poff;
441 
442 	for (poff = start; poff < end; poff++) {
443 		u8 *ptr = (u8 *)poff + *poff;
444 
445 		if (!*poff || ptr < text || ptr >= text_end)
446 			continue;
447 		/* turn DS segment override prefix into lock prefix */
448 		if (*ptr == 0x3e)
449 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
450 	}
451 }
452 
453 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
454 				    u8 *text, u8 *text_end)
455 {
456 	const s32 *poff;
457 
458 	for (poff = start; poff < end; poff++) {
459 		u8 *ptr = (u8 *)poff + *poff;
460 
461 		if (!*poff || ptr < text || ptr >= text_end)
462 			continue;
463 		/* turn lock prefix into DS segment override prefix */
464 		if (*ptr == 0xf0)
465 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
466 	}
467 }
468 
469 struct smp_alt_module {
470 	/* what is this ??? */
471 	struct module	*mod;
472 	char		*name;
473 
474 	/* ptrs to lock prefixes */
475 	const s32	*locks;
476 	const s32	*locks_end;
477 
478 	/* .text segment, needed to avoid patching init code ;) */
479 	u8		*text;
480 	u8		*text_end;
481 
482 	struct list_head next;
483 };
484 static LIST_HEAD(smp_alt_modules);
485 static bool uniproc_patched = false;	/* protected by text_mutex */
486 
487 void __init_or_module alternatives_smp_module_add(struct module *mod,
488 						  char *name,
489 						  void *locks, void *locks_end,
490 						  void *text,  void *text_end)
491 {
492 	struct smp_alt_module *smp;
493 
494 	mutex_lock(&text_mutex);
495 	if (!uniproc_patched)
496 		goto unlock;
497 
498 	if (num_possible_cpus() == 1)
499 		/* Don't bother remembering, we'll never have to undo it. */
500 		goto smp_unlock;
501 
502 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
503 	if (NULL == smp)
504 		/* we'll run the (safe but slow) SMP code then ... */
505 		goto unlock;
506 
507 	smp->mod	= mod;
508 	smp->name	= name;
509 	smp->locks	= locks;
510 	smp->locks_end	= locks_end;
511 	smp->text	= text;
512 	smp->text_end	= text_end;
513 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
514 		smp->locks, smp->locks_end,
515 		smp->text, smp->text_end, smp->name);
516 
517 	list_add_tail(&smp->next, &smp_alt_modules);
518 smp_unlock:
519 	alternatives_smp_unlock(locks, locks_end, text, text_end);
520 unlock:
521 	mutex_unlock(&text_mutex);
522 }
523 
524 void __init_or_module alternatives_smp_module_del(struct module *mod)
525 {
526 	struct smp_alt_module *item;
527 
528 	mutex_lock(&text_mutex);
529 	list_for_each_entry(item, &smp_alt_modules, next) {
530 		if (mod != item->mod)
531 			continue;
532 		list_del(&item->next);
533 		kfree(item);
534 		break;
535 	}
536 	mutex_unlock(&text_mutex);
537 }
538 
539 void alternatives_enable_smp(void)
540 {
541 	struct smp_alt_module *mod;
542 
543 	/* Why bother if there are no other CPUs? */
544 	BUG_ON(num_possible_cpus() == 1);
545 
546 	mutex_lock(&text_mutex);
547 
548 	if (uniproc_patched) {
549 		pr_info("switching to SMP code\n");
550 		BUG_ON(num_online_cpus() != 1);
551 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
552 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
553 		list_for_each_entry(mod, &smp_alt_modules, next)
554 			alternatives_smp_lock(mod->locks, mod->locks_end,
555 					      mod->text, mod->text_end);
556 		uniproc_patched = false;
557 	}
558 	mutex_unlock(&text_mutex);
559 }
560 
561 /*
562  * Return 1 if the address range is reserved for SMP-alternatives.
563  * Must hold text_mutex.
564  */
565 int alternatives_text_reserved(void *start, void *end)
566 {
567 	struct smp_alt_module *mod;
568 	const s32 *poff;
569 	u8 *text_start = start;
570 	u8 *text_end = end;
571 
572 	lockdep_assert_held(&text_mutex);
573 
574 	list_for_each_entry(mod, &smp_alt_modules, next) {
575 		if (mod->text > text_end || mod->text_end < text_start)
576 			continue;
577 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
578 			const u8 *ptr = (const u8 *)poff + *poff;
579 
580 			if (text_start <= ptr && text_end > ptr)
581 				return 1;
582 		}
583 	}
584 
585 	return 0;
586 }
587 #endif /* CONFIG_SMP */
588 
589 #ifdef CONFIG_PARAVIRT
590 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
591 				     struct paravirt_patch_site *end)
592 {
593 	struct paravirt_patch_site *p;
594 	char insnbuf[MAX_PATCH_LEN];
595 
596 	for (p = start; p < end; p++) {
597 		unsigned int used;
598 
599 		BUG_ON(p->len > MAX_PATCH_LEN);
600 		/* prep the buffer with the original instructions */
601 		memcpy(insnbuf, p->instr, p->len);
602 		used = pv_ops.init.patch(p->instrtype, insnbuf,
603 					 (unsigned long)p->instr, p->len);
604 
605 		BUG_ON(used > p->len);
606 
607 		/* Pad the rest with nops */
608 		add_nops(insnbuf + used, p->len - used);
609 		text_poke_early(p->instr, insnbuf, p->len);
610 	}
611 }
612 extern struct paravirt_patch_site __start_parainstructions[],
613 	__stop_parainstructions[];
614 #endif	/* CONFIG_PARAVIRT */
615 
616 void __init alternative_instructions(void)
617 {
618 	/* The patching is not fully atomic, so try to avoid local interruptions
619 	   that might execute the to be patched code.
620 	   Other CPUs are not running. */
621 	stop_nmi();
622 
623 	/*
624 	 * Don't stop machine check exceptions while patching.
625 	 * MCEs only happen when something got corrupted and in this
626 	 * case we must do something about the corruption.
627 	 * Ignoring it is worse than a unlikely patching race.
628 	 * Also machine checks tend to be broadcast and if one CPU
629 	 * goes into machine check the others follow quickly, so we don't
630 	 * expect a machine check to cause undue problems during to code
631 	 * patching.
632 	 */
633 
634 	apply_alternatives(__alt_instructions, __alt_instructions_end);
635 
636 #ifdef CONFIG_SMP
637 	/* Patch to UP if other cpus not imminent. */
638 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
639 		uniproc_patched = true;
640 		alternatives_smp_module_add(NULL, "core kernel",
641 					    __smp_locks, __smp_locks_end,
642 					    _text, _etext);
643 	}
644 
645 	if (!uniproc_patched || num_possible_cpus() == 1)
646 		free_init_pages("SMP alternatives",
647 				(unsigned long)__smp_locks,
648 				(unsigned long)__smp_locks_end);
649 #endif
650 
651 	apply_paravirt(__parainstructions, __parainstructions_end);
652 
653 	restart_nmi();
654 	alternatives_patched = 1;
655 }
656 
657 /**
658  * text_poke_early - Update instructions on a live kernel at boot time
659  * @addr: address to modify
660  * @opcode: source of the copy
661  * @len: length to copy
662  *
663  * When you use this code to patch more than one byte of an instruction
664  * you need to make sure that other CPUs cannot execute this code in parallel.
665  * Also no thread must be currently preempted in the middle of these
666  * instructions. And on the local CPU you need to be protected again NMI or MCE
667  * handlers seeing an inconsistent instruction while you patch.
668  */
669 void *__init_or_module text_poke_early(void *addr, const void *opcode,
670 					      size_t len)
671 {
672 	unsigned long flags;
673 	local_irq_save(flags);
674 	memcpy(addr, opcode, len);
675 	local_irq_restore(flags);
676 	sync_core();
677 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
678 	   that causes hangs on some VIA CPUs. */
679 	return addr;
680 }
681 
682 /**
683  * text_poke - Update instructions on a live kernel
684  * @addr: address to modify
685  * @opcode: source of the copy
686  * @len: length to copy
687  *
688  * Only atomic text poke/set should be allowed when not doing early patching.
689  * It means the size must be writable atomically and the address must be aligned
690  * in a way that permits an atomic write. It also makes sure we fit on a single
691  * page.
692  */
693 void *text_poke(void *addr, const void *opcode, size_t len)
694 {
695 	unsigned long flags;
696 	char *vaddr;
697 	struct page *pages[2];
698 	int i;
699 
700 	/*
701 	 * While boot memory allocator is runnig we cannot use struct
702 	 * pages as they are not yet initialized.
703 	 */
704 	BUG_ON(!after_bootmem);
705 
706 	lockdep_assert_held(&text_mutex);
707 
708 	if (!core_kernel_text((unsigned long)addr)) {
709 		pages[0] = vmalloc_to_page(addr);
710 		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
711 	} else {
712 		pages[0] = virt_to_page(addr);
713 		WARN_ON(!PageReserved(pages[0]));
714 		pages[1] = virt_to_page(addr + PAGE_SIZE);
715 	}
716 	BUG_ON(!pages[0]);
717 	local_irq_save(flags);
718 	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
719 	if (pages[1])
720 		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
721 	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
722 	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
723 	clear_fixmap(FIX_TEXT_POKE0);
724 	if (pages[1])
725 		clear_fixmap(FIX_TEXT_POKE1);
726 	local_flush_tlb();
727 	sync_core();
728 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
729 	   that causes hangs on some VIA CPUs. */
730 	for (i = 0; i < len; i++)
731 		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
732 	local_irq_restore(flags);
733 	return addr;
734 }
735 
736 static void do_sync_core(void *info)
737 {
738 	sync_core();
739 }
740 
741 static bool bp_patching_in_progress;
742 static void *bp_int3_handler, *bp_int3_addr;
743 
744 int poke_int3_handler(struct pt_regs *regs)
745 {
746 	/*
747 	 * Having observed our INT3 instruction, we now must observe
748 	 * bp_patching_in_progress.
749 	 *
750 	 * 	in_progress = TRUE		INT3
751 	 * 	WMB				RMB
752 	 * 	write INT3			if (in_progress)
753 	 *
754 	 * Idem for bp_int3_handler.
755 	 */
756 	smp_rmb();
757 
758 	if (likely(!bp_patching_in_progress))
759 		return 0;
760 
761 	if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
762 		return 0;
763 
764 	/* set up the specified breakpoint handler */
765 	regs->ip = (unsigned long) bp_int3_handler;
766 
767 	return 1;
768 }
769 NOKPROBE_SYMBOL(poke_int3_handler);
770 
771 /**
772  * text_poke_bp() -- update instructions on live kernel on SMP
773  * @addr:	address to patch
774  * @opcode:	opcode of new instruction
775  * @len:	length to copy
776  * @handler:	address to jump to when the temporary breakpoint is hit
777  *
778  * Modify multi-byte instruction by using int3 breakpoint on SMP.
779  * We completely avoid stop_machine() here, and achieve the
780  * synchronization using int3 breakpoint.
781  *
782  * The way it is done:
783  *	- add a int3 trap to the address that will be patched
784  *	- sync cores
785  *	- update all but the first byte of the patched range
786  *	- sync cores
787  *	- replace the first byte (int3) by the first byte of
788  *	  replacing opcode
789  *	- sync cores
790  */
791 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
792 {
793 	unsigned char int3 = 0xcc;
794 
795 	bp_int3_handler = handler;
796 	bp_int3_addr = (u8 *)addr + sizeof(int3);
797 	bp_patching_in_progress = true;
798 
799 	lockdep_assert_held(&text_mutex);
800 
801 	/*
802 	 * Corresponding read barrier in int3 notifier for making sure the
803 	 * in_progress and handler are correctly ordered wrt. patching.
804 	 */
805 	smp_wmb();
806 
807 	text_poke(addr, &int3, sizeof(int3));
808 
809 	on_each_cpu(do_sync_core, NULL, 1);
810 
811 	if (len - sizeof(int3) > 0) {
812 		/* patch all but the first byte */
813 		text_poke((char *)addr + sizeof(int3),
814 			  (const char *) opcode + sizeof(int3),
815 			  len - sizeof(int3));
816 		/*
817 		 * According to Intel, this core syncing is very likely
818 		 * not necessary and we'd be safe even without it. But
819 		 * better safe than sorry (plus there's not only Intel).
820 		 */
821 		on_each_cpu(do_sync_core, NULL, 1);
822 	}
823 
824 	/* patch the first byte */
825 	text_poke(addr, opcode, sizeof(int3));
826 
827 	on_each_cpu(do_sync_core, NULL, 1);
828 	/*
829 	 * sync_core() implies an smp_mb() and orders this store against
830 	 * the writing of the new instruction.
831 	 */
832 	bp_patching_in_progress = false;
833 
834 	return addr;
835 }
836 
837