1 #ifndef _ASM_X86_BOOTPARAM_H 2 #define _ASM_X86_BOOTPARAM_H 3 4 /* setup_data types */ 5 #define SETUP_NONE 0 6 #define SETUP_E820_EXT 1 7 #define SETUP_DTB 2 8 #define SETUP_PCI 3 9 #define SETUP_EFI 4 10 #define SETUP_APPLE_PROPERTIES 5 11 12 /* ram_size flags */ 13 #define RAMDISK_IMAGE_START_MASK 0x07FF 14 #define RAMDISK_PROMPT_FLAG 0x8000 15 #define RAMDISK_LOAD_FLAG 0x4000 16 17 /* loadflags */ 18 #define LOADED_HIGH (1<<0) 19 #define KASLR_FLAG (1<<1) 20 #define QUIET_FLAG (1<<5) 21 #define KEEP_SEGMENTS (1<<6) 22 #define CAN_USE_HEAP (1<<7) 23 24 /* xloadflags */ 25 #define XLF_KERNEL_64 (1<<0) 26 #define XLF_CAN_BE_LOADED_ABOVE_4G (1<<1) 27 #define XLF_EFI_HANDOVER_32 (1<<2) 28 #define XLF_EFI_HANDOVER_64 (1<<3) 29 #define XLF_EFI_KEXEC (1<<4) 30 31 #ifndef __ASSEMBLY__ 32 33 #include <linux/types.h> 34 #include <linux/screen_info.h> 35 #include <linux/apm_bios.h> 36 #include <linux/edd.h> 37 #include <asm/ist.h> 38 #include <video/edid.h> 39 40 /* extensible setup data list node */ 41 struct setup_data { 42 __u64 next; 43 __u32 type; 44 __u32 len; 45 __u8 data[0]; 46 }; 47 48 struct setup_header { 49 __u8 setup_sects; 50 __u16 root_flags; 51 __u32 syssize; 52 __u16 ram_size; 53 __u16 vid_mode; 54 __u16 root_dev; 55 __u16 boot_flag; 56 __u16 jump; 57 __u32 header; 58 __u16 version; 59 __u32 realmode_swtch; 60 __u16 start_sys_seg; 61 __u16 kernel_version; 62 __u8 type_of_loader; 63 __u8 loadflags; 64 __u16 setup_move_size; 65 __u32 code32_start; 66 __u32 ramdisk_image; 67 __u32 ramdisk_size; 68 __u32 bootsect_kludge; 69 __u16 heap_end_ptr; 70 __u8 ext_loader_ver; 71 __u8 ext_loader_type; 72 __u32 cmd_line_ptr; 73 __u32 initrd_addr_max; 74 __u32 kernel_alignment; 75 __u8 relocatable_kernel; 76 __u8 min_alignment; 77 __u16 xloadflags; 78 __u32 cmdline_size; 79 __u32 hardware_subarch; 80 __u64 hardware_subarch_data; 81 __u32 payload_offset; 82 __u32 payload_length; 83 __u64 setup_data; 84 __u64 pref_address; 85 __u32 init_size; 86 __u32 handover_offset; 87 } __attribute__((packed)); 88 89 struct sys_desc_table { 90 __u16 length; 91 __u8 table[14]; 92 }; 93 94 /* Gleaned from OFW's set-parameters in cpu/x86/pc/linux.fth */ 95 struct olpc_ofw_header { 96 __u32 ofw_magic; /* OFW signature */ 97 __u32 ofw_version; 98 __u32 cif_handler; /* callback into OFW */ 99 __u32 irq_desc_table; 100 } __attribute__((packed)); 101 102 struct efi_info { 103 __u32 efi_loader_signature; 104 __u32 efi_systab; 105 __u32 efi_memdesc_size; 106 __u32 efi_memdesc_version; 107 __u32 efi_memmap; 108 __u32 efi_memmap_size; 109 __u32 efi_systab_hi; 110 __u32 efi_memmap_hi; 111 }; 112 113 /* 114 * This is the maximum number of entries in struct boot_params::e820_table 115 * (the zeropage), which is part of the x86 boot protocol ABI: 116 */ 117 #define E820_MAX_ENTRIES_ZEROPAGE 128 118 119 /* 120 * The E820 memory region entry of the boot protocol ABI: 121 */ 122 struct boot_e820_entry { 123 __u64 addr; 124 __u64 size; 125 __u32 type; 126 } __attribute__((packed)); 127 128 /* The so-called "zeropage" */ 129 struct boot_params { 130 struct screen_info screen_info; /* 0x000 */ 131 struct apm_bios_info apm_bios_info; /* 0x040 */ 132 __u8 _pad2[4]; /* 0x054 */ 133 __u64 tboot_addr; /* 0x058 */ 134 struct ist_info ist_info; /* 0x060 */ 135 __u8 _pad3[16]; /* 0x070 */ 136 __u8 hd0_info[16]; /* obsolete! */ /* 0x080 */ 137 __u8 hd1_info[16]; /* obsolete! */ /* 0x090 */ 138 struct sys_desc_table sys_desc_table; /* obsolete! */ /* 0x0a0 */ 139 struct olpc_ofw_header olpc_ofw_header; /* 0x0b0 */ 140 __u32 ext_ramdisk_image; /* 0x0c0 */ 141 __u32 ext_ramdisk_size; /* 0x0c4 */ 142 __u32 ext_cmd_line_ptr; /* 0x0c8 */ 143 __u8 _pad4[116]; /* 0x0cc */ 144 struct edid_info edid_info; /* 0x140 */ 145 struct efi_info efi_info; /* 0x1c0 */ 146 __u32 alt_mem_k; /* 0x1e0 */ 147 __u32 scratch; /* Scratch field! */ /* 0x1e4 */ 148 __u8 e820_entries; /* 0x1e8 */ 149 __u8 eddbuf_entries; /* 0x1e9 */ 150 __u8 edd_mbr_sig_buf_entries; /* 0x1ea */ 151 __u8 kbd_status; /* 0x1eb */ 152 __u8 secure_boot; /* 0x1ec */ 153 __u8 _pad5[2]; /* 0x1ed */ 154 /* 155 * The sentinel is set to a nonzero value (0xff) in header.S. 156 * 157 * A bootloader is supposed to only take setup_header and put 158 * it into a clean boot_params buffer. If it turns out that 159 * it is clumsy or too generous with the buffer, it most 160 * probably will pick up the sentinel variable too. The fact 161 * that this variable then is still 0xff will let kernel 162 * know that some variables in boot_params are invalid and 163 * kernel should zero out certain portions of boot_params. 164 */ 165 __u8 sentinel; /* 0x1ef */ 166 __u8 _pad6[1]; /* 0x1f0 */ 167 struct setup_header hdr; /* setup header */ /* 0x1f1 */ 168 __u8 _pad7[0x290-0x1f1-sizeof(struct setup_header)]; 169 __u32 edd_mbr_sig_buffer[EDD_MBR_SIG_MAX]; /* 0x290 */ 170 struct boot_e820_entry e820_table[E820_MAX_ENTRIES_ZEROPAGE]; /* 0x2d0 */ 171 __u8 _pad8[48]; /* 0xcd0 */ 172 struct edd_info eddbuf[EDDMAXNR]; /* 0xd00 */ 173 __u8 _pad9[276]; /* 0xeec */ 174 } __attribute__((packed)); 175 176 /** 177 * enum x86_hardware_subarch - x86 hardware subarchitecture 178 * 179 * The x86 hardware_subarch and hardware_subarch_data were added as of the x86 180 * boot protocol 2.07 to help distinguish and support custom x86 boot 181 * sequences. This enum represents accepted values for the x86 182 * hardware_subarch. Custom x86 boot sequences (not X86_SUBARCH_PC) do not 183 * have or simply *cannot* make use of natural stubs like BIOS or EFI, the 184 * hardware_subarch can be used on the Linux entry path to revector to a 185 * subarchitecture stub when needed. This subarchitecture stub can be used to 186 * set up Linux boot parameters or for special care to account for nonstandard 187 * handling of page tables. 188 * 189 * These enums should only ever be used by x86 code, and the code that uses 190 * it should be well contained and compartamentalized. 191 * 192 * KVM and Xen HVM do not have a subarch as these are expected to follow 193 * standard x86 boot entries. If there is a genuine need for "hypervisor" type 194 * that should be considered separately in the future. Future guest types 195 * should seriously consider working with standard x86 boot stubs such as 196 * the BIOS or EFI boot stubs. 197 * 198 * WARNING: this enum is only used for legacy hacks, for platform features that 199 * are not easily enumerated or discoverable. You should not ever use 200 * this for new features. 201 * 202 * @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard 203 * PC mechanisms (PCI, ACPI) and doesn't need a special boot flow. 204 * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest 205 * @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path, 206 * which start at asm startup_xen() entry point and later jump to the C 207 * xen_start_kernel() entry point. Both domU and dom0 type of guests are 208 * currently supportd through this PV boot path. 209 * @X86_SUBARCH_INTEL_MID: Used for Intel MID (Mobile Internet Device) platform 210 * systems which do not have the PCI legacy interfaces. 211 * @X86_SUBARCH_CE4100: Used for Intel CE media processor (CE4100) SoC for 212 * for settop boxes and media devices, the use of a subarch for CE4100 213 * is more of a hack... 214 */ 215 enum x86_hardware_subarch { 216 X86_SUBARCH_PC = 0, 217 X86_SUBARCH_LGUEST, 218 X86_SUBARCH_XEN, 219 X86_SUBARCH_INTEL_MID, 220 X86_SUBARCH_CE4100, 221 X86_NR_SUBARCHS, 222 }; 223 224 #endif /* __ASSEMBLY__ */ 225 226 #endif /* _ASM_X86_BOOTPARAM_H */ 227