xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/uv/bios.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/io_apic.h>
26 
27 
28 /*
29  * Addressing Terminology
30  *
31  *	M       - The low M bits of a physical address represent the offset
32  *		  into the blade local memory. RAM memory on a blade is physically
33  *		  contiguous (although various IO spaces may punch holes in
34  *		  it)..
35  *
36  *	N	- Number of bits in the node portion of a socket physical
37  *		  address.
38  *
39  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
40  *		  routers always have low bit of 1, C/MBricks have low bit
41  *		  equal to 0. Most addressing macros that target UV hub chips
42  *		  right shift the NASID by 1 to exclude the always-zero bit.
43  *		  NASIDs contain up to 15 bits.
44  *
45  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
46  *		  of nasids.
47  *
48  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
49  *		  of the nasid for socket usage.
50  *
51  *	GPA	- (global physical address) a socket physical address converted
52  *		  so that it can be used by the GRU as a global address. Socket
53  *		  physical addresses 1) need additional NASID (node) bits added
54  *		  to the high end of the address, and 2) unaliased if the
55  *		  partition does not have a physical address 0. In addition, on
56  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
57  *
58  *
59  *  NumaLink Global Physical Address Format:
60  *  +--------------------------------+---------------------+
61  *  |00..000|      GNODE             |      NodeOffset     |
62  *  +--------------------------------+---------------------+
63  *          |<-------53 - M bits --->|<--------M bits ----->
64  *
65  *	M - number of node offset bits (35 .. 40)
66  *
67  *
68  *  Memory/UV-HUB Processor Socket Address Format:
69  *  +----------------+---------------+---------------------+
70  *  |00..000000000000|   PNODE       |      NodeOffset     |
71  *  +----------------+---------------+---------------------+
72  *                   <--- N bits --->|<--------M bits ----->
73  *
74  *	M - number of node offset bits (35 .. 40)
75  *	N - number of PNODE bits (0 .. 10)
76  *
77  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
78  *		The actual values are configuration dependent and are set at
79  *		boot time. M & N values are set by the hardware/BIOS at boot.
80  *
81  *
82  * APICID format
83  *	NOTE!!!!!! This is the current format of the APICID. However, code
84  *	should assume that this will change in the future. Use functions
85  *	in this file for all APICID bit manipulations and conversion.
86  *
87  *		1111110000000000
88  *		5432109876543210
89  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
90  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
91  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
92  *		sssssssssss
93  *
94  *			p  = pnode bits
95  *			l =  socket number on board
96  *			c  = core
97  *			h  = hyperthread
98  *			s  = bits that are in the SOCKET_ID CSR
99  *
100  *	Note: Processor may support fewer bits in the APICID register. The ACPI
101  *	      tables hold all 16 bits. Software needs to be aware of this.
102  *
103  *	      Unless otherwise specified, all references to APICID refer to
104  *	      the FULL value contained in ACPI tables, not the subset in the
105  *	      processor APICID register.
106  */
107 
108 /*
109  * Maximum number of bricks in all partitions and in all coherency domains.
110  * This is the total number of bricks accessible in the numalink fabric. It
111  * includes all C & M bricks. Routers are NOT included.
112  *
113  * This value is also the value of the maximum number of non-router NASIDs
114  * in the numalink fabric.
115  *
116  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117  */
118 #define UV_MAX_NUMALINK_BLADES	16384
119 
120 /*
121  * Maximum number of C/Mbricks within a software SSI (hardware may support
122  * more).
123  */
124 #define UV_MAX_SSI_BLADES	256
125 
126 /*
127  * The largest possible NASID of a C or M brick (+ 2)
128  */
129 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
130 
131 /* System Controller Interface Reg info */
132 struct uv_scir_s {
133 	struct timer_list timer;
134 	unsigned long	offset;
135 	unsigned long	last;
136 	unsigned long	idle_on;
137 	unsigned long	idle_off;
138 	unsigned char	state;
139 	unsigned char	enabled;
140 };
141 
142 /* GAM (globally addressed memory) range table */
143 struct uv_gam_range_s {
144 	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
145 	u16	nasid;		/* node's global physical address */
146 	s8	base;		/* entry index of node's base addr */
147 	u8	reserved;
148 };
149 
150 /*
151  * The following defines attributes of the HUB chip. These attributes are
152  * frequently referenced and are kept in a common per hub struct.
153  * After setup, the struct is read only, so it should be readily
154  * available in the L3 cache on the cpu socket for the node.
155  */
156 struct uv_hub_info_s {
157 	unsigned long		global_mmr_base;
158 	unsigned long		global_mmr_shift;
159 	unsigned long		gpa_mask;
160 	unsigned short		*socket_to_node;
161 	unsigned short		*socket_to_pnode;
162 	unsigned short		*pnode_to_socket;
163 	struct uv_gam_range_s	*gr_table;
164 	unsigned short		min_socket;
165 	unsigned short		min_pnode;
166 	unsigned char		m_val;
167 	unsigned char		n_val;
168 	unsigned char		gr_table_len;
169 	unsigned char		hub_revision;
170 	unsigned char		apic_pnode_shift;
171 	unsigned char		gpa_shift;
172 	unsigned char		m_shift;
173 	unsigned char		n_lshift;
174 	unsigned int		gnode_extra;
175 	unsigned long		gnode_upper;
176 	unsigned long		lowmem_remap_top;
177 	unsigned long		lowmem_remap_base;
178 	unsigned long		global_gru_base;
179 	unsigned long		global_gru_shift;
180 	unsigned short		pnode;
181 	unsigned short		pnode_mask;
182 	unsigned short		coherency_domain_number;
183 	unsigned short		numa_blade_id;
184 	unsigned short		nr_possible_cpus;
185 	unsigned short		nr_online_cpus;
186 	short			memory_nid;
187 };
188 
189 /* CPU specific info with a pointer to the hub common info struct */
190 struct uv_cpu_info_s {
191 	void			*p_uv_hub_info;
192 	unsigned char		blade_cpu_id;
193 	struct uv_scir_s	scir;
194 };
195 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
196 
197 #define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
198 #define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
199 
200 #define	uv_scir_info		(&uv_cpu_info->scir)
201 #define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)
202 
203 /* Node specific hub common info struct */
204 extern void **__uv_hub_info_list;
205 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
206 {
207 	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
208 }
209 
210 static inline struct uv_hub_info_s *_uv_hub_info(void)
211 {
212 	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
213 }
214 #define	uv_hub_info	_uv_hub_info()
215 
216 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
217 {
218 	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
219 }
220 
221 #define	UV_HUB_INFO_VERSION	0x7150
222 extern int uv_hub_info_version(void);
223 static inline int uv_hub_info_check(int version)
224 {
225 	if (uv_hub_info_version() == version)
226 		return 0;
227 
228 	pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
229 		uv_hub_info_version(), version);
230 
231 	BUG();	/* Catastrophic - cannot continue on unknown UV system */
232 }
233 #define	_uv_hub_info_check()	uv_hub_info_check(UV_HUB_INFO_VERSION)
234 
235 /*
236  * HUB revision ranges for each UV HUB architecture.
237  * This is a software convention - NOT the hardware revision numbers in
238  * the hub chip.
239  */
240 #define UV1_HUB_REVISION_BASE		1
241 #define UV2_HUB_REVISION_BASE		3
242 #define UV3_HUB_REVISION_BASE		5
243 #define UV4_HUB_REVISION_BASE		7
244 
245 #ifdef	UV1_HUB_IS_SUPPORTED
246 static inline int is_uv1_hub(void)
247 {
248 	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
249 }
250 #else
251 static inline int is_uv1_hub(void)
252 {
253 	return 0;
254 }
255 #endif
256 
257 #ifdef	UV2_HUB_IS_SUPPORTED
258 static inline int is_uv2_hub(void)
259 {
260 	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
261 		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
262 }
263 #else
264 static inline int is_uv2_hub(void)
265 {
266 	return 0;
267 }
268 #endif
269 
270 #ifdef	UV3_HUB_IS_SUPPORTED
271 static inline int is_uv3_hub(void)
272 {
273 	return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
274 		(uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
275 }
276 #else
277 static inline int is_uv3_hub(void)
278 {
279 	return 0;
280 }
281 #endif
282 
283 #ifdef	UV4_HUB_IS_SUPPORTED
284 static inline int is_uv4_hub(void)
285 {
286 	return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
287 }
288 #else
289 static inline int is_uv4_hub(void)
290 {
291 	return 0;
292 }
293 #endif
294 
295 static inline int is_uvx_hub(void)
296 {
297 	if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
298 		return uv_hub_info->hub_revision;
299 
300 	return 0;
301 }
302 
303 static inline int is_uv_hub(void)
304 {
305 #ifdef	UV1_HUB_IS_SUPPORTED
306 	return uv_hub_info->hub_revision;
307 #endif
308 	return is_uvx_hub();
309 }
310 
311 union uvh_apicid {
312     unsigned long       v;
313     struct uvh_apicid_s {
314         unsigned long   local_apic_mask  : 24;
315         unsigned long   local_apic_shift :  5;
316         unsigned long   unused1          :  3;
317         unsigned long   pnode_mask       : 24;
318         unsigned long   pnode_shift      :  5;
319         unsigned long   unused2          :  3;
320     } s;
321 };
322 
323 /*
324  * Local & Global MMR space macros.
325  *	Note: macros are intended to be used ONLY by inline functions
326  *	in this file - not by other kernel code.
327  *		n -  NASID (full 15-bit global nasid)
328  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
329  *		p -  PNODE (local part of nsids, right shifted 1)
330  */
331 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
332 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
333 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
334 
335 #define UV1_LOCAL_MMR_BASE		0xf4000000UL
336 #define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
337 #define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
338 #define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
339 
340 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
341 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
342 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
343 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
344 
345 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
346 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
347 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
348 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
349 
350 #define UV4_LOCAL_MMR_BASE		0xfa000000UL
351 #define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
352 #define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
353 #define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)
354 
355 #define UV_LOCAL_MMR_BASE		(				\
356 					is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
357 					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
358 					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
359 					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
360 
361 #define UV_GLOBAL_MMR32_BASE		(				\
362 					is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
363 					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
364 					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
365 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
366 
367 #define UV_LOCAL_MMR_SIZE		(				\
368 					is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
369 					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
370 					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
371 					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
372 
373 #define UV_GLOBAL_MMR32_SIZE		(				\
374 					is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
375 					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
376 					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
377 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
378 
379 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
380 
381 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
382 
383 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
384 #define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
385 #define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
386 
387 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
388 
389 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
390 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
391 
392 #define UVH_APICID		0x002D0E00L
393 #define UV_APIC_PNODE_SHIFT	6
394 
395 #define UV_APICID_HIBIT_MASK	0xffff0000
396 
397 /* Local Bus from cpu's perspective */
398 #define LOCAL_BUS_BASE		0x1c00000
399 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
400 
401 /*
402  * System Controller Interface Reg
403  *
404  * Note there are NO leds on a UV system.  This register is only
405  * used by the system controller to monitor system-wide operation.
406  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
407  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
408  * a node.
409  *
410  * The window is located at top of ACPI MMR space
411  */
412 #define SCIR_WINDOW_COUNT	64
413 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
414 				 LOCAL_BUS_SIZE - \
415 				 SCIR_WINDOW_COUNT)
416 
417 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
418 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
419 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
420 
421 /* Loop through all installed blades */
422 #define for_each_possible_blade(bid)		\
423 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
424 
425 /*
426  * Macros for converting between kernel virtual addresses, socket local physical
427  * addresses, and UV global physical addresses.
428  *	Note: use the standard __pa() & __va() macros for converting
429  *	      between socket virtual and socket physical addresses.
430  */
431 
432 /* global bits offset - number of local address bits in gpa for this UV arch */
433 static inline unsigned int uv_gpa_shift(void)
434 {
435 	return uv_hub_info->gpa_shift;
436 }
437 #define	_uv_gpa_shift
438 
439 /* Find node that has the address range that contains global address  */
440 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
441 {
442 	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
443 	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
444 	int i, num = uv_hub_info->gr_table_len;
445 
446 	if (gr) {
447 		for (i = 0; i < num; i++, gr++) {
448 			if (pal < gr->limit)
449 				return gr;
450 		}
451 	}
452 	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
453 	BUG();
454 }
455 
456 /* Return base address of node that contains global address  */
457 static inline unsigned long uv_gam_range_base(unsigned long pa)
458 {
459 	struct uv_gam_range_s *gr = uv_gam_range(pa);
460 	int base = gr->base;
461 
462 	if (base < 0)
463 		return 0UL;
464 
465 	return uv_hub_info->gr_table[base].limit;
466 }
467 
468 /* socket phys RAM --> UV global NASID (UV4+) */
469 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
470 {
471 	return uv_gam_range(paddr)->nasid;
472 }
473 #define	_uv_soc_phys_ram_to_nasid
474 
475 /* socket virtual --> UV global NASID (UV4+) */
476 static inline unsigned long uv_gpa_nasid(void *v)
477 {
478 	return uv_soc_phys_ram_to_nasid(__pa(v));
479 }
480 
481 /* socket phys RAM --> UV global physical address */
482 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
483 {
484 	unsigned int m_val = uv_hub_info->m_val;
485 
486 	if (paddr < uv_hub_info->lowmem_remap_top)
487 		paddr |= uv_hub_info->lowmem_remap_base;
488 	paddr |= uv_hub_info->gnode_upper;
489 	if (m_val)
490 		paddr = ((paddr << uv_hub_info->m_shift)
491 						>> uv_hub_info->m_shift) |
492 			((paddr >> uv_hub_info->m_val)
493 						<< uv_hub_info->n_lshift);
494 	else
495 		paddr |= uv_soc_phys_ram_to_nasid(paddr)
496 						<< uv_hub_info->gpa_shift;
497 	return paddr;
498 }
499 
500 /* socket virtual --> UV global physical address */
501 static inline unsigned long uv_gpa(void *v)
502 {
503 	return uv_soc_phys_ram_to_gpa(__pa(v));
504 }
505 
506 /* Top two bits indicate the requested address is in MMR space.  */
507 static inline int
508 uv_gpa_in_mmr_space(unsigned long gpa)
509 {
510 	return (gpa >> 62) == 0x3UL;
511 }
512 
513 /* UV global physical address --> socket phys RAM */
514 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
515 {
516 	unsigned long paddr;
517 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
518 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
519 	unsigned int m_val = uv_hub_info->m_val;
520 
521 	if (m_val)
522 		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
523 			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
524 
525 	paddr = gpa & uv_hub_info->gpa_mask;
526 	if (paddr >= remap_base && paddr < remap_base + remap_top)
527 		paddr -= remap_base;
528 	return paddr;
529 }
530 
531 /* gpa -> gnode */
532 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
533 {
534 	unsigned int n_lshift = uv_hub_info->n_lshift;
535 
536 	if (n_lshift)
537 		return gpa >> n_lshift;
538 
539 	return uv_gam_range(gpa)->nasid >> 1;
540 }
541 
542 /* gpa -> pnode */
543 static inline int uv_gpa_to_pnode(unsigned long gpa)
544 {
545 	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
546 }
547 
548 /* gpa -> node offset */
549 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
550 {
551 	unsigned int m_shift = uv_hub_info->m_shift;
552 
553 	if (m_shift)
554 		return (gpa << m_shift) >> m_shift;
555 
556 	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
557 }
558 
559 /* Convert socket to node */
560 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
561 {
562 	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
563 }
564 
565 static inline int uv_socket_to_node(int socket)
566 {
567 	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
568 }
569 
570 /* pnode, offset --> socket virtual */
571 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
572 {
573 	unsigned int m_val = uv_hub_info->m_val;
574 	unsigned long base;
575 	unsigned short sockid, node, *p2s;
576 
577 	if (m_val)
578 		return __va(((unsigned long)pnode << m_val) | offset);
579 
580 	p2s = uv_hub_info->pnode_to_socket;
581 	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
582 	node = uv_socket_to_node(sockid);
583 
584 	/* limit address of previous socket is our base, except node 0 is 0 */
585 	if (!node)
586 		return __va((unsigned long)offset);
587 
588 	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
589 	return __va(base << UV_GAM_RANGE_SHFT | offset);
590 }
591 
592 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
593 static inline int uv_apicid_to_pnode(int apicid)
594 {
595 	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
596 	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
597 
598 	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
599 }
600 
601 /* Convert an apicid to the socket number on the blade */
602 static inline int uv_apicid_to_socket(int apicid)
603 {
604 	if (is_uv1_hub())
605 		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
606 	else
607 		return 0;
608 }
609 
610 /*
611  * Access global MMRs using the low memory MMR32 space. This region supports
612  * faster MMR access but not all MMRs are accessible in this space.
613  */
614 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
615 {
616 	return __va(UV_GLOBAL_MMR32_BASE |
617 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
618 }
619 
620 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
621 {
622 	writeq(val, uv_global_mmr32_address(pnode, offset));
623 }
624 
625 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
626 {
627 	return readq(uv_global_mmr32_address(pnode, offset));
628 }
629 
630 /*
631  * Access Global MMR space using the MMR space located at the top of physical
632  * memory.
633  */
634 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
635 {
636 	return __va(UV_GLOBAL_MMR64_BASE |
637 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
638 }
639 
640 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
641 {
642 	writeq(val, uv_global_mmr64_address(pnode, offset));
643 }
644 
645 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
646 {
647 	return readq(uv_global_mmr64_address(pnode, offset));
648 }
649 
650 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
651 {
652 	writeb(val, uv_global_mmr64_address(pnode, offset));
653 }
654 
655 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
656 {
657 	return readb(uv_global_mmr64_address(pnode, offset));
658 }
659 
660 /*
661  * Access hub local MMRs. Faster than using global space but only local MMRs
662  * are accessible.
663  */
664 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
665 {
666 	return __va(UV_LOCAL_MMR_BASE | offset);
667 }
668 
669 static inline unsigned long uv_read_local_mmr(unsigned long offset)
670 {
671 	return readq(uv_local_mmr_address(offset));
672 }
673 
674 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
675 {
676 	writeq(val, uv_local_mmr_address(offset));
677 }
678 
679 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
680 {
681 	return readb(uv_local_mmr_address(offset));
682 }
683 
684 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
685 {
686 	writeb(val, uv_local_mmr_address(offset));
687 }
688 
689 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
690 static inline int uv_blade_processor_id(void)
691 {
692 	return uv_cpu_info->blade_cpu_id;
693 }
694 
695 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
696 static inline int uv_cpu_blade_processor_id(int cpu)
697 {
698 	return uv_cpu_info_per(cpu)->blade_cpu_id;
699 }
700 #define _uv_cpu_blade_processor_id 1	/* indicate function available */
701 
702 /* Blade number to Node number (UV1..UV4 is 1:1) */
703 static inline int uv_blade_to_node(int blade)
704 {
705 	return blade;
706 }
707 
708 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
709 static inline int uv_numa_blade_id(void)
710 {
711 	return uv_hub_info->numa_blade_id;
712 }
713 
714 /*
715  * Convert linux node number to the UV blade number.
716  * .. Currently for UV1 thru UV4 the node and the blade are identical.
717  * .. If this changes then you MUST check references to this function!
718  */
719 static inline int uv_node_to_blade_id(int nid)
720 {
721 	return nid;
722 }
723 
724 /* Convert a cpu number to the the UV blade number */
725 static inline int uv_cpu_to_blade_id(int cpu)
726 {
727 	return uv_node_to_blade_id(cpu_to_node(cpu));
728 }
729 
730 /* Convert a blade id to the PNODE of the blade */
731 static inline int uv_blade_to_pnode(int bid)
732 {
733 	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
734 }
735 
736 /* Nid of memory node on blade. -1 if no blade-local memory */
737 static inline int uv_blade_to_memory_nid(int bid)
738 {
739 	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
740 }
741 
742 /* Determine the number of possible cpus on a blade */
743 static inline int uv_blade_nr_possible_cpus(int bid)
744 {
745 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
746 }
747 
748 /* Determine the number of online cpus on a blade */
749 static inline int uv_blade_nr_online_cpus(int bid)
750 {
751 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
752 }
753 
754 /* Convert a cpu id to the PNODE of the blade containing the cpu */
755 static inline int uv_cpu_to_pnode(int cpu)
756 {
757 	return uv_cpu_hub_info(cpu)->pnode;
758 }
759 
760 /* Convert a linux node number to the PNODE of the blade */
761 static inline int uv_node_to_pnode(int nid)
762 {
763 	return uv_hub_info_list(nid)->pnode;
764 }
765 
766 /* Maximum possible number of blades */
767 extern short uv_possible_blades;
768 static inline int uv_num_possible_blades(void)
769 {
770 	return uv_possible_blades;
771 }
772 
773 /* Per Hub NMI support */
774 extern void uv_nmi_setup(void);
775 
776 /* BMC sets a bit this MMR non-zero before sending an NMI */
777 #define UVH_NMI_MMR		UVH_SCRATCH5
778 #define UVH_NMI_MMR_CLEAR	UVH_SCRATCH5_ALIAS
779 #define UVH_NMI_MMR_SHIFT	63
780 #define	UVH_NMI_MMR_TYPE	"SCRATCH5"
781 
782 /* Newer SMM NMI handler, not present in all systems */
783 #define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
784 #define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
785 #define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
786 #define	UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
787 
788 /* Non-zero indicates newer SMM NMI handler present */
789 #define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST
790 
791 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
792 #define UVH_NMI_MMRX_REQ	UVH_SCRATCH5_ALIAS_2
793 #define UVH_NMI_MMRX_REQ_SHIFT	62
794 
795 struct uv_hub_nmi_s {
796 	raw_spinlock_t	nmi_lock;
797 	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
798 	atomic_t	cpu_owner;	/* last locker of this struct */
799 	atomic_t	read_mmr_count;	/* count of MMR reads */
800 	atomic_t	nmi_count;	/* count of true UV NMIs */
801 	unsigned long	nmi_value;	/* last value read from NMI MMR */
802 };
803 
804 struct uv_cpu_nmi_s {
805 	struct uv_hub_nmi_s	*hub;
806 	int			state;
807 	int			pinging;
808 	int			queries;
809 	int			pings;
810 };
811 
812 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
813 
814 #define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
815 #define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
816 #define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
817 
818 /* uv_cpu_nmi_states */
819 #define	UV_NMI_STATE_OUT		0
820 #define	UV_NMI_STATE_IN			1
821 #define	UV_NMI_STATE_DUMP		2
822 #define	UV_NMI_STATE_DUMP_DONE		3
823 
824 /* Update SCIR state */
825 static inline void uv_set_scir_bits(unsigned char value)
826 {
827 	if (uv_scir_info->state != value) {
828 		uv_scir_info->state = value;
829 		uv_write_local_mmr8(uv_scir_info->offset, value);
830 	}
831 }
832 
833 static inline unsigned long uv_scir_offset(int apicid)
834 {
835 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
836 }
837 
838 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
839 {
840 	if (uv_cpu_scir_info(cpu)->state != value) {
841 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
842 				uv_cpu_scir_info(cpu)->offset, value);
843 		uv_cpu_scir_info(cpu)->state = value;
844 	}
845 }
846 
847 extern unsigned int uv_apicid_hibits;
848 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
849 {
850 	apicid |= uv_apicid_hibits;
851 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
852 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
853 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
854 			(vector << UVH_IPI_INT_VECTOR_SHFT);
855 }
856 
857 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
858 {
859 	unsigned long val;
860 	unsigned long dmode = dest_Fixed;
861 
862 	if (vector == NMI_VECTOR)
863 		dmode = dest_NMI;
864 
865 	val = uv_hub_ipi_value(apicid, vector, dmode);
866 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
867 }
868 
869 /*
870  * Get the minimum revision number of the hub chips within the partition.
871  * (See UVx_HUB_REVISION_BASE above for specific values.)
872  */
873 static inline int uv_get_min_hub_revision_id(void)
874 {
875 	return uv_hub_info->hub_revision;
876 }
877 
878 #endif /* CONFIG_X86_64 */
879 #endif /* _ASM_X86_UV_UV_HUB_H */
880