xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision e8e0929d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 
23 
24 /*
25  * Addressing Terminology
26  *
27  *	M       - The low M bits of a physical address represent the offset
28  *		  into the blade local memory. RAM memory on a blade is physically
29  *		  contiguous (although various IO spaces may punch holes in
30  *		  it)..
31  *
32  * 	N	- Number of bits in the node portion of a socket physical
33  * 		  address.
34  *
35  * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
36  * 	 	  routers always have low bit of 1, C/MBricks have low bit
37  * 		  equal to 0. Most addressing macros that target UV hub chips
38  * 		  right shift the NASID by 1 to exclude the always-zero bit.
39  * 		  NASIDs contain up to 15 bits.
40  *
41  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
42  *		  of nasids.
43  *
44  * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
45  * 		  of the nasid for socket usage.
46  *
47  *
48  *  NumaLink Global Physical Address Format:
49  *  +--------------------------------+---------------------+
50  *  |00..000|      GNODE             |      NodeOffset     |
51  *  +--------------------------------+---------------------+
52  *          |<-------53 - M bits --->|<--------M bits ----->
53  *
54  *	M - number of node offset bits (35 .. 40)
55  *
56  *
57  *  Memory/UV-HUB Processor Socket Address Format:
58  *  +----------------+---------------+---------------------+
59  *  |00..000000000000|   PNODE       |      NodeOffset     |
60  *  +----------------+---------------+---------------------+
61  *                   <--- N bits --->|<--------M bits ----->
62  *
63  *	M - number of node offset bits (35 .. 40)
64  *	N - number of PNODE bits (0 .. 10)
65  *
66  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
67  *		The actual values are configuration dependent and are set at
68  *		boot time. M & N values are set by the hardware/BIOS at boot.
69  *
70  *
71  * APICID format
72  * 	NOTE!!!!!! This is the current format of the APICID. However, code
73  * 	should assume that this will change in the future. Use functions
74  * 	in this file for all APICID bit manipulations and conversion.
75  *
76  * 		1111110000000000
77  * 		5432109876543210
78  *		pppppppppplc0cch
79  *		sssssssssss
80  *
81  *			p  = pnode bits
82  *			l =  socket number on board
83  *			c  = core
84  *			h  = hyperthread
85  *			s  = bits that are in the SOCKET_ID CSR
86  *
87  *	Note: Processor only supports 12 bits in the APICID register. The ACPI
88  *	      tables hold all 16 bits. Software needs to be aware of this.
89  *
90  * 	      Unless otherwise specified, all references to APICID refer to
91  * 	      the FULL value contained in ACPI tables, not the subset in the
92  * 	      processor APICID register.
93  */
94 
95 
96 /*
97  * Maximum number of bricks in all partitions and in all coherency domains.
98  * This is the total number of bricks accessible in the numalink fabric. It
99  * includes all C & M bricks. Routers are NOT included.
100  *
101  * This value is also the value of the maximum number of non-router NASIDs
102  * in the numalink fabric.
103  *
104  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
105  */
106 #define UV_MAX_NUMALINK_BLADES	16384
107 
108 /*
109  * Maximum number of C/Mbricks within a software SSI (hardware may support
110  * more).
111  */
112 #define UV_MAX_SSI_BLADES	256
113 
114 /*
115  * The largest possible NASID of a C or M brick (+ 2)
116  */
117 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)
118 
119 struct uv_scir_s {
120 	struct timer_list timer;
121 	unsigned long	offset;
122 	unsigned long	last;
123 	unsigned long	idle_on;
124 	unsigned long	idle_off;
125 	unsigned char	state;
126 	unsigned char	enabled;
127 };
128 
129 /*
130  * The following defines attributes of the HUB chip. These attributes are
131  * frequently referenced and are kept in the per-cpu data areas of each cpu.
132  * They are kept together in a struct to minimize cache misses.
133  */
134 struct uv_hub_info_s {
135 	unsigned long		global_mmr_base;
136 	unsigned long		gpa_mask;
137 	unsigned int		gnode_extra;
138 	unsigned long		gnode_upper;
139 	unsigned long		lowmem_remap_top;
140 	unsigned long		lowmem_remap_base;
141 	unsigned short		pnode;
142 	unsigned short		pnode_mask;
143 	unsigned short		coherency_domain_number;
144 	unsigned short		numa_blade_id;
145 	unsigned char		blade_processor_id;
146 	unsigned char		m_val;
147 	unsigned char		n_val;
148 	struct uv_scir_s	scir;
149 };
150 
151 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
152 #define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
153 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
154 
155 /*
156  * Local & Global MMR space macros.
157  * 	Note: macros are intended to be used ONLY by inline functions
158  * 	in this file - not by other kernel code.
159  * 		n -  NASID (full 15-bit global nasid)
160  * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
161  * 		p -  PNODE (local part of nsids, right shifted 1)
162  */
163 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
164 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
165 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
166 
167 #define UV_LOCAL_MMR_BASE		0xf4000000UL
168 #define UV_GLOBAL_MMR32_BASE		0xf8000000UL
169 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
170 #define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
171 #define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
172 
173 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
174 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
175 
176 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
177 
178 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
179 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
180 
181 #define UV_APIC_PNODE_SHIFT	6
182 
183 /* Local Bus from cpu's perspective */
184 #define LOCAL_BUS_BASE		0x1c00000
185 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
186 
187 /*
188  * System Controller Interface Reg
189  *
190  * Note there are NO leds on a UV system.  This register is only
191  * used by the system controller to monitor system-wide operation.
192  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
193  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
194  * a node.
195  *
196  * The window is located at top of ACPI MMR space
197  */
198 #define SCIR_WINDOW_COUNT	64
199 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
200 				 LOCAL_BUS_SIZE - \
201 				 SCIR_WINDOW_COUNT)
202 
203 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
204 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
205 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
206 
207 /* Loop through all installed blades */
208 #define for_each_possible_blade(bid)		\
209 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
210 
211 /*
212  * Macros for converting between kernel virtual addresses, socket local physical
213  * addresses, and UV global physical addresses.
214  * 	Note: use the standard __pa() & __va() macros for converting
215  * 	      between socket virtual and socket physical addresses.
216  */
217 
218 /* socket phys RAM --> UV global physical address */
219 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
220 {
221 	if (paddr < uv_hub_info->lowmem_remap_top)
222 		paddr |= uv_hub_info->lowmem_remap_base;
223 	return paddr | uv_hub_info->gnode_upper;
224 }
225 
226 
227 /* socket virtual --> UV global physical address */
228 static inline unsigned long uv_gpa(void *v)
229 {
230 	return uv_soc_phys_ram_to_gpa(__pa(v));
231 }
232 
233 /* pnode, offset --> socket virtual */
234 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
235 {
236 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
237 }
238 
239 
240 /*
241  * Extract a PNODE from an APICID (full apicid, not processor subset)
242  */
243 static inline int uv_apicid_to_pnode(int apicid)
244 {
245 	return (apicid >> UV_APIC_PNODE_SHIFT);
246 }
247 
248 /*
249  * Access global MMRs using the low memory MMR32 space. This region supports
250  * faster MMR access but not all MMRs are accessible in this space.
251  */
252 static inline unsigned long *uv_global_mmr32_address(int pnode,
253 				unsigned long offset)
254 {
255 	return __va(UV_GLOBAL_MMR32_BASE |
256 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
257 }
258 
259 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
260 				 unsigned long val)
261 {
262 	writeq(val, uv_global_mmr32_address(pnode, offset));
263 }
264 
265 static inline unsigned long uv_read_global_mmr32(int pnode,
266 						 unsigned long offset)
267 {
268 	return readq(uv_global_mmr32_address(pnode, offset));
269 }
270 
271 /*
272  * Access Global MMR space using the MMR space located at the top of physical
273  * memory.
274  */
275 static inline unsigned long *uv_global_mmr64_address(int pnode,
276 				unsigned long offset)
277 {
278 	return __va(UV_GLOBAL_MMR64_BASE |
279 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
280 }
281 
282 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
283 				unsigned long val)
284 {
285 	writeq(val, uv_global_mmr64_address(pnode, offset));
286 }
287 
288 static inline unsigned long uv_read_global_mmr64(int pnode,
289 						 unsigned long offset)
290 {
291 	return readq(uv_global_mmr64_address(pnode, offset));
292 }
293 
294 /*
295  * Access hub local MMRs. Faster than using global space but only local MMRs
296  * are accessible.
297  */
298 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
299 {
300 	return __va(UV_LOCAL_MMR_BASE | offset);
301 }
302 
303 static inline unsigned long uv_read_local_mmr(unsigned long offset)
304 {
305 	return readq(uv_local_mmr_address(offset));
306 }
307 
308 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
309 {
310 	writeq(val, uv_local_mmr_address(offset));
311 }
312 
313 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
314 {
315 	return readb(uv_local_mmr_address(offset));
316 }
317 
318 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
319 {
320 	writeb(val, uv_local_mmr_address(offset));
321 }
322 
323 /*
324  * Structures and definitions for converting between cpu, node, pnode, and blade
325  * numbers.
326  */
327 struct uv_blade_info {
328 	unsigned short	nr_possible_cpus;
329 	unsigned short	nr_online_cpus;
330 	unsigned short	pnode;
331 	short		memory_nid;
332 };
333 extern struct uv_blade_info *uv_blade_info;
334 extern short *uv_node_to_blade;
335 extern short *uv_cpu_to_blade;
336 extern short uv_possible_blades;
337 
338 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
339 static inline int uv_blade_processor_id(void)
340 {
341 	return uv_hub_info->blade_processor_id;
342 }
343 
344 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
345 static inline int uv_numa_blade_id(void)
346 {
347 	return uv_hub_info->numa_blade_id;
348 }
349 
350 /* Convert a cpu number to the the UV blade number */
351 static inline int uv_cpu_to_blade_id(int cpu)
352 {
353 	return uv_cpu_to_blade[cpu];
354 }
355 
356 /* Convert linux node number to the UV blade number */
357 static inline int uv_node_to_blade_id(int nid)
358 {
359 	return uv_node_to_blade[nid];
360 }
361 
362 /* Convert a blade id to the PNODE of the blade */
363 static inline int uv_blade_to_pnode(int bid)
364 {
365 	return uv_blade_info[bid].pnode;
366 }
367 
368 /* Nid of memory node on blade. -1 if no blade-local memory */
369 static inline int uv_blade_to_memory_nid(int bid)
370 {
371 	return uv_blade_info[bid].memory_nid;
372 }
373 
374 /* Determine the number of possible cpus on a blade */
375 static inline int uv_blade_nr_possible_cpus(int bid)
376 {
377 	return uv_blade_info[bid].nr_possible_cpus;
378 }
379 
380 /* Determine the number of online cpus on a blade */
381 static inline int uv_blade_nr_online_cpus(int bid)
382 {
383 	return uv_blade_info[bid].nr_online_cpus;
384 }
385 
386 /* Convert a cpu id to the PNODE of the blade containing the cpu */
387 static inline int uv_cpu_to_pnode(int cpu)
388 {
389 	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
390 }
391 
392 /* Convert a linux node number to the PNODE of the blade */
393 static inline int uv_node_to_pnode(int nid)
394 {
395 	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
396 }
397 
398 /* Maximum possible number of blades */
399 static inline int uv_num_possible_blades(void)
400 {
401 	return uv_possible_blades;
402 }
403 
404 /* Update SCIR state */
405 static inline void uv_set_scir_bits(unsigned char value)
406 {
407 	if (uv_hub_info->scir.state != value) {
408 		uv_hub_info->scir.state = value;
409 		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
410 	}
411 }
412 
413 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
414 {
415 	if (uv_cpu_hub_info(cpu)->scir.state != value) {
416 		uv_cpu_hub_info(cpu)->scir.state = value;
417 		uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
418 	}
419 }
420 
421 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
422 {
423 	unsigned long val;
424 
425 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
426 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
427 			(vector << UVH_IPI_INT_VECTOR_SHFT);
428 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
429 }
430 
431 #endif /* CONFIG_X86_64 */
432 #endif /* _ASM_X86_UV_UV_HUB_H */
433