xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision c10d12e3)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
9  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
10  */
11 
12 #ifndef _ASM_X86_UV_UV_HUB_H
13 #define _ASM_X86_UV_UV_HUB_H
14 
15 #ifdef CONFIG_X86_64
16 #include <linux/numa.h>
17 #include <linux/percpu.h>
18 #include <linux/timer.h>
19 #include <linux/io.h>
20 #include <linux/topology.h>
21 #include <asm/types.h>
22 #include <asm/percpu.h>
23 #include <asm/uv/uv.h>
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/bios.h>
26 #include <asm/irq_vectors.h>
27 #include <asm/io_apic.h>
28 
29 
30 /*
31  * Addressing Terminology
32  *
33  *	M       - The low M bits of a physical address represent the offset
34  *		  into the blade local memory. RAM memory on a blade is physically
35  *		  contiguous (although various IO spaces may punch holes in
36  *		  it)..
37  *
38  *	N	- Number of bits in the node portion of a socket physical
39  *		  address.
40  *
41  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
42  *		  routers always have low bit of 1, C/MBricks have low bit
43  *		  equal to 0. Most addressing macros that target UV hub chips
44  *		  right shift the NASID by 1 to exclude the always-zero bit.
45  *		  NASIDs contain up to 15 bits.
46  *
47  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
48  *		  of nasids.
49  *
50  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
51  *		  of the nasid for socket usage.
52  *
53  *	GPA	- (global physical address) a socket physical address converted
54  *		  so that it can be used by the GRU as a global address. Socket
55  *		  physical addresses 1) need additional NASID (node) bits added
56  *		  to the high end of the address, and 2) unaliased if the
57  *		  partition does not have a physical address 0. In addition, on
58  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
59  *
60  *
61  *  NumaLink Global Physical Address Format:
62  *  +--------------------------------+---------------------+
63  *  |00..000|      GNODE             |      NodeOffset     |
64  *  +--------------------------------+---------------------+
65  *          |<-------53 - M bits --->|<--------M bits ----->
66  *
67  *	M - number of node offset bits (35 .. 40)
68  *
69  *
70  *  Memory/UV-HUB Processor Socket Address Format:
71  *  +----------------+---------------+---------------------+
72  *  |00..000000000000|   PNODE       |      NodeOffset     |
73  *  +----------------+---------------+---------------------+
74  *                   <--- N bits --->|<--------M bits ----->
75  *
76  *	M - number of node offset bits (35 .. 40)
77  *	N - number of PNODE bits (0 .. 10)
78  *
79  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
80  *		The actual values are configuration dependent and are set at
81  *		boot time. M & N values are set by the hardware/BIOS at boot.
82  *
83  *
84  * APICID format
85  *	NOTE!!!!!! This is the current format of the APICID. However, code
86  *	should assume that this will change in the future. Use functions
87  *	in this file for all APICID bit manipulations and conversion.
88  *
89  *		1111110000000000
90  *		5432109876543210
91  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
92  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
93  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
94  *		sssssssssss
95  *
96  *			p  = pnode bits
97  *			l =  socket number on board
98  *			c  = core
99  *			h  = hyperthread
100  *			s  = bits that are in the SOCKET_ID CSR
101  *
102  *	Note: Processor may support fewer bits in the APICID register. The ACPI
103  *	      tables hold all 16 bits. Software needs to be aware of this.
104  *
105  *	      Unless otherwise specified, all references to APICID refer to
106  *	      the FULL value contained in ACPI tables, not the subset in the
107  *	      processor APICID register.
108  */
109 
110 /*
111  * Maximum number of bricks in all partitions and in all coherency domains.
112  * This is the total number of bricks accessible in the numalink fabric. It
113  * includes all C & M bricks. Routers are NOT included.
114  *
115  * This value is also the value of the maximum number of non-router NASIDs
116  * in the numalink fabric.
117  *
118  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
119  */
120 #define UV_MAX_NUMALINK_BLADES	16384
121 
122 /*
123  * Maximum number of C/Mbricks within a software SSI (hardware may support
124  * more).
125  */
126 #define UV_MAX_SSI_BLADES	256
127 
128 /*
129  * The largest possible NASID of a C or M brick (+ 2)
130  */
131 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
132 
133 /* GAM (globally addressed memory) range table */
134 struct uv_gam_range_s {
135 	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
136 	u16	nasid;		/* node's global physical address */
137 	s8	base;		/* entry index of node's base addr */
138 	u8	reserved;
139 };
140 
141 /*
142  * The following defines attributes of the HUB chip. These attributes are
143  * frequently referenced and are kept in a common per hub struct.
144  * After setup, the struct is read only, so it should be readily
145  * available in the L3 cache on the cpu socket for the node.
146  */
147 struct uv_hub_info_s {
148 	unsigned int		hub_type;
149 	unsigned char		hub_revision;
150 	unsigned long		global_mmr_base;
151 	unsigned long		global_mmr_shift;
152 	unsigned long		gpa_mask;
153 	unsigned short		*socket_to_node;
154 	unsigned short		*socket_to_pnode;
155 	unsigned short		*pnode_to_socket;
156 	struct uv_gam_range_s	*gr_table;
157 	unsigned short		min_socket;
158 	unsigned short		min_pnode;
159 	unsigned char		m_val;
160 	unsigned char		n_val;
161 	unsigned char		gr_table_len;
162 	unsigned char		apic_pnode_shift;
163 	unsigned char		gpa_shift;
164 	unsigned char		nasid_shift;
165 	unsigned char		m_shift;
166 	unsigned char		n_lshift;
167 	unsigned int		gnode_extra;
168 	unsigned long		gnode_upper;
169 	unsigned long		lowmem_remap_top;
170 	unsigned long		lowmem_remap_base;
171 	unsigned long		global_gru_base;
172 	unsigned long		global_gru_shift;
173 	unsigned short		pnode;
174 	unsigned short		pnode_mask;
175 	unsigned short		coherency_domain_number;
176 	unsigned short		numa_blade_id;
177 	unsigned short		nr_possible_cpus;
178 	unsigned short		nr_online_cpus;
179 	short			memory_nid;
180 };
181 
182 /* CPU specific info with a pointer to the hub common info struct */
183 struct uv_cpu_info_s {
184 	void			*p_uv_hub_info;
185 	unsigned char		blade_cpu_id;
186 	void			*reserved;
187 };
188 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
189 
190 #define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
191 #define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
192 
193 /* Node specific hub common info struct */
194 extern void **__uv_hub_info_list;
195 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
196 {
197 	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
198 }
199 
200 static inline struct uv_hub_info_s *_uv_hub_info(void)
201 {
202 	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
203 }
204 #define	uv_hub_info	_uv_hub_info()
205 
206 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
207 {
208 	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
209 }
210 
211 static inline int uv_hub_type(void)
212 {
213 	return uv_hub_info->hub_type;
214 }
215 
216 static inline __init void uv_hub_type_set(int uvmask)
217 {
218 	uv_hub_info->hub_type = uvmask;
219 }
220 
221 
222 /*
223  * HUB revision ranges for each UV HUB architecture.
224  * This is a software convention - NOT the hardware revision numbers in
225  * the hub chip.
226  */
227 #define UV2_HUB_REVISION_BASE		3
228 #define UV3_HUB_REVISION_BASE		5
229 #define UV4_HUB_REVISION_BASE		7
230 #define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
231 #define UV5_HUB_REVISION_BASE		9
232 
233 static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
234 static inline int is_uv1_hub(void) { return 0; }
235 static inline int is_uv2_hub(void) { return is_uv(UV2); }
236 static inline int is_uv3_hub(void) { return is_uv(UV3); }
237 static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
238 static inline int is_uv4_hub(void) { return is_uv(UV4); }
239 static inline int is_uv5_hub(void) { return is_uv(UV5); }
240 
241 /*
242  * UV4A is a revision of UV4.  So on UV4A, both is_uv4_hub() and
243  * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
244  * returns true.  So to get true results, first test if is UV4A,
245  * then test if is UV4.
246  */
247 
248 /* UVX class: UV2,3,4 */
249 static inline int is_uvx_hub(void) { return is_uv(UVX); }
250 
251 /* UVY class: UV5,..? */
252 static inline int is_uvy_hub(void) { return is_uv(UVY); }
253 
254 /* Any UV Hubbed System */
255 static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
256 
257 union uvh_apicid {
258     unsigned long       v;
259     struct uvh_apicid_s {
260         unsigned long   local_apic_mask  : 24;
261         unsigned long   local_apic_shift :  5;
262         unsigned long   unused1          :  3;
263         unsigned long   pnode_mask       : 24;
264         unsigned long   pnode_shift      :  5;
265         unsigned long   unused2          :  3;
266     } s;
267 };
268 
269 /*
270  * Local & Global MMR space macros.
271  *	Note: macros are intended to be used ONLY by inline functions
272  *	in this file - not by other kernel code.
273  *		n -  NASID (full 15-bit global nasid)
274  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
275  *		p -  PNODE (local part of nsids, right shifted 1)
276  */
277 #define UV_NASID_TO_PNODE(n)		\
278 		(((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
279 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
280 #define UV_PNODE_TO_NASID(p)		\
281 		(UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
282 
283 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
284 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
285 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
286 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
287 
288 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
289 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
290 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
291 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
292 
293 #define UV4_LOCAL_MMR_BASE		0xfa000000UL
294 #define UV4_GLOBAL_MMR32_BASE		0
295 #define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
296 #define UV4_GLOBAL_MMR32_SIZE		0
297 
298 #define UV5_LOCAL_MMR_BASE		0xfa000000UL
299 #define UV5_GLOBAL_MMR32_BASE		0
300 #define UV5_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
301 #define UV5_GLOBAL_MMR32_SIZE		0
302 
303 #define UV_LOCAL_MMR_BASE		(				\
304 					is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
305 					is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
306 					is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
307 					is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
308 					0)
309 
310 #define UV_GLOBAL_MMR32_BASE		(				\
311 					is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
312 					is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
313 					is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
314 					is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
315 					0)
316 
317 #define UV_LOCAL_MMR_SIZE		(				\
318 					is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
319 					is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
320 					is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
321 					is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
322 					0)
323 
324 #define UV_GLOBAL_MMR32_SIZE		(				\
325 					is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
326 					is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
327 					is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
328 					is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
329 					0)
330 
331 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
332 
333 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
334 
335 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
336 #define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
337 #define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
338 
339 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
340 
341 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
342 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
343 
344 #define UVH_APICID		0x002D0E00L
345 #define UV_APIC_PNODE_SHIFT	6
346 
347 /* Local Bus from cpu's perspective */
348 #define LOCAL_BUS_BASE		0x1c00000
349 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
350 
351 /*
352  * System Controller Interface Reg
353  *
354  * Note there are NO leds on a UV system.  This register is only
355  * used by the system controller to monitor system-wide operation.
356  * There are 64 regs per node.  With Nehalem cpus (2 cores per node,
357  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
358  * a node.
359  *
360  * The window is located at top of ACPI MMR space
361  */
362 #define SCIR_WINDOW_COUNT	64
363 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
364 				 LOCAL_BUS_SIZE - \
365 				 SCIR_WINDOW_COUNT)
366 
367 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
368 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
369 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
370 
371 /* Loop through all installed blades */
372 #define for_each_possible_blade(bid)		\
373 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
374 
375 /*
376  * Macros for converting between kernel virtual addresses, socket local physical
377  * addresses, and UV global physical addresses.
378  *	Note: use the standard __pa() & __va() macros for converting
379  *	      between socket virtual and socket physical addresses.
380  */
381 
382 /* global bits offset - number of local address bits in gpa for this UV arch */
383 static inline unsigned int uv_gpa_shift(void)
384 {
385 	return uv_hub_info->gpa_shift;
386 }
387 #define	_uv_gpa_shift
388 
389 /* Find node that has the address range that contains global address  */
390 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
391 {
392 	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
393 	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
394 	int i, num = uv_hub_info->gr_table_len;
395 
396 	if (gr) {
397 		for (i = 0; i < num; i++, gr++) {
398 			if (pal < gr->limit)
399 				return gr;
400 		}
401 	}
402 	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
403 	BUG();
404 }
405 
406 /* Return base address of node that contains global address  */
407 static inline unsigned long uv_gam_range_base(unsigned long pa)
408 {
409 	struct uv_gam_range_s *gr = uv_gam_range(pa);
410 	int base = gr->base;
411 
412 	if (base < 0)
413 		return 0UL;
414 
415 	return uv_hub_info->gr_table[base].limit;
416 }
417 
418 /* socket phys RAM --> UV global NASID (UV4+) */
419 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
420 {
421 	return uv_gam_range(paddr)->nasid;
422 }
423 #define	_uv_soc_phys_ram_to_nasid
424 
425 /* socket virtual --> UV global NASID (UV4+) */
426 static inline unsigned long uv_gpa_nasid(void *v)
427 {
428 	return uv_soc_phys_ram_to_nasid(__pa(v));
429 }
430 
431 /* socket phys RAM --> UV global physical address */
432 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
433 {
434 	unsigned int m_val = uv_hub_info->m_val;
435 
436 	if (paddr < uv_hub_info->lowmem_remap_top)
437 		paddr |= uv_hub_info->lowmem_remap_base;
438 
439 	if (m_val) {
440 		paddr |= uv_hub_info->gnode_upper;
441 		paddr = ((paddr << uv_hub_info->m_shift)
442 						>> uv_hub_info->m_shift) |
443 			((paddr >> uv_hub_info->m_val)
444 						<< uv_hub_info->n_lshift);
445 	} else {
446 		paddr |= uv_soc_phys_ram_to_nasid(paddr)
447 						<< uv_hub_info->gpa_shift;
448 	}
449 	return paddr;
450 }
451 
452 /* socket virtual --> UV global physical address */
453 static inline unsigned long uv_gpa(void *v)
454 {
455 	return uv_soc_phys_ram_to_gpa(__pa(v));
456 }
457 
458 /* Top two bits indicate the requested address is in MMR space.  */
459 static inline int
460 uv_gpa_in_mmr_space(unsigned long gpa)
461 {
462 	return (gpa >> 62) == 0x3UL;
463 }
464 
465 /* UV global physical address --> socket phys RAM */
466 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
467 {
468 	unsigned long paddr;
469 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
470 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
471 	unsigned int m_val = uv_hub_info->m_val;
472 
473 	if (m_val)
474 		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
475 			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
476 
477 	paddr = gpa & uv_hub_info->gpa_mask;
478 	if (paddr >= remap_base && paddr < remap_base + remap_top)
479 		paddr -= remap_base;
480 	return paddr;
481 }
482 
483 /* gpa -> gnode */
484 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
485 {
486 	unsigned int n_lshift = uv_hub_info->n_lshift;
487 
488 	if (n_lshift)
489 		return gpa >> n_lshift;
490 
491 	return uv_gam_range(gpa)->nasid >> 1;
492 }
493 
494 /* gpa -> pnode */
495 static inline int uv_gpa_to_pnode(unsigned long gpa)
496 {
497 	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
498 }
499 
500 /* gpa -> node offset */
501 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
502 {
503 	unsigned int m_shift = uv_hub_info->m_shift;
504 
505 	if (m_shift)
506 		return (gpa << m_shift) >> m_shift;
507 
508 	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
509 }
510 
511 /* Convert socket to node */
512 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
513 {
514 	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
515 }
516 
517 static inline int uv_socket_to_node(int socket)
518 {
519 	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
520 }
521 
522 /* pnode, offset --> socket virtual */
523 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
524 {
525 	unsigned int m_val = uv_hub_info->m_val;
526 	unsigned long base;
527 	unsigned short sockid, node, *p2s;
528 
529 	if (m_val)
530 		return __va(((unsigned long)pnode << m_val) | offset);
531 
532 	p2s = uv_hub_info->pnode_to_socket;
533 	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
534 	node = uv_socket_to_node(sockid);
535 
536 	/* limit address of previous socket is our base, except node 0 is 0 */
537 	if (!node)
538 		return __va((unsigned long)offset);
539 
540 	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
541 	return __va(base << UV_GAM_RANGE_SHFT | offset);
542 }
543 
544 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
545 static inline int uv_apicid_to_pnode(int apicid)
546 {
547 	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
548 	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
549 
550 	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
551 }
552 
553 /*
554  * Access global MMRs using the low memory MMR32 space. This region supports
555  * faster MMR access but not all MMRs are accessible in this space.
556  */
557 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
558 {
559 	return __va(UV_GLOBAL_MMR32_BASE |
560 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
561 }
562 
563 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
564 {
565 	writeq(val, uv_global_mmr32_address(pnode, offset));
566 }
567 
568 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
569 {
570 	return readq(uv_global_mmr32_address(pnode, offset));
571 }
572 
573 /*
574  * Access Global MMR space using the MMR space located at the top of physical
575  * memory.
576  */
577 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
578 {
579 	return __va(UV_GLOBAL_MMR64_BASE |
580 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
581 }
582 
583 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
584 {
585 	writeq(val, uv_global_mmr64_address(pnode, offset));
586 }
587 
588 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
589 {
590 	return readq(uv_global_mmr64_address(pnode, offset));
591 }
592 
593 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
594 {
595 	writeb(val, uv_global_mmr64_address(pnode, offset));
596 }
597 
598 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
599 {
600 	return readb(uv_global_mmr64_address(pnode, offset));
601 }
602 
603 /*
604  * Access hub local MMRs. Faster than using global space but only local MMRs
605  * are accessible.
606  */
607 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
608 {
609 	return __va(UV_LOCAL_MMR_BASE | offset);
610 }
611 
612 static inline unsigned long uv_read_local_mmr(unsigned long offset)
613 {
614 	return readq(uv_local_mmr_address(offset));
615 }
616 
617 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
618 {
619 	writeq(val, uv_local_mmr_address(offset));
620 }
621 
622 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
623 {
624 	return readb(uv_local_mmr_address(offset));
625 }
626 
627 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
628 {
629 	writeb(val, uv_local_mmr_address(offset));
630 }
631 
632 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
633 static inline int uv_blade_processor_id(void)
634 {
635 	return uv_cpu_info->blade_cpu_id;
636 }
637 
638 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
639 static inline int uv_cpu_blade_processor_id(int cpu)
640 {
641 	return uv_cpu_info_per(cpu)->blade_cpu_id;
642 }
643 
644 /* Blade number to Node number (UV2..UV4 is 1:1) */
645 static inline int uv_blade_to_node(int blade)
646 {
647 	return blade;
648 }
649 
650 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
651 static inline int uv_numa_blade_id(void)
652 {
653 	return uv_hub_info->numa_blade_id;
654 }
655 
656 /*
657  * Convert linux node number to the UV blade number.
658  * .. Currently for UV2 thru UV4 the node and the blade are identical.
659  * .. If this changes then you MUST check references to this function!
660  */
661 static inline int uv_node_to_blade_id(int nid)
662 {
663 	return nid;
664 }
665 
666 /* Convert a CPU number to the UV blade number */
667 static inline int uv_cpu_to_blade_id(int cpu)
668 {
669 	return uv_node_to_blade_id(cpu_to_node(cpu));
670 }
671 
672 /* Convert a blade id to the PNODE of the blade */
673 static inline int uv_blade_to_pnode(int bid)
674 {
675 	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
676 }
677 
678 /* Nid of memory node on blade. -1 if no blade-local memory */
679 static inline int uv_blade_to_memory_nid(int bid)
680 {
681 	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
682 }
683 
684 /* Determine the number of possible cpus on a blade */
685 static inline int uv_blade_nr_possible_cpus(int bid)
686 {
687 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
688 }
689 
690 /* Determine the number of online cpus on a blade */
691 static inline int uv_blade_nr_online_cpus(int bid)
692 {
693 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
694 }
695 
696 /* Convert a cpu id to the PNODE of the blade containing the cpu */
697 static inline int uv_cpu_to_pnode(int cpu)
698 {
699 	return uv_cpu_hub_info(cpu)->pnode;
700 }
701 
702 /* Convert a linux node number to the PNODE of the blade */
703 static inline int uv_node_to_pnode(int nid)
704 {
705 	return uv_hub_info_list(nid)->pnode;
706 }
707 
708 /* Maximum possible number of blades */
709 extern short uv_possible_blades;
710 static inline int uv_num_possible_blades(void)
711 {
712 	return uv_possible_blades;
713 }
714 
715 /* Per Hub NMI support */
716 extern void uv_nmi_setup(void);
717 extern void uv_nmi_setup_hubless(void);
718 
719 /* BIOS/Kernel flags exchange MMR */
720 #define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
721 #define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
722 #define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
723 
724 /* TSC sync valid, set by BIOS */
725 #define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
726 #define UVH_TSC_SYNC_SHIFT	10
727 #define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
728 #define UVH_TSC_SYNC_MASK	3	/* 0011 */
729 #define UVH_TSC_SYNC_VALID	3	/* 0011 */
730 #define UVH_TSC_SYNC_UNKNOWN	0	/* 0000 */
731 
732 /* BMC sets a bit this MMR non-zero before sending an NMI */
733 #define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
734 #define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
735 #define UVH_NMI_MMR_SHIFT	63
736 #define UVH_NMI_MMR_TYPE	"SCRATCH5"
737 
738 struct uv_hub_nmi_s {
739 	raw_spinlock_t	nmi_lock;
740 	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
741 	atomic_t	cpu_owner;	/* last locker of this struct */
742 	atomic_t	read_mmr_count;	/* count of MMR reads */
743 	atomic_t	nmi_count;	/* count of true UV NMIs */
744 	unsigned long	nmi_value;	/* last value read from NMI MMR */
745 	bool		hub_present;	/* false means UV hubless system */
746 	bool		pch_owner;	/* indicates this hub owns PCH */
747 };
748 
749 struct uv_cpu_nmi_s {
750 	struct uv_hub_nmi_s	*hub;
751 	int			state;
752 	int			pinging;
753 	int			queries;
754 	int			pings;
755 };
756 
757 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
758 
759 #define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
760 #define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
761 #define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
762 
763 /* uv_cpu_nmi_states */
764 #define	UV_NMI_STATE_OUT		0
765 #define	UV_NMI_STATE_IN			1
766 #define	UV_NMI_STATE_DUMP		2
767 #define	UV_NMI_STATE_DUMP_DONE		3
768 
769 /*
770  * Get the minimum revision number of the hub chips within the partition.
771  * (See UVx_HUB_REVISION_BASE above for specific values.)
772  */
773 static inline int uv_get_min_hub_revision_id(void)
774 {
775 	return uv_hub_info->hub_revision;
776 }
777 
778 #endif /* CONFIG_X86_64 */
779 #endif /* _ASM_X86_UV_UV_HUB_H */
780