xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #include <linux/numa.h>
15 #include <linux/percpu.h>
16 #include <linux/timer.h>
17 #include <asm/types.h>
18 #include <asm/percpu.h>
19 
20 
21 /*
22  * Addressing Terminology
23  *
24  *	M       - The low M bits of a physical address represent the offset
25  *		  into the blade local memory. RAM memory on a blade is physically
26  *		  contiguous (although various IO spaces may punch holes in
27  *		  it)..
28  *
29  * 	N	- Number of bits in the node portion of a socket physical
30  * 		  address.
31  *
32  * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
33  * 	 	  routers always have low bit of 1, C/MBricks have low bit
34  * 		  equal to 0. Most addressing macros that target UV hub chips
35  * 		  right shift the NASID by 1 to exclude the always-zero bit.
36  * 		  NASIDs contain up to 15 bits.
37  *
38  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
39  *		  of nasids.
40  *
41  * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
42  * 		  of the nasid for socket usage.
43  *
44  *
45  *  NumaLink Global Physical Address Format:
46  *  +--------------------------------+---------------------+
47  *  |00..000|      GNODE             |      NodeOffset     |
48  *  +--------------------------------+---------------------+
49  *          |<-------53 - M bits --->|<--------M bits ----->
50  *
51  *	M - number of node offset bits (35 .. 40)
52  *
53  *
54  *  Memory/UV-HUB Processor Socket Address Format:
55  *  +----------------+---------------+---------------------+
56  *  |00..000000000000|   PNODE       |      NodeOffset     |
57  *  +----------------+---------------+---------------------+
58  *                   <--- N bits --->|<--------M bits ----->
59  *
60  *	M - number of node offset bits (35 .. 40)
61  *	N - number of PNODE bits (0 .. 10)
62  *
63  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
64  *		The actual values are configuration dependent and are set at
65  *		boot time. M & N values are set by the hardware/BIOS at boot.
66  *
67  *
68  * APICID format
69  * 	NOTE!!!!!! This is the current format of the APICID. However, code
70  * 	should assume that this will change in the future. Use functions
71  * 	in this file for all APICID bit manipulations and conversion.
72  *
73  * 		1111110000000000
74  * 		5432109876543210
75  *		pppppppppplc0cch
76  *		sssssssssss
77  *
78  *			p  = pnode bits
79  *			l =  socket number on board
80  *			c  = core
81  *			h  = hyperthread
82  *			s  = bits that are in the SOCKET_ID CSR
83  *
84  *	Note: Processor only supports 12 bits in the APICID register. The ACPI
85  *	      tables hold all 16 bits. Software needs to be aware of this.
86  *
87  * 	      Unless otherwise specified, all references to APICID refer to
88  * 	      the FULL value contained in ACPI tables, not the subset in the
89  * 	      processor APICID register.
90  */
91 
92 
93 /*
94  * Maximum number of bricks in all partitions and in all coherency domains.
95  * This is the total number of bricks accessible in the numalink fabric. It
96  * includes all C & M bricks. Routers are NOT included.
97  *
98  * This value is also the value of the maximum number of non-router NASIDs
99  * in the numalink fabric.
100  *
101  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
102  */
103 #define UV_MAX_NUMALINK_BLADES	16384
104 
105 /*
106  * Maximum number of C/Mbricks within a software SSI (hardware may support
107  * more).
108  */
109 #define UV_MAX_SSI_BLADES	256
110 
111 /*
112  * The largest possible NASID of a C or M brick (+ 2)
113  */
114 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)
115 
116 struct uv_scir_s {
117 	struct timer_list timer;
118 	unsigned long	offset;
119 	unsigned long	last;
120 	unsigned long	idle_on;
121 	unsigned long	idle_off;
122 	unsigned char	state;
123 	unsigned char	enabled;
124 };
125 
126 /*
127  * The following defines attributes of the HUB chip. These attributes are
128  * frequently referenced and are kept in the per-cpu data areas of each cpu.
129  * They are kept together in a struct to minimize cache misses.
130  */
131 struct uv_hub_info_s {
132 	unsigned long		global_mmr_base;
133 	unsigned long		gpa_mask;
134 	unsigned long		gnode_upper;
135 	unsigned long		lowmem_remap_top;
136 	unsigned long		lowmem_remap_base;
137 	unsigned short		pnode;
138 	unsigned short		pnode_mask;
139 	unsigned short		coherency_domain_number;
140 	unsigned short		numa_blade_id;
141 	unsigned char		blade_processor_id;
142 	unsigned char		m_val;
143 	unsigned char		n_val;
144 	struct uv_scir_s	scir;
145 };
146 
147 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
148 #define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
149 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
150 
151 /*
152  * Local & Global MMR space macros.
153  * 	Note: macros are intended to be used ONLY by inline functions
154  * 	in this file - not by other kernel code.
155  * 		n -  NASID (full 15-bit global nasid)
156  * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
157  * 		p -  PNODE (local part of nsids, right shifted 1)
158  */
159 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
160 #define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
161 
162 #define UV_LOCAL_MMR_BASE		0xf4000000UL
163 #define UV_GLOBAL_MMR32_BASE		0xf8000000UL
164 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
165 #define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
166 #define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
167 
168 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
169 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
170 
171 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
172 
173 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
174 	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
175 
176 #define UV_APIC_PNODE_SHIFT	6
177 
178 /* Local Bus from cpu's perspective */
179 #define LOCAL_BUS_BASE		0x1c00000
180 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
181 
182 /*
183  * System Controller Interface Reg
184  *
185  * Note there are NO leds on a UV system.  This register is only
186  * used by the system controller to monitor system-wide operation.
187  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
188  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
189  * a node.
190  *
191  * The window is located at top of ACPI MMR space
192  */
193 #define SCIR_WINDOW_COUNT	64
194 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
195 				 LOCAL_BUS_SIZE - \
196 				 SCIR_WINDOW_COUNT)
197 
198 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
199 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
200 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
201 
202 /* Loop through all installed blades */
203 #define for_each_possible_blade(bid)		\
204 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
205 
206 /*
207  * Macros for converting between kernel virtual addresses, socket local physical
208  * addresses, and UV global physical addresses.
209  * 	Note: use the standard __pa() & __va() macros for converting
210  * 	      between socket virtual and socket physical addresses.
211  */
212 
213 /* socket phys RAM --> UV global physical address */
214 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
215 {
216 	if (paddr < uv_hub_info->lowmem_remap_top)
217 		paddr |= uv_hub_info->lowmem_remap_base;
218 	return paddr | uv_hub_info->gnode_upper;
219 }
220 
221 
222 /* socket virtual --> UV global physical address */
223 static inline unsigned long uv_gpa(void *v)
224 {
225 	return uv_soc_phys_ram_to_gpa(__pa(v));
226 }
227 
228 /* pnode, offset --> socket virtual */
229 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
230 {
231 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
232 }
233 
234 
235 /*
236  * Extract a PNODE from an APICID (full apicid, not processor subset)
237  */
238 static inline int uv_apicid_to_pnode(int apicid)
239 {
240 	return (apicid >> UV_APIC_PNODE_SHIFT);
241 }
242 
243 /*
244  * Access global MMRs using the low memory MMR32 space. This region supports
245  * faster MMR access but not all MMRs are accessible in this space.
246  */
247 static inline unsigned long *uv_global_mmr32_address(int pnode,
248 				unsigned long offset)
249 {
250 	return __va(UV_GLOBAL_MMR32_BASE |
251 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
252 }
253 
254 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
255 				 unsigned long val)
256 {
257 	*uv_global_mmr32_address(pnode, offset) = val;
258 }
259 
260 static inline unsigned long uv_read_global_mmr32(int pnode,
261 						 unsigned long offset)
262 {
263 	return *uv_global_mmr32_address(pnode, offset);
264 }
265 
266 /*
267  * Access Global MMR space using the MMR space located at the top of physical
268  * memory.
269  */
270 static inline unsigned long *uv_global_mmr64_address(int pnode,
271 				unsigned long offset)
272 {
273 	return __va(UV_GLOBAL_MMR64_BASE |
274 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
275 }
276 
277 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
278 				unsigned long val)
279 {
280 	*uv_global_mmr64_address(pnode, offset) = val;
281 }
282 
283 static inline unsigned long uv_read_global_mmr64(int pnode,
284 						 unsigned long offset)
285 {
286 	return *uv_global_mmr64_address(pnode, offset);
287 }
288 
289 /*
290  * Access hub local MMRs. Faster than using global space but only local MMRs
291  * are accessible.
292  */
293 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
294 {
295 	return __va(UV_LOCAL_MMR_BASE | offset);
296 }
297 
298 static inline unsigned long uv_read_local_mmr(unsigned long offset)
299 {
300 	return *uv_local_mmr_address(offset);
301 }
302 
303 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
304 {
305 	*uv_local_mmr_address(offset) = val;
306 }
307 
308 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
309 {
310 	return *((unsigned char *)uv_local_mmr_address(offset));
311 }
312 
313 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
314 {
315 	*((unsigned char *)uv_local_mmr_address(offset)) = val;
316 }
317 
318 /*
319  * Structures and definitions for converting between cpu, node, pnode, and blade
320  * numbers.
321  */
322 struct uv_blade_info {
323 	unsigned short	nr_possible_cpus;
324 	unsigned short	nr_online_cpus;
325 	unsigned short	pnode;
326 };
327 extern struct uv_blade_info *uv_blade_info;
328 extern short *uv_node_to_blade;
329 extern short *uv_cpu_to_blade;
330 extern short uv_possible_blades;
331 
332 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
333 static inline int uv_blade_processor_id(void)
334 {
335 	return uv_hub_info->blade_processor_id;
336 }
337 
338 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
339 static inline int uv_numa_blade_id(void)
340 {
341 	return uv_hub_info->numa_blade_id;
342 }
343 
344 /* Convert a cpu number to the the UV blade number */
345 static inline int uv_cpu_to_blade_id(int cpu)
346 {
347 	return uv_cpu_to_blade[cpu];
348 }
349 
350 /* Convert linux node number to the UV blade number */
351 static inline int uv_node_to_blade_id(int nid)
352 {
353 	return uv_node_to_blade[nid];
354 }
355 
356 /* Convert a blade id to the PNODE of the blade */
357 static inline int uv_blade_to_pnode(int bid)
358 {
359 	return uv_blade_info[bid].pnode;
360 }
361 
362 /* Determine the number of possible cpus on a blade */
363 static inline int uv_blade_nr_possible_cpus(int bid)
364 {
365 	return uv_blade_info[bid].nr_possible_cpus;
366 }
367 
368 /* Determine the number of online cpus on a blade */
369 static inline int uv_blade_nr_online_cpus(int bid)
370 {
371 	return uv_blade_info[bid].nr_online_cpus;
372 }
373 
374 /* Convert a cpu id to the PNODE of the blade containing the cpu */
375 static inline int uv_cpu_to_pnode(int cpu)
376 {
377 	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
378 }
379 
380 /* Convert a linux node number to the PNODE of the blade */
381 static inline int uv_node_to_pnode(int nid)
382 {
383 	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
384 }
385 
386 /* Maximum possible number of blades */
387 static inline int uv_num_possible_blades(void)
388 {
389 	return uv_possible_blades;
390 }
391 
392 /* Update SCIR state */
393 static inline void uv_set_scir_bits(unsigned char value)
394 {
395 	if (uv_hub_info->scir.state != value) {
396 		uv_hub_info->scir.state = value;
397 		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
398 	}
399 }
400 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
401 {
402 	if (uv_cpu_hub_info(cpu)->scir.state != value) {
403 		uv_cpu_hub_info(cpu)->scir.state = value;
404 		uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
405 	}
406 }
407 
408 #endif /* _ASM_X86_UV_UV_HUB_H */
409