xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision b627b4ed)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <asm/types.h>
19 #include <asm/percpu.h>
20 #include <asm/uv/uv_mmrs.h>
21 
22 
23 /*
24  * Addressing Terminology
25  *
26  *	M       - The low M bits of a physical address represent the offset
27  *		  into the blade local memory. RAM memory on a blade is physically
28  *		  contiguous (although various IO spaces may punch holes in
29  *		  it)..
30  *
31  * 	N	- Number of bits in the node portion of a socket physical
32  * 		  address.
33  *
34  * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
35  * 	 	  routers always have low bit of 1, C/MBricks have low bit
36  * 		  equal to 0. Most addressing macros that target UV hub chips
37  * 		  right shift the NASID by 1 to exclude the always-zero bit.
38  * 		  NASIDs contain up to 15 bits.
39  *
40  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
41  *		  of nasids.
42  *
43  * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
44  * 		  of the nasid for socket usage.
45  *
46  *
47  *  NumaLink Global Physical Address Format:
48  *  +--------------------------------+---------------------+
49  *  |00..000|      GNODE             |      NodeOffset     |
50  *  +--------------------------------+---------------------+
51  *          |<-------53 - M bits --->|<--------M bits ----->
52  *
53  *	M - number of node offset bits (35 .. 40)
54  *
55  *
56  *  Memory/UV-HUB Processor Socket Address Format:
57  *  +----------------+---------------+---------------------+
58  *  |00..000000000000|   PNODE       |      NodeOffset     |
59  *  +----------------+---------------+---------------------+
60  *                   <--- N bits --->|<--------M bits ----->
61  *
62  *	M - number of node offset bits (35 .. 40)
63  *	N - number of PNODE bits (0 .. 10)
64  *
65  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
66  *		The actual values are configuration dependent and are set at
67  *		boot time. M & N values are set by the hardware/BIOS at boot.
68  *
69  *
70  * APICID format
71  * 	NOTE!!!!!! This is the current format of the APICID. However, code
72  * 	should assume that this will change in the future. Use functions
73  * 	in this file for all APICID bit manipulations and conversion.
74  *
75  * 		1111110000000000
76  * 		5432109876543210
77  *		pppppppppplc0cch
78  *		sssssssssss
79  *
80  *			p  = pnode bits
81  *			l =  socket number on board
82  *			c  = core
83  *			h  = hyperthread
84  *			s  = bits that are in the SOCKET_ID CSR
85  *
86  *	Note: Processor only supports 12 bits in the APICID register. The ACPI
87  *	      tables hold all 16 bits. Software needs to be aware of this.
88  *
89  * 	      Unless otherwise specified, all references to APICID refer to
90  * 	      the FULL value contained in ACPI tables, not the subset in the
91  * 	      processor APICID register.
92  */
93 
94 
95 /*
96  * Maximum number of bricks in all partitions and in all coherency domains.
97  * This is the total number of bricks accessible in the numalink fabric. It
98  * includes all C & M bricks. Routers are NOT included.
99  *
100  * This value is also the value of the maximum number of non-router NASIDs
101  * in the numalink fabric.
102  *
103  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
104  */
105 #define UV_MAX_NUMALINK_BLADES	16384
106 
107 /*
108  * Maximum number of C/Mbricks within a software SSI (hardware may support
109  * more).
110  */
111 #define UV_MAX_SSI_BLADES	256
112 
113 /*
114  * The largest possible NASID of a C or M brick (+ 2)
115  */
116 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)
117 
118 struct uv_scir_s {
119 	struct timer_list timer;
120 	unsigned long	offset;
121 	unsigned long	last;
122 	unsigned long	idle_on;
123 	unsigned long	idle_off;
124 	unsigned char	state;
125 	unsigned char	enabled;
126 };
127 
128 /*
129  * The following defines attributes of the HUB chip. These attributes are
130  * frequently referenced and are kept in the per-cpu data areas of each cpu.
131  * They are kept together in a struct to minimize cache misses.
132  */
133 struct uv_hub_info_s {
134 	unsigned long		global_mmr_base;
135 	unsigned long		gpa_mask;
136 	unsigned long		gnode_upper;
137 	unsigned long		lowmem_remap_top;
138 	unsigned long		lowmem_remap_base;
139 	unsigned short		pnode;
140 	unsigned short		pnode_mask;
141 	unsigned short		coherency_domain_number;
142 	unsigned short		numa_blade_id;
143 	unsigned char		blade_processor_id;
144 	unsigned char		m_val;
145 	unsigned char		n_val;
146 	struct uv_scir_s	scir;
147 };
148 
149 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
150 #define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
151 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
152 
153 /*
154  * Local & Global MMR space macros.
155  * 	Note: macros are intended to be used ONLY by inline functions
156  * 	in this file - not by other kernel code.
157  * 		n -  NASID (full 15-bit global nasid)
158  * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
159  * 		p -  PNODE (local part of nsids, right shifted 1)
160  */
161 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
162 #define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
163 
164 #define UV_LOCAL_MMR_BASE		0xf4000000UL
165 #define UV_GLOBAL_MMR32_BASE		0xf8000000UL
166 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
167 #define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
168 #define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
169 
170 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
171 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
172 
173 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
174 
175 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
176 	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
177 
178 #define UV_APIC_PNODE_SHIFT	6
179 
180 /* Local Bus from cpu's perspective */
181 #define LOCAL_BUS_BASE		0x1c00000
182 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
183 
184 /*
185  * System Controller Interface Reg
186  *
187  * Note there are NO leds on a UV system.  This register is only
188  * used by the system controller to monitor system-wide operation.
189  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
190  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
191  * a node.
192  *
193  * The window is located at top of ACPI MMR space
194  */
195 #define SCIR_WINDOW_COUNT	64
196 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
197 				 LOCAL_BUS_SIZE - \
198 				 SCIR_WINDOW_COUNT)
199 
200 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
201 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
202 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
203 
204 /* Loop through all installed blades */
205 #define for_each_possible_blade(bid)		\
206 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
207 
208 /*
209  * Macros for converting between kernel virtual addresses, socket local physical
210  * addresses, and UV global physical addresses.
211  * 	Note: use the standard __pa() & __va() macros for converting
212  * 	      between socket virtual and socket physical addresses.
213  */
214 
215 /* socket phys RAM --> UV global physical address */
216 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
217 {
218 	if (paddr < uv_hub_info->lowmem_remap_top)
219 		paddr |= uv_hub_info->lowmem_remap_base;
220 	return paddr | uv_hub_info->gnode_upper;
221 }
222 
223 
224 /* socket virtual --> UV global physical address */
225 static inline unsigned long uv_gpa(void *v)
226 {
227 	return uv_soc_phys_ram_to_gpa(__pa(v));
228 }
229 
230 /* pnode, offset --> socket virtual */
231 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
232 {
233 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
234 }
235 
236 
237 /*
238  * Extract a PNODE from an APICID (full apicid, not processor subset)
239  */
240 static inline int uv_apicid_to_pnode(int apicid)
241 {
242 	return (apicid >> UV_APIC_PNODE_SHIFT);
243 }
244 
245 /*
246  * Access global MMRs using the low memory MMR32 space. This region supports
247  * faster MMR access but not all MMRs are accessible in this space.
248  */
249 static inline unsigned long *uv_global_mmr32_address(int pnode,
250 				unsigned long offset)
251 {
252 	return __va(UV_GLOBAL_MMR32_BASE |
253 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
254 }
255 
256 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
257 				 unsigned long val)
258 {
259 	*uv_global_mmr32_address(pnode, offset) = val;
260 }
261 
262 static inline unsigned long uv_read_global_mmr32(int pnode,
263 						 unsigned long offset)
264 {
265 	return *uv_global_mmr32_address(pnode, offset);
266 }
267 
268 /*
269  * Access Global MMR space using the MMR space located at the top of physical
270  * memory.
271  */
272 static inline unsigned long *uv_global_mmr64_address(int pnode,
273 				unsigned long offset)
274 {
275 	return __va(UV_GLOBAL_MMR64_BASE |
276 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
277 }
278 
279 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
280 				unsigned long val)
281 {
282 	*uv_global_mmr64_address(pnode, offset) = val;
283 }
284 
285 static inline unsigned long uv_read_global_mmr64(int pnode,
286 						 unsigned long offset)
287 {
288 	return *uv_global_mmr64_address(pnode, offset);
289 }
290 
291 /*
292  * Access hub local MMRs. Faster than using global space but only local MMRs
293  * are accessible.
294  */
295 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
296 {
297 	return __va(UV_LOCAL_MMR_BASE | offset);
298 }
299 
300 static inline unsigned long uv_read_local_mmr(unsigned long offset)
301 {
302 	return *uv_local_mmr_address(offset);
303 }
304 
305 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
306 {
307 	*uv_local_mmr_address(offset) = val;
308 }
309 
310 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
311 {
312 	return *((unsigned char *)uv_local_mmr_address(offset));
313 }
314 
315 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
316 {
317 	*((unsigned char *)uv_local_mmr_address(offset)) = val;
318 }
319 
320 /*
321  * Structures and definitions for converting between cpu, node, pnode, and blade
322  * numbers.
323  */
324 struct uv_blade_info {
325 	unsigned short	nr_possible_cpus;
326 	unsigned short	nr_online_cpus;
327 	unsigned short	pnode;
328 };
329 extern struct uv_blade_info *uv_blade_info;
330 extern short *uv_node_to_blade;
331 extern short *uv_cpu_to_blade;
332 extern short uv_possible_blades;
333 
334 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
335 static inline int uv_blade_processor_id(void)
336 {
337 	return uv_hub_info->blade_processor_id;
338 }
339 
340 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
341 static inline int uv_numa_blade_id(void)
342 {
343 	return uv_hub_info->numa_blade_id;
344 }
345 
346 /* Convert a cpu number to the the UV blade number */
347 static inline int uv_cpu_to_blade_id(int cpu)
348 {
349 	return uv_cpu_to_blade[cpu];
350 }
351 
352 /* Convert linux node number to the UV blade number */
353 static inline int uv_node_to_blade_id(int nid)
354 {
355 	return uv_node_to_blade[nid];
356 }
357 
358 /* Convert a blade id to the PNODE of the blade */
359 static inline int uv_blade_to_pnode(int bid)
360 {
361 	return uv_blade_info[bid].pnode;
362 }
363 
364 /* Determine the number of possible cpus on a blade */
365 static inline int uv_blade_nr_possible_cpus(int bid)
366 {
367 	return uv_blade_info[bid].nr_possible_cpus;
368 }
369 
370 /* Determine the number of online cpus on a blade */
371 static inline int uv_blade_nr_online_cpus(int bid)
372 {
373 	return uv_blade_info[bid].nr_online_cpus;
374 }
375 
376 /* Convert a cpu id to the PNODE of the blade containing the cpu */
377 static inline int uv_cpu_to_pnode(int cpu)
378 {
379 	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
380 }
381 
382 /* Convert a linux node number to the PNODE of the blade */
383 static inline int uv_node_to_pnode(int nid)
384 {
385 	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
386 }
387 
388 /* Maximum possible number of blades */
389 static inline int uv_num_possible_blades(void)
390 {
391 	return uv_possible_blades;
392 }
393 
394 /* Update SCIR state */
395 static inline void uv_set_scir_bits(unsigned char value)
396 {
397 	if (uv_hub_info->scir.state != value) {
398 		uv_hub_info->scir.state = value;
399 		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
400 	}
401 }
402 
403 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
404 {
405 	if (uv_cpu_hub_info(cpu)->scir.state != value) {
406 		uv_cpu_hub_info(cpu)->scir.state = value;
407 		uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
408 	}
409 }
410 
411 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
412 {
413 	unsigned long val;
414 
415 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
416 			((apicid & 0x3f) << UVH_IPI_INT_APIC_ID_SHFT) |
417 			(vector << UVH_IPI_INT_VECTOR_SHFT);
418 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
419 }
420 
421 #endif /* CONFIG_X86_64 */
422 #endif /* _ASM_X86_UV_UV_HUB_H */
423