xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision acc6a093)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
24 
25 
26 /*
27  * Addressing Terminology
28  *
29  *	M       - The low M bits of a physical address represent the offset
30  *		  into the blade local memory. RAM memory on a blade is physically
31  *		  contiguous (although various IO spaces may punch holes in
32  *		  it)..
33  *
34  *	N	- Number of bits in the node portion of a socket physical
35  *		  address.
36  *
37  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
38  *		  routers always have low bit of 1, C/MBricks have low bit
39  *		  equal to 0. Most addressing macros that target UV hub chips
40  *		  right shift the NASID by 1 to exclude the always-zero bit.
41  *		  NASIDs contain up to 15 bits.
42  *
43  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44  *		  of nasids.
45  *
46  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
47  *		  of the nasid for socket usage.
48  *
49  *
50  *  NumaLink Global Physical Address Format:
51  *  +--------------------------------+---------------------+
52  *  |00..000|      GNODE             |      NodeOffset     |
53  *  +--------------------------------+---------------------+
54  *          |<-------53 - M bits --->|<--------M bits ----->
55  *
56  *	M - number of node offset bits (35 .. 40)
57  *
58  *
59  *  Memory/UV-HUB Processor Socket Address Format:
60  *  +----------------+---------------+---------------------+
61  *  |00..000000000000|   PNODE       |      NodeOffset     |
62  *  +----------------+---------------+---------------------+
63  *                   <--- N bits --->|<--------M bits ----->
64  *
65  *	M - number of node offset bits (35 .. 40)
66  *	N - number of PNODE bits (0 .. 10)
67  *
68  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69  *		The actual values are configuration dependent and are set at
70  *		boot time. M & N values are set by the hardware/BIOS at boot.
71  *
72  *
73  * APICID format
74  *	NOTE!!!!!! This is the current format of the APICID. However, code
75  *	should assume that this will change in the future. Use functions
76  *	in this file for all APICID bit manipulations and conversion.
77  *
78  *		1111110000000000
79  *		5432109876543210
80  *		pppppppppplc0cch
81  *		sssssssssss
82  *
83  *			p  = pnode bits
84  *			l =  socket number on board
85  *			c  = core
86  *			h  = hyperthread
87  *			s  = bits that are in the SOCKET_ID CSR
88  *
89  *	Note: Processor only supports 12 bits in the APICID register. The ACPI
90  *	      tables hold all 16 bits. Software needs to be aware of this.
91  *
92  *	      Unless otherwise specified, all references to APICID refer to
93  *	      the FULL value contained in ACPI tables, not the subset in the
94  *	      processor APICID register.
95  */
96 
97 
98 /*
99  * Maximum number of bricks in all partitions and in all coherency domains.
100  * This is the total number of bricks accessible in the numalink fabric. It
101  * includes all C & M bricks. Routers are NOT included.
102  *
103  * This value is also the value of the maximum number of non-router NASIDs
104  * in the numalink fabric.
105  *
106  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
107  */
108 #define UV_MAX_NUMALINK_BLADES	16384
109 
110 /*
111  * Maximum number of C/Mbricks within a software SSI (hardware may support
112  * more).
113  */
114 #define UV_MAX_SSI_BLADES	256
115 
116 /*
117  * The largest possible NASID of a C or M brick (+ 2)
118  */
119 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
120 
121 struct uv_scir_s {
122 	struct timer_list timer;
123 	unsigned long	offset;
124 	unsigned long	last;
125 	unsigned long	idle_on;
126 	unsigned long	idle_off;
127 	unsigned char	state;
128 	unsigned char	enabled;
129 };
130 
131 /*
132  * The following defines attributes of the HUB chip. These attributes are
133  * frequently referenced and are kept in the per-cpu data areas of each cpu.
134  * They are kept together in a struct to minimize cache misses.
135  */
136 struct uv_hub_info_s {
137 	unsigned long		global_mmr_base;
138 	unsigned long		gpa_mask;
139 	unsigned int		gnode_extra;
140 	unsigned long		gnode_upper;
141 	unsigned long		lowmem_remap_top;
142 	unsigned long		lowmem_remap_base;
143 	unsigned short		pnode;
144 	unsigned short		pnode_mask;
145 	unsigned short		coherency_domain_number;
146 	unsigned short		numa_blade_id;
147 	unsigned char		blade_processor_id;
148 	unsigned char		m_val;
149 	unsigned char		n_val;
150 	struct uv_scir_s	scir;
151 };
152 
153 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
154 #define uv_hub_info		(&__get_cpu_var(__uv_hub_info))
155 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
156 
157 /*
158  * Local & Global MMR space macros.
159  *	Note: macros are intended to be used ONLY by inline functions
160  *	in this file - not by other kernel code.
161  *		n -  NASID (full 15-bit global nasid)
162  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
163  *		p -  PNODE (local part of nsids, right shifted 1)
164  */
165 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
166 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
167 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
168 
169 #define UV_LOCAL_MMR_BASE		0xf4000000UL
170 #define UV_GLOBAL_MMR32_BASE		0xf8000000UL
171 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
172 #define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
173 #define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
174 
175 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
176 
177 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
178 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
179 
180 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
181 
182 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
183 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
184 
185 #define UV_APIC_PNODE_SHIFT	6
186 
187 /* Local Bus from cpu's perspective */
188 #define LOCAL_BUS_BASE		0x1c00000
189 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
190 
191 /*
192  * System Controller Interface Reg
193  *
194  * Note there are NO leds on a UV system.  This register is only
195  * used by the system controller to monitor system-wide operation.
196  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
197  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
198  * a node.
199  *
200  * The window is located at top of ACPI MMR space
201  */
202 #define SCIR_WINDOW_COUNT	64
203 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
204 				 LOCAL_BUS_SIZE - \
205 				 SCIR_WINDOW_COUNT)
206 
207 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
208 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
209 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
210 
211 /* Loop through all installed blades */
212 #define for_each_possible_blade(bid)		\
213 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
214 
215 /*
216  * Macros for converting between kernel virtual addresses, socket local physical
217  * addresses, and UV global physical addresses.
218  *	Note: use the standard __pa() & __va() macros for converting
219  *	      between socket virtual and socket physical addresses.
220  */
221 
222 /* socket phys RAM --> UV global physical address */
223 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
224 {
225 	if (paddr < uv_hub_info->lowmem_remap_top)
226 		paddr |= uv_hub_info->lowmem_remap_base;
227 	return paddr | uv_hub_info->gnode_upper;
228 }
229 
230 
231 /* socket virtual --> UV global physical address */
232 static inline unsigned long uv_gpa(void *v)
233 {
234 	return uv_soc_phys_ram_to_gpa(__pa(v));
235 }
236 
237 /* Top two bits indicate the requested address is in MMR space.  */
238 static inline int
239 uv_gpa_in_mmr_space(unsigned long gpa)
240 {
241 	return (gpa >> 62) == 0x3UL;
242 }
243 
244 /* UV global physical address --> socket phys RAM */
245 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
246 {
247 	unsigned long paddr = gpa & uv_hub_info->gpa_mask;
248 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
249 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
250 
251 	if (paddr >= remap_base && paddr < remap_base + remap_top)
252 		paddr -= remap_base;
253 	return paddr;
254 }
255 
256 
257 /* gnode -> pnode */
258 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
259 {
260 	return gpa >> uv_hub_info->m_val;
261 }
262 
263 /* gpa -> pnode */
264 static inline int uv_gpa_to_pnode(unsigned long gpa)
265 {
266 	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
267 
268 	return uv_gpa_to_gnode(gpa) & n_mask;
269 }
270 
271 /* pnode, offset --> socket virtual */
272 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
273 {
274 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
275 }
276 
277 
278 /*
279  * Extract a PNODE from an APICID (full apicid, not processor subset)
280  */
281 static inline int uv_apicid_to_pnode(int apicid)
282 {
283 	return (apicid >> UV_APIC_PNODE_SHIFT);
284 }
285 
286 /*
287  * Access global MMRs using the low memory MMR32 space. This region supports
288  * faster MMR access but not all MMRs are accessible in this space.
289  */
290 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
291 {
292 	return __va(UV_GLOBAL_MMR32_BASE |
293 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
294 }
295 
296 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
297 {
298 	writeq(val, uv_global_mmr32_address(pnode, offset));
299 }
300 
301 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
302 {
303 	return readq(uv_global_mmr32_address(pnode, offset));
304 }
305 
306 /*
307  * Access Global MMR space using the MMR space located at the top of physical
308  * memory.
309  */
310 static inline unsigned long *uv_global_mmr64_address(int pnode, unsigned long offset)
311 {
312 	return __va(UV_GLOBAL_MMR64_BASE |
313 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
314 }
315 
316 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
317 {
318 	writeq(val, uv_global_mmr64_address(pnode, offset));
319 }
320 
321 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
322 {
323 	return readq(uv_global_mmr64_address(pnode, offset));
324 }
325 
326 /*
327  * Global MMR space addresses when referenced by the GRU. (GRU does
328  * NOT use socket addressing).
329  */
330 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
331 {
332 	return UV_GLOBAL_GRU_MMR_BASE | offset |
333 		((unsigned long)pnode << uv_hub_info->m_val);
334 }
335 
336 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
337 {
338 	writeb(val, uv_global_mmr64_address(pnode, offset));
339 }
340 
341 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
342 {
343 	return readb(uv_global_mmr64_address(pnode, offset));
344 }
345 
346 /*
347  * Access hub local MMRs. Faster than using global space but only local MMRs
348  * are accessible.
349  */
350 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
351 {
352 	return __va(UV_LOCAL_MMR_BASE | offset);
353 }
354 
355 static inline unsigned long uv_read_local_mmr(unsigned long offset)
356 {
357 	return readq(uv_local_mmr_address(offset));
358 }
359 
360 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
361 {
362 	writeq(val, uv_local_mmr_address(offset));
363 }
364 
365 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
366 {
367 	return readb(uv_local_mmr_address(offset));
368 }
369 
370 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
371 {
372 	writeb(val, uv_local_mmr_address(offset));
373 }
374 
375 /*
376  * Structures and definitions for converting between cpu, node, pnode, and blade
377  * numbers.
378  */
379 struct uv_blade_info {
380 	unsigned short	nr_possible_cpus;
381 	unsigned short	nr_online_cpus;
382 	unsigned short	pnode;
383 	short		memory_nid;
384 };
385 extern struct uv_blade_info *uv_blade_info;
386 extern short *uv_node_to_blade;
387 extern short *uv_cpu_to_blade;
388 extern short uv_possible_blades;
389 
390 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
391 static inline int uv_blade_processor_id(void)
392 {
393 	return uv_hub_info->blade_processor_id;
394 }
395 
396 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
397 static inline int uv_numa_blade_id(void)
398 {
399 	return uv_hub_info->numa_blade_id;
400 }
401 
402 /* Convert a cpu number to the the UV blade number */
403 static inline int uv_cpu_to_blade_id(int cpu)
404 {
405 	return uv_cpu_to_blade[cpu];
406 }
407 
408 /* Convert linux node number to the UV blade number */
409 static inline int uv_node_to_blade_id(int nid)
410 {
411 	return uv_node_to_blade[nid];
412 }
413 
414 /* Convert a blade id to the PNODE of the blade */
415 static inline int uv_blade_to_pnode(int bid)
416 {
417 	return uv_blade_info[bid].pnode;
418 }
419 
420 /* Nid of memory node on blade. -1 if no blade-local memory */
421 static inline int uv_blade_to_memory_nid(int bid)
422 {
423 	return uv_blade_info[bid].memory_nid;
424 }
425 
426 /* Determine the number of possible cpus on a blade */
427 static inline int uv_blade_nr_possible_cpus(int bid)
428 {
429 	return uv_blade_info[bid].nr_possible_cpus;
430 }
431 
432 /* Determine the number of online cpus on a blade */
433 static inline int uv_blade_nr_online_cpus(int bid)
434 {
435 	return uv_blade_info[bid].nr_online_cpus;
436 }
437 
438 /* Convert a cpu id to the PNODE of the blade containing the cpu */
439 static inline int uv_cpu_to_pnode(int cpu)
440 {
441 	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
442 }
443 
444 /* Convert a linux node number to the PNODE of the blade */
445 static inline int uv_node_to_pnode(int nid)
446 {
447 	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
448 }
449 
450 /* Maximum possible number of blades */
451 static inline int uv_num_possible_blades(void)
452 {
453 	return uv_possible_blades;
454 }
455 
456 /* Update SCIR state */
457 static inline void uv_set_scir_bits(unsigned char value)
458 {
459 	if (uv_hub_info->scir.state != value) {
460 		uv_hub_info->scir.state = value;
461 		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
462 	}
463 }
464 
465 static inline unsigned long uv_scir_offset(int apicid)
466 {
467 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
468 }
469 
470 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
471 {
472 	if (uv_cpu_hub_info(cpu)->scir.state != value) {
473 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
474 				uv_cpu_hub_info(cpu)->scir.offset, value);
475 		uv_cpu_hub_info(cpu)->scir.state = value;
476 	}
477 }
478 
479 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
480 {
481 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
482 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
483 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
484 			(vector << UVH_IPI_INT_VECTOR_SHFT);
485 }
486 
487 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
488 {
489 	unsigned long val;
490 	unsigned long dmode = dest_Fixed;
491 
492 	if (vector == NMI_VECTOR)
493 		dmode = dest_NMI;
494 
495 	val = uv_hub_ipi_value(apicid, vector, dmode);
496 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
497 }
498 
499 /*
500  * Get the minimum revision number of the hub chips within the partition.
501  *     1 - initial rev 1.0 silicon
502  *     2 - rev 2.0 production silicon
503  */
504 static inline int uv_get_min_hub_revision_id(void)
505 {
506 	extern int uv_min_hub_revision_id;
507 
508 	return uv_min_hub_revision_id;
509 }
510 
511 #endif /* CONFIG_X86_64 */
512 #endif /* _ASM_X86_UV_UV_HUB_H */
513