xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv.h>
23 #include <asm/uv/uv_mmrs.h>
24 #include <asm/uv/bios.h>
25 #include <asm/irq_vectors.h>
26 #include <asm/io_apic.h>
27 
28 
29 /*
30  * Addressing Terminology
31  *
32  *	M       - The low M bits of a physical address represent the offset
33  *		  into the blade local memory. RAM memory on a blade is physically
34  *		  contiguous (although various IO spaces may punch holes in
35  *		  it)..
36  *
37  *	N	- Number of bits in the node portion of a socket physical
38  *		  address.
39  *
40  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
41  *		  routers always have low bit of 1, C/MBricks have low bit
42  *		  equal to 0. Most addressing macros that target UV hub chips
43  *		  right shift the NASID by 1 to exclude the always-zero bit.
44  *		  NASIDs contain up to 15 bits.
45  *
46  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
47  *		  of nasids.
48  *
49  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
50  *		  of the nasid for socket usage.
51  *
52  *	GPA	- (global physical address) a socket physical address converted
53  *		  so that it can be used by the GRU as a global address. Socket
54  *		  physical addresses 1) need additional NASID (node) bits added
55  *		  to the high end of the address, and 2) unaliased if the
56  *		  partition does not have a physical address 0. In addition, on
57  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
58  *
59  *
60  *  NumaLink Global Physical Address Format:
61  *  +--------------------------------+---------------------+
62  *  |00..000|      GNODE             |      NodeOffset     |
63  *  +--------------------------------+---------------------+
64  *          |<-------53 - M bits --->|<--------M bits ----->
65  *
66  *	M - number of node offset bits (35 .. 40)
67  *
68  *
69  *  Memory/UV-HUB Processor Socket Address Format:
70  *  +----------------+---------------+---------------------+
71  *  |00..000000000000|   PNODE       |      NodeOffset     |
72  *  +----------------+---------------+---------------------+
73  *                   <--- N bits --->|<--------M bits ----->
74  *
75  *	M - number of node offset bits (35 .. 40)
76  *	N - number of PNODE bits (0 .. 10)
77  *
78  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
79  *		The actual values are configuration dependent and are set at
80  *		boot time. M & N values are set by the hardware/BIOS at boot.
81  *
82  *
83  * APICID format
84  *	NOTE!!!!!! This is the current format of the APICID. However, code
85  *	should assume that this will change in the future. Use functions
86  *	in this file for all APICID bit manipulations and conversion.
87  *
88  *		1111110000000000
89  *		5432109876543210
90  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
91  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
92  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
93  *		sssssssssss
94  *
95  *			p  = pnode bits
96  *			l =  socket number on board
97  *			c  = core
98  *			h  = hyperthread
99  *			s  = bits that are in the SOCKET_ID CSR
100  *
101  *	Note: Processor may support fewer bits in the APICID register. The ACPI
102  *	      tables hold all 16 bits. Software needs to be aware of this.
103  *
104  *	      Unless otherwise specified, all references to APICID refer to
105  *	      the FULL value contained in ACPI tables, not the subset in the
106  *	      processor APICID register.
107  */
108 
109 /*
110  * Maximum number of bricks in all partitions and in all coherency domains.
111  * This is the total number of bricks accessible in the numalink fabric. It
112  * includes all C & M bricks. Routers are NOT included.
113  *
114  * This value is also the value of the maximum number of non-router NASIDs
115  * in the numalink fabric.
116  *
117  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
118  */
119 #define UV_MAX_NUMALINK_BLADES	16384
120 
121 /*
122  * Maximum number of C/Mbricks within a software SSI (hardware may support
123  * more).
124  */
125 #define UV_MAX_SSI_BLADES	256
126 
127 /*
128  * The largest possible NASID of a C or M brick (+ 2)
129  */
130 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
131 
132 /* System Controller Interface Reg info */
133 struct uv_scir_s {
134 	struct timer_list timer;
135 	unsigned long	offset;
136 	unsigned long	last;
137 	unsigned long	idle_on;
138 	unsigned long	idle_off;
139 	unsigned char	state;
140 	unsigned char	enabled;
141 };
142 
143 /* GAM (globally addressed memory) range table */
144 struct uv_gam_range_s {
145 	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
146 	u16	nasid;		/* node's global physical address */
147 	s8	base;		/* entry index of node's base addr */
148 	u8	reserved;
149 };
150 
151 /*
152  * The following defines attributes of the HUB chip. These attributes are
153  * frequently referenced and are kept in a common per hub struct.
154  * After setup, the struct is read only, so it should be readily
155  * available in the L3 cache on the cpu socket for the node.
156  */
157 struct uv_hub_info_s {
158 	unsigned long		global_mmr_base;
159 	unsigned long		global_mmr_shift;
160 	unsigned long		gpa_mask;
161 	unsigned short		*socket_to_node;
162 	unsigned short		*socket_to_pnode;
163 	unsigned short		*pnode_to_socket;
164 	struct uv_gam_range_s	*gr_table;
165 	unsigned short		min_socket;
166 	unsigned short		min_pnode;
167 	unsigned char		m_val;
168 	unsigned char		n_val;
169 	unsigned char		gr_table_len;
170 	unsigned char		hub_revision;
171 	unsigned char		apic_pnode_shift;
172 	unsigned char		gpa_shift;
173 	unsigned char		m_shift;
174 	unsigned char		n_lshift;
175 	unsigned int		gnode_extra;
176 	unsigned long		gnode_upper;
177 	unsigned long		lowmem_remap_top;
178 	unsigned long		lowmem_remap_base;
179 	unsigned long		global_gru_base;
180 	unsigned long		global_gru_shift;
181 	unsigned short		pnode;
182 	unsigned short		pnode_mask;
183 	unsigned short		coherency_domain_number;
184 	unsigned short		numa_blade_id;
185 	unsigned short		nr_possible_cpus;
186 	unsigned short		nr_online_cpus;
187 	short			memory_nid;
188 };
189 
190 /* CPU specific info with a pointer to the hub common info struct */
191 struct uv_cpu_info_s {
192 	void			*p_uv_hub_info;
193 	unsigned char		blade_cpu_id;
194 	struct uv_scir_s	scir;
195 };
196 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
197 
198 #define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
199 #define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
200 
201 #define	uv_scir_info		(&uv_cpu_info->scir)
202 #define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)
203 
204 /* Node specific hub common info struct */
205 extern void **__uv_hub_info_list;
206 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
207 {
208 	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
209 }
210 
211 static inline struct uv_hub_info_s *_uv_hub_info(void)
212 {
213 	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
214 }
215 #define	uv_hub_info	_uv_hub_info()
216 
217 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
218 {
219 	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
220 }
221 
222 #define	UV_HUB_INFO_VERSION	0x7150
223 extern int uv_hub_info_version(void);
224 static inline int uv_hub_info_check(int version)
225 {
226 	if (uv_hub_info_version() == version)
227 		return 0;
228 
229 	pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
230 		uv_hub_info_version(), version);
231 
232 	BUG();	/* Catastrophic - cannot continue on unknown UV system */
233 }
234 #define	_uv_hub_info_check()	uv_hub_info_check(UV_HUB_INFO_VERSION)
235 
236 /*
237  * HUB revision ranges for each UV HUB architecture.
238  * This is a software convention - NOT the hardware revision numbers in
239  * the hub chip.
240  */
241 #define UV1_HUB_REVISION_BASE		1
242 #define UV2_HUB_REVISION_BASE		3
243 #define UV3_HUB_REVISION_BASE		5
244 #define UV4_HUB_REVISION_BASE		7
245 #define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
246 
247 /* WARNING: UVx_HUB_IS_SUPPORTED defines are deprecated and will be removed */
248 static inline int is_uv1_hub(void)
249 {
250 #ifdef	UV1_HUB_IS_SUPPORTED
251 	return is_uv_hubbed(uv(1));
252 #else
253 	return 0;
254 #endif
255 }
256 
257 static inline int is_uv2_hub(void)
258 {
259 #ifdef	UV2_HUB_IS_SUPPORTED
260 	return is_uv_hubbed(uv(2));
261 #else
262 	return 0;
263 #endif
264 }
265 
266 static inline int is_uv3_hub(void)
267 {
268 #ifdef	UV3_HUB_IS_SUPPORTED
269 	return is_uv_hubbed(uv(3));
270 #else
271 	return 0;
272 #endif
273 }
274 
275 /* First test "is UV4A", then "is UV4" */
276 static inline int is_uv4a_hub(void)
277 {
278 #ifdef	UV4A_HUB_IS_SUPPORTED
279 	if (is_uv_hubbed(uv(4)))
280 		return (uv_hub_info->hub_revision == UV4A_HUB_REVISION_BASE);
281 #endif
282 	return 0;
283 }
284 
285 static inline int is_uv4_hub(void)
286 {
287 #ifdef	UV4_HUB_IS_SUPPORTED
288 	return is_uv_hubbed(uv(4));
289 #else
290 	return 0;
291 #endif
292 }
293 
294 static inline int is_uvx_hub(void)
295 {
296 	return (is_uv_hubbed(-2) >= uv(2));
297 }
298 
299 static inline int is_uv_hub(void)
300 {
301 	return is_uv1_hub() || is_uvx_hub();
302 }
303 
304 union uvh_apicid {
305     unsigned long       v;
306     struct uvh_apicid_s {
307         unsigned long   local_apic_mask  : 24;
308         unsigned long   local_apic_shift :  5;
309         unsigned long   unused1          :  3;
310         unsigned long   pnode_mask       : 24;
311         unsigned long   pnode_shift      :  5;
312         unsigned long   unused2          :  3;
313     } s;
314 };
315 
316 /*
317  * Local & Global MMR space macros.
318  *	Note: macros are intended to be used ONLY by inline functions
319  *	in this file - not by other kernel code.
320  *		n -  NASID (full 15-bit global nasid)
321  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
322  *		p -  PNODE (local part of nsids, right shifted 1)
323  */
324 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
325 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
326 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
327 
328 #define UV1_LOCAL_MMR_BASE		0xf4000000UL
329 #define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
330 #define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
331 #define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
332 
333 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
334 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
335 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
336 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
337 
338 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
339 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
340 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
341 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
342 
343 #define UV4_LOCAL_MMR_BASE		0xfa000000UL
344 #define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
345 #define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
346 #define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)
347 
348 #define UV_LOCAL_MMR_BASE		(				\
349 					is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
350 					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
351 					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
352 					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
353 
354 #define UV_GLOBAL_MMR32_BASE		(				\
355 					is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
356 					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
357 					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
358 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
359 
360 #define UV_LOCAL_MMR_SIZE		(				\
361 					is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
362 					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
363 					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
364 					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
365 
366 #define UV_GLOBAL_MMR32_SIZE		(				\
367 					is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
368 					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
369 					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
370 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
371 
372 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
373 
374 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
375 
376 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
377 #define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
378 #define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
379 
380 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
381 
382 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
383 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
384 
385 #define UVH_APICID		0x002D0E00L
386 #define UV_APIC_PNODE_SHIFT	6
387 
388 #define UV_APICID_HIBIT_MASK	0xffff0000
389 
390 /* Local Bus from cpu's perspective */
391 #define LOCAL_BUS_BASE		0x1c00000
392 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
393 
394 /*
395  * System Controller Interface Reg
396  *
397  * Note there are NO leds on a UV system.  This register is only
398  * used by the system controller to monitor system-wide operation.
399  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
400  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
401  * a node.
402  *
403  * The window is located at top of ACPI MMR space
404  */
405 #define SCIR_WINDOW_COUNT	64
406 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
407 				 LOCAL_BUS_SIZE - \
408 				 SCIR_WINDOW_COUNT)
409 
410 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
411 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
412 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
413 
414 /* Loop through all installed blades */
415 #define for_each_possible_blade(bid)		\
416 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
417 
418 /*
419  * Macros for converting between kernel virtual addresses, socket local physical
420  * addresses, and UV global physical addresses.
421  *	Note: use the standard __pa() & __va() macros for converting
422  *	      between socket virtual and socket physical addresses.
423  */
424 
425 /* global bits offset - number of local address bits in gpa for this UV arch */
426 static inline unsigned int uv_gpa_shift(void)
427 {
428 	return uv_hub_info->gpa_shift;
429 }
430 #define	_uv_gpa_shift
431 
432 /* Find node that has the address range that contains global address  */
433 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
434 {
435 	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
436 	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
437 	int i, num = uv_hub_info->gr_table_len;
438 
439 	if (gr) {
440 		for (i = 0; i < num; i++, gr++) {
441 			if (pal < gr->limit)
442 				return gr;
443 		}
444 	}
445 	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
446 	BUG();
447 }
448 
449 /* Return base address of node that contains global address  */
450 static inline unsigned long uv_gam_range_base(unsigned long pa)
451 {
452 	struct uv_gam_range_s *gr = uv_gam_range(pa);
453 	int base = gr->base;
454 
455 	if (base < 0)
456 		return 0UL;
457 
458 	return uv_hub_info->gr_table[base].limit;
459 }
460 
461 /* socket phys RAM --> UV global NASID (UV4+) */
462 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
463 {
464 	return uv_gam_range(paddr)->nasid;
465 }
466 #define	_uv_soc_phys_ram_to_nasid
467 
468 /* socket virtual --> UV global NASID (UV4+) */
469 static inline unsigned long uv_gpa_nasid(void *v)
470 {
471 	return uv_soc_phys_ram_to_nasid(__pa(v));
472 }
473 
474 /* socket phys RAM --> UV global physical address */
475 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
476 {
477 	unsigned int m_val = uv_hub_info->m_val;
478 
479 	if (paddr < uv_hub_info->lowmem_remap_top)
480 		paddr |= uv_hub_info->lowmem_remap_base;
481 
482 	if (m_val) {
483 		paddr |= uv_hub_info->gnode_upper;
484 		paddr = ((paddr << uv_hub_info->m_shift)
485 						>> uv_hub_info->m_shift) |
486 			((paddr >> uv_hub_info->m_val)
487 						<< uv_hub_info->n_lshift);
488 	} else {
489 		paddr |= uv_soc_phys_ram_to_nasid(paddr)
490 						<< uv_hub_info->gpa_shift;
491 	}
492 	return paddr;
493 }
494 
495 /* socket virtual --> UV global physical address */
496 static inline unsigned long uv_gpa(void *v)
497 {
498 	return uv_soc_phys_ram_to_gpa(__pa(v));
499 }
500 
501 /* Top two bits indicate the requested address is in MMR space.  */
502 static inline int
503 uv_gpa_in_mmr_space(unsigned long gpa)
504 {
505 	return (gpa >> 62) == 0x3UL;
506 }
507 
508 /* UV global physical address --> socket phys RAM */
509 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
510 {
511 	unsigned long paddr;
512 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
513 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
514 	unsigned int m_val = uv_hub_info->m_val;
515 
516 	if (m_val)
517 		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
518 			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
519 
520 	paddr = gpa & uv_hub_info->gpa_mask;
521 	if (paddr >= remap_base && paddr < remap_base + remap_top)
522 		paddr -= remap_base;
523 	return paddr;
524 }
525 
526 /* gpa -> gnode */
527 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
528 {
529 	unsigned int n_lshift = uv_hub_info->n_lshift;
530 
531 	if (n_lshift)
532 		return gpa >> n_lshift;
533 
534 	return uv_gam_range(gpa)->nasid >> 1;
535 }
536 
537 /* gpa -> pnode */
538 static inline int uv_gpa_to_pnode(unsigned long gpa)
539 {
540 	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
541 }
542 
543 /* gpa -> node offset */
544 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
545 {
546 	unsigned int m_shift = uv_hub_info->m_shift;
547 
548 	if (m_shift)
549 		return (gpa << m_shift) >> m_shift;
550 
551 	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
552 }
553 
554 /* Convert socket to node */
555 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
556 {
557 	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
558 }
559 
560 static inline int uv_socket_to_node(int socket)
561 {
562 	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
563 }
564 
565 /* pnode, offset --> socket virtual */
566 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
567 {
568 	unsigned int m_val = uv_hub_info->m_val;
569 	unsigned long base;
570 	unsigned short sockid, node, *p2s;
571 
572 	if (m_val)
573 		return __va(((unsigned long)pnode << m_val) | offset);
574 
575 	p2s = uv_hub_info->pnode_to_socket;
576 	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
577 	node = uv_socket_to_node(sockid);
578 
579 	/* limit address of previous socket is our base, except node 0 is 0 */
580 	if (!node)
581 		return __va((unsigned long)offset);
582 
583 	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
584 	return __va(base << UV_GAM_RANGE_SHFT | offset);
585 }
586 
587 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
588 static inline int uv_apicid_to_pnode(int apicid)
589 {
590 	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
591 	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
592 
593 	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
594 }
595 
596 /* Convert an apicid to the socket number on the blade */
597 static inline int uv_apicid_to_socket(int apicid)
598 {
599 	if (is_uv1_hub())
600 		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
601 	else
602 		return 0;
603 }
604 
605 /*
606  * Access global MMRs using the low memory MMR32 space. This region supports
607  * faster MMR access but not all MMRs are accessible in this space.
608  */
609 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
610 {
611 	return __va(UV_GLOBAL_MMR32_BASE |
612 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
613 }
614 
615 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
616 {
617 	writeq(val, uv_global_mmr32_address(pnode, offset));
618 }
619 
620 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
621 {
622 	return readq(uv_global_mmr32_address(pnode, offset));
623 }
624 
625 /*
626  * Access Global MMR space using the MMR space located at the top of physical
627  * memory.
628  */
629 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
630 {
631 	return __va(UV_GLOBAL_MMR64_BASE |
632 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
633 }
634 
635 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
636 {
637 	writeq(val, uv_global_mmr64_address(pnode, offset));
638 }
639 
640 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
641 {
642 	return readq(uv_global_mmr64_address(pnode, offset));
643 }
644 
645 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
646 {
647 	writeb(val, uv_global_mmr64_address(pnode, offset));
648 }
649 
650 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
651 {
652 	return readb(uv_global_mmr64_address(pnode, offset));
653 }
654 
655 /*
656  * Access hub local MMRs. Faster than using global space but only local MMRs
657  * are accessible.
658  */
659 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
660 {
661 	return __va(UV_LOCAL_MMR_BASE | offset);
662 }
663 
664 static inline unsigned long uv_read_local_mmr(unsigned long offset)
665 {
666 	return readq(uv_local_mmr_address(offset));
667 }
668 
669 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
670 {
671 	writeq(val, uv_local_mmr_address(offset));
672 }
673 
674 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
675 {
676 	return readb(uv_local_mmr_address(offset));
677 }
678 
679 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
680 {
681 	writeb(val, uv_local_mmr_address(offset));
682 }
683 
684 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
685 static inline int uv_blade_processor_id(void)
686 {
687 	return uv_cpu_info->blade_cpu_id;
688 }
689 
690 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
691 static inline int uv_cpu_blade_processor_id(int cpu)
692 {
693 	return uv_cpu_info_per(cpu)->blade_cpu_id;
694 }
695 #define _uv_cpu_blade_processor_id 1	/* indicate function available */
696 
697 /* Blade number to Node number (UV1..UV4 is 1:1) */
698 static inline int uv_blade_to_node(int blade)
699 {
700 	return blade;
701 }
702 
703 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
704 static inline int uv_numa_blade_id(void)
705 {
706 	return uv_hub_info->numa_blade_id;
707 }
708 
709 /*
710  * Convert linux node number to the UV blade number.
711  * .. Currently for UV1 thru UV4 the node and the blade are identical.
712  * .. If this changes then you MUST check references to this function!
713  */
714 static inline int uv_node_to_blade_id(int nid)
715 {
716 	return nid;
717 }
718 
719 /* Convert a cpu number to the the UV blade number */
720 static inline int uv_cpu_to_blade_id(int cpu)
721 {
722 	return uv_node_to_blade_id(cpu_to_node(cpu));
723 }
724 
725 /* Convert a blade id to the PNODE of the blade */
726 static inline int uv_blade_to_pnode(int bid)
727 {
728 	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
729 }
730 
731 /* Nid of memory node on blade. -1 if no blade-local memory */
732 static inline int uv_blade_to_memory_nid(int bid)
733 {
734 	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
735 }
736 
737 /* Determine the number of possible cpus on a blade */
738 static inline int uv_blade_nr_possible_cpus(int bid)
739 {
740 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
741 }
742 
743 /* Determine the number of online cpus on a blade */
744 static inline int uv_blade_nr_online_cpus(int bid)
745 {
746 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
747 }
748 
749 /* Convert a cpu id to the PNODE of the blade containing the cpu */
750 static inline int uv_cpu_to_pnode(int cpu)
751 {
752 	return uv_cpu_hub_info(cpu)->pnode;
753 }
754 
755 /* Convert a linux node number to the PNODE of the blade */
756 static inline int uv_node_to_pnode(int nid)
757 {
758 	return uv_hub_info_list(nid)->pnode;
759 }
760 
761 /* Maximum possible number of blades */
762 extern short uv_possible_blades;
763 static inline int uv_num_possible_blades(void)
764 {
765 	return uv_possible_blades;
766 }
767 
768 /* Per Hub NMI support */
769 extern void uv_nmi_setup(void);
770 extern void uv_nmi_setup_hubless(void);
771 
772 /* BIOS/Kernel flags exchange MMR */
773 #define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
774 #define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
775 #define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
776 
777 /* TSC sync valid, set by BIOS */
778 #define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
779 #define UVH_TSC_SYNC_SHIFT	10
780 #define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
781 #define UVH_TSC_SYNC_MASK	3	/* 0011 */
782 #define UVH_TSC_SYNC_VALID	3	/* 0011 */
783 #define UVH_TSC_SYNC_INVALID	2	/* 0010 */
784 
785 /* BMC sets a bit this MMR non-zero before sending an NMI */
786 #define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
787 #define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
788 #define UVH_NMI_MMR_SHIFT	63
789 #define UVH_NMI_MMR_TYPE	"SCRATCH5"
790 
791 /* Newer SMM NMI handler, not present in all systems */
792 #define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
793 #define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
794 #define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
795 #define UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
796 
797 /* Non-zero indicates newer SMM NMI handler present */
798 #define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST
799 
800 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
801 #define UVH_NMI_MMRX_REQ	UVH_BIOS_KERNEL_MMR_ALIAS_2
802 #define UVH_NMI_MMRX_REQ_SHIFT	62
803 
804 struct uv_hub_nmi_s {
805 	raw_spinlock_t	nmi_lock;
806 	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
807 	atomic_t	cpu_owner;	/* last locker of this struct */
808 	atomic_t	read_mmr_count;	/* count of MMR reads */
809 	atomic_t	nmi_count;	/* count of true UV NMIs */
810 	unsigned long	nmi_value;	/* last value read from NMI MMR */
811 	bool		hub_present;	/* false means UV hubless system */
812 	bool		pch_owner;	/* indicates this hub owns PCH */
813 };
814 
815 struct uv_cpu_nmi_s {
816 	struct uv_hub_nmi_s	*hub;
817 	int			state;
818 	int			pinging;
819 	int			queries;
820 	int			pings;
821 };
822 
823 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
824 
825 #define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
826 #define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
827 #define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
828 
829 /* uv_cpu_nmi_states */
830 #define	UV_NMI_STATE_OUT		0
831 #define	UV_NMI_STATE_IN			1
832 #define	UV_NMI_STATE_DUMP		2
833 #define	UV_NMI_STATE_DUMP_DONE		3
834 
835 /* Update SCIR state */
836 static inline void uv_set_scir_bits(unsigned char value)
837 {
838 	if (uv_scir_info->state != value) {
839 		uv_scir_info->state = value;
840 		uv_write_local_mmr8(uv_scir_info->offset, value);
841 	}
842 }
843 
844 static inline unsigned long uv_scir_offset(int apicid)
845 {
846 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
847 }
848 
849 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
850 {
851 	if (uv_cpu_scir_info(cpu)->state != value) {
852 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
853 				uv_cpu_scir_info(cpu)->offset, value);
854 		uv_cpu_scir_info(cpu)->state = value;
855 	}
856 }
857 
858 extern unsigned int uv_apicid_hibits;
859 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
860 {
861 	apicid |= uv_apicid_hibits;
862 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
863 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
864 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
865 			(vector << UVH_IPI_INT_VECTOR_SHFT);
866 }
867 
868 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
869 {
870 	unsigned long val;
871 	unsigned long dmode = dest_Fixed;
872 
873 	if (vector == NMI_VECTOR)
874 		dmode = dest_NMI;
875 
876 	val = uv_hub_ipi_value(apicid, vector, dmode);
877 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
878 }
879 
880 /*
881  * Get the minimum revision number of the hub chips within the partition.
882  * (See UVx_HUB_REVISION_BASE above for specific values.)
883  */
884 static inline int uv_get_min_hub_revision_id(void)
885 {
886 	return uv_hub_info->hub_revision;
887 }
888 
889 #endif /* CONFIG_X86_64 */
890 #endif /* _ASM_X86_UV_UV_HUB_H */
891