xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision 9d749629)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2013 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
24 
25 
26 /*
27  * Addressing Terminology
28  *
29  *	M       - The low M bits of a physical address represent the offset
30  *		  into the blade local memory. RAM memory on a blade is physically
31  *		  contiguous (although various IO spaces may punch holes in
32  *		  it)..
33  *
34  *	N	- Number of bits in the node portion of a socket physical
35  *		  address.
36  *
37  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
38  *		  routers always have low bit of 1, C/MBricks have low bit
39  *		  equal to 0. Most addressing macros that target UV hub chips
40  *		  right shift the NASID by 1 to exclude the always-zero bit.
41  *		  NASIDs contain up to 15 bits.
42  *
43  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44  *		  of nasids.
45  *
46  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
47  *		  of the nasid for socket usage.
48  *
49  *	GPA	- (global physical address) a socket physical address converted
50  *		  so that it can be used by the GRU as a global address. Socket
51  *		  physical addresses 1) need additional NASID (node) bits added
52  *		  to the high end of the address, and 2) unaliased if the
53  *		  partition does not have a physical address 0. In addition, on
54  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
55  *
56  *
57  *  NumaLink Global Physical Address Format:
58  *  +--------------------------------+---------------------+
59  *  |00..000|      GNODE             |      NodeOffset     |
60  *  +--------------------------------+---------------------+
61  *          |<-------53 - M bits --->|<--------M bits ----->
62  *
63  *	M - number of node offset bits (35 .. 40)
64  *
65  *
66  *  Memory/UV-HUB Processor Socket Address Format:
67  *  +----------------+---------------+---------------------+
68  *  |00..000000000000|   PNODE       |      NodeOffset     |
69  *  +----------------+---------------+---------------------+
70  *                   <--- N bits --->|<--------M bits ----->
71  *
72  *	M - number of node offset bits (35 .. 40)
73  *	N - number of PNODE bits (0 .. 10)
74  *
75  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76  *		The actual values are configuration dependent and are set at
77  *		boot time. M & N values are set by the hardware/BIOS at boot.
78  *
79  *
80  * APICID format
81  *	NOTE!!!!!! This is the current format of the APICID. However, code
82  *	should assume that this will change in the future. Use functions
83  *	in this file for all APICID bit manipulations and conversion.
84  *
85  *		1111110000000000
86  *		5432109876543210
87  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
88  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
89  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
90  *		sssssssssss
91  *
92  *			p  = pnode bits
93  *			l =  socket number on board
94  *			c  = core
95  *			h  = hyperthread
96  *			s  = bits that are in the SOCKET_ID CSR
97  *
98  *	Note: Processor may support fewer bits in the APICID register. The ACPI
99  *	      tables hold all 16 bits. Software needs to be aware of this.
100  *
101  *	      Unless otherwise specified, all references to APICID refer to
102  *	      the FULL value contained in ACPI tables, not the subset in the
103  *	      processor APICID register.
104  */
105 
106 
107 /*
108  * Maximum number of bricks in all partitions and in all coherency domains.
109  * This is the total number of bricks accessible in the numalink fabric. It
110  * includes all C & M bricks. Routers are NOT included.
111  *
112  * This value is also the value of the maximum number of non-router NASIDs
113  * in the numalink fabric.
114  *
115  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
116  */
117 #define UV_MAX_NUMALINK_BLADES	16384
118 
119 /*
120  * Maximum number of C/Mbricks within a software SSI (hardware may support
121  * more).
122  */
123 #define UV_MAX_SSI_BLADES	256
124 
125 /*
126  * The largest possible NASID of a C or M brick (+ 2)
127  */
128 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
129 
130 struct uv_scir_s {
131 	struct timer_list timer;
132 	unsigned long	offset;
133 	unsigned long	last;
134 	unsigned long	idle_on;
135 	unsigned long	idle_off;
136 	unsigned char	state;
137 	unsigned char	enabled;
138 };
139 
140 /*
141  * The following defines attributes of the HUB chip. These attributes are
142  * frequently referenced and are kept in the per-cpu data areas of each cpu.
143  * They are kept together in a struct to minimize cache misses.
144  */
145 struct uv_hub_info_s {
146 	unsigned long		global_mmr_base;
147 	unsigned long		gpa_mask;
148 	unsigned int		gnode_extra;
149 	unsigned char		hub_revision;
150 	unsigned char		apic_pnode_shift;
151 	unsigned char		m_shift;
152 	unsigned char		n_lshift;
153 	unsigned long		gnode_upper;
154 	unsigned long		lowmem_remap_top;
155 	unsigned long		lowmem_remap_base;
156 	unsigned short		pnode;
157 	unsigned short		pnode_mask;
158 	unsigned short		coherency_domain_number;
159 	unsigned short		numa_blade_id;
160 	unsigned char		blade_processor_id;
161 	unsigned char		m_val;
162 	unsigned char		n_val;
163 	struct uv_scir_s	scir;
164 };
165 
166 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
167 #define uv_hub_info		(&__get_cpu_var(__uv_hub_info))
168 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
169 
170 /*
171  * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
172  * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
173  * This is a software convention - NOT the hardware revision numbers in
174  * the hub chip.
175  */
176 #define UV1_HUB_REVISION_BASE		1
177 #define UV2_HUB_REVISION_BASE		3
178 #define UV3_HUB_REVISION_BASE		5
179 
180 static inline int is_uv1_hub(void)
181 {
182 	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
183 }
184 
185 static inline int is_uv2_hub(void)
186 {
187 	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
188 		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
189 }
190 
191 static inline int is_uv3_hub(void)
192 {
193 	return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE;
194 }
195 
196 static inline int is_uv_hub(void)
197 {
198 	return uv_hub_info->hub_revision;
199 }
200 
201 /* code common to uv2 and uv3 only */
202 static inline int is_uvx_hub(void)
203 {
204 	return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
205 }
206 
207 static inline int is_uv2_1_hub(void)
208 {
209 	return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE;
210 }
211 
212 static inline int is_uv2_2_hub(void)
213 {
214 	return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE + 1;
215 }
216 
217 union uvh_apicid {
218     unsigned long       v;
219     struct uvh_apicid_s {
220         unsigned long   local_apic_mask  : 24;
221         unsigned long   local_apic_shift :  5;
222         unsigned long   unused1          :  3;
223         unsigned long   pnode_mask       : 24;
224         unsigned long   pnode_shift      :  5;
225         unsigned long   unused2          :  3;
226     } s;
227 };
228 
229 /*
230  * Local & Global MMR space macros.
231  *	Note: macros are intended to be used ONLY by inline functions
232  *	in this file - not by other kernel code.
233  *		n -  NASID (full 15-bit global nasid)
234  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
235  *		p -  PNODE (local part of nsids, right shifted 1)
236  */
237 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
238 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
239 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
240 
241 #define UV1_LOCAL_MMR_BASE		0xf4000000UL
242 #define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
243 #define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
244 #define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
245 
246 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
247 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
248 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
249 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
250 
251 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
252 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
253 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
254 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
255 
256 #define UV_LOCAL_MMR_BASE		(is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
257 					(is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
258 							UV3_LOCAL_MMR_BASE))
259 #define UV_GLOBAL_MMR32_BASE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\
260 					(is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
261 							UV3_GLOBAL_MMR32_BASE))
262 #define UV_LOCAL_MMR_SIZE		(is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
263 					(is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
264 							UV3_LOCAL_MMR_SIZE))
265 #define UV_GLOBAL_MMR32_SIZE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
266 					(is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
267 							UV3_GLOBAL_MMR32_SIZE))
268 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
269 
270 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
271 
272 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
273 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
274 
275 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
276 
277 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
278 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
279 
280 #define UVH_APICID		0x002D0E00L
281 #define UV_APIC_PNODE_SHIFT	6
282 
283 #define UV_APICID_HIBIT_MASK	0xffff0000
284 
285 /* Local Bus from cpu's perspective */
286 #define LOCAL_BUS_BASE		0x1c00000
287 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
288 
289 /*
290  * System Controller Interface Reg
291  *
292  * Note there are NO leds on a UV system.  This register is only
293  * used by the system controller to monitor system-wide operation.
294  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
295  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
296  * a node.
297  *
298  * The window is located at top of ACPI MMR space
299  */
300 #define SCIR_WINDOW_COUNT	64
301 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
302 				 LOCAL_BUS_SIZE - \
303 				 SCIR_WINDOW_COUNT)
304 
305 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
306 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
307 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
308 
309 /* Loop through all installed blades */
310 #define for_each_possible_blade(bid)		\
311 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
312 
313 /*
314  * Macros for converting between kernel virtual addresses, socket local physical
315  * addresses, and UV global physical addresses.
316  *	Note: use the standard __pa() & __va() macros for converting
317  *	      between socket virtual and socket physical addresses.
318  */
319 
320 /* socket phys RAM --> UV global physical address */
321 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
322 {
323 	if (paddr < uv_hub_info->lowmem_remap_top)
324 		paddr |= uv_hub_info->lowmem_remap_base;
325 	paddr |= uv_hub_info->gnode_upper;
326 	paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
327 		((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
328 	return paddr;
329 }
330 
331 
332 /* socket virtual --> UV global physical address */
333 static inline unsigned long uv_gpa(void *v)
334 {
335 	return uv_soc_phys_ram_to_gpa(__pa(v));
336 }
337 
338 /* Top two bits indicate the requested address is in MMR space.  */
339 static inline int
340 uv_gpa_in_mmr_space(unsigned long gpa)
341 {
342 	return (gpa >> 62) == 0x3UL;
343 }
344 
345 /* UV global physical address --> socket phys RAM */
346 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
347 {
348 	unsigned long paddr;
349 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
350 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
351 
352 	gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
353 		((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
354 	paddr = gpa & uv_hub_info->gpa_mask;
355 	if (paddr >= remap_base && paddr < remap_base + remap_top)
356 		paddr -= remap_base;
357 	return paddr;
358 }
359 
360 
361 /* gpa -> pnode */
362 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
363 {
364 	return gpa >> uv_hub_info->n_lshift;
365 }
366 
367 /* gpa -> pnode */
368 static inline int uv_gpa_to_pnode(unsigned long gpa)
369 {
370 	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
371 
372 	return uv_gpa_to_gnode(gpa) & n_mask;
373 }
374 
375 /* gpa -> node offset*/
376 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
377 {
378 	return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
379 }
380 
381 /* pnode, offset --> socket virtual */
382 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
383 {
384 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
385 }
386 
387 
388 /*
389  * Extract a PNODE from an APICID (full apicid, not processor subset)
390  */
391 static inline int uv_apicid_to_pnode(int apicid)
392 {
393 	return (apicid >> uv_hub_info->apic_pnode_shift);
394 }
395 
396 /*
397  * Convert an apicid to the socket number on the blade
398  */
399 static inline int uv_apicid_to_socket(int apicid)
400 {
401 	if (is_uv1_hub())
402 		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
403 	else
404 		return 0;
405 }
406 
407 /*
408  * Access global MMRs using the low memory MMR32 space. This region supports
409  * faster MMR access but not all MMRs are accessible in this space.
410  */
411 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
412 {
413 	return __va(UV_GLOBAL_MMR32_BASE |
414 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
415 }
416 
417 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
418 {
419 	writeq(val, uv_global_mmr32_address(pnode, offset));
420 }
421 
422 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
423 {
424 	return readq(uv_global_mmr32_address(pnode, offset));
425 }
426 
427 /*
428  * Access Global MMR space using the MMR space located at the top of physical
429  * memory.
430  */
431 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
432 {
433 	return __va(UV_GLOBAL_MMR64_BASE |
434 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
435 }
436 
437 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
438 {
439 	writeq(val, uv_global_mmr64_address(pnode, offset));
440 }
441 
442 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
443 {
444 	return readq(uv_global_mmr64_address(pnode, offset));
445 }
446 
447 /*
448  * Global MMR space addresses when referenced by the GRU. (GRU does
449  * NOT use socket addressing).
450  */
451 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
452 {
453 	return UV_GLOBAL_GRU_MMR_BASE | offset |
454 		((unsigned long)pnode << uv_hub_info->m_val);
455 }
456 
457 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
458 {
459 	writeb(val, uv_global_mmr64_address(pnode, offset));
460 }
461 
462 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
463 {
464 	return readb(uv_global_mmr64_address(pnode, offset));
465 }
466 
467 /*
468  * Access hub local MMRs. Faster than using global space but only local MMRs
469  * are accessible.
470  */
471 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
472 {
473 	return __va(UV_LOCAL_MMR_BASE | offset);
474 }
475 
476 static inline unsigned long uv_read_local_mmr(unsigned long offset)
477 {
478 	return readq(uv_local_mmr_address(offset));
479 }
480 
481 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
482 {
483 	writeq(val, uv_local_mmr_address(offset));
484 }
485 
486 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
487 {
488 	return readb(uv_local_mmr_address(offset));
489 }
490 
491 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
492 {
493 	writeb(val, uv_local_mmr_address(offset));
494 }
495 
496 /*
497  * Structures and definitions for converting between cpu, node, pnode, and blade
498  * numbers.
499  */
500 struct uv_blade_info {
501 	unsigned short	nr_possible_cpus;
502 	unsigned short	nr_online_cpus;
503 	unsigned short	pnode;
504 	short		memory_nid;
505 	spinlock_t	nmi_lock;
506 	unsigned long	nmi_count;
507 };
508 extern struct uv_blade_info *uv_blade_info;
509 extern short *uv_node_to_blade;
510 extern short *uv_cpu_to_blade;
511 extern short uv_possible_blades;
512 
513 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
514 static inline int uv_blade_processor_id(void)
515 {
516 	return uv_hub_info->blade_processor_id;
517 }
518 
519 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
520 static inline int uv_numa_blade_id(void)
521 {
522 	return uv_hub_info->numa_blade_id;
523 }
524 
525 /* Convert a cpu number to the the UV blade number */
526 static inline int uv_cpu_to_blade_id(int cpu)
527 {
528 	return uv_cpu_to_blade[cpu];
529 }
530 
531 /* Convert linux node number to the UV blade number */
532 static inline int uv_node_to_blade_id(int nid)
533 {
534 	return uv_node_to_blade[nid];
535 }
536 
537 /* Convert a blade id to the PNODE of the blade */
538 static inline int uv_blade_to_pnode(int bid)
539 {
540 	return uv_blade_info[bid].pnode;
541 }
542 
543 /* Nid of memory node on blade. -1 if no blade-local memory */
544 static inline int uv_blade_to_memory_nid(int bid)
545 {
546 	return uv_blade_info[bid].memory_nid;
547 }
548 
549 /* Determine the number of possible cpus on a blade */
550 static inline int uv_blade_nr_possible_cpus(int bid)
551 {
552 	return uv_blade_info[bid].nr_possible_cpus;
553 }
554 
555 /* Determine the number of online cpus on a blade */
556 static inline int uv_blade_nr_online_cpus(int bid)
557 {
558 	return uv_blade_info[bid].nr_online_cpus;
559 }
560 
561 /* Convert a cpu id to the PNODE of the blade containing the cpu */
562 static inline int uv_cpu_to_pnode(int cpu)
563 {
564 	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
565 }
566 
567 /* Convert a linux node number to the PNODE of the blade */
568 static inline int uv_node_to_pnode(int nid)
569 {
570 	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
571 }
572 
573 /* Maximum possible number of blades */
574 static inline int uv_num_possible_blades(void)
575 {
576 	return uv_possible_blades;
577 }
578 
579 /* Update SCIR state */
580 static inline void uv_set_scir_bits(unsigned char value)
581 {
582 	if (uv_hub_info->scir.state != value) {
583 		uv_hub_info->scir.state = value;
584 		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
585 	}
586 }
587 
588 static inline unsigned long uv_scir_offset(int apicid)
589 {
590 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
591 }
592 
593 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
594 {
595 	if (uv_cpu_hub_info(cpu)->scir.state != value) {
596 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
597 				uv_cpu_hub_info(cpu)->scir.offset, value);
598 		uv_cpu_hub_info(cpu)->scir.state = value;
599 	}
600 }
601 
602 extern unsigned int uv_apicid_hibits;
603 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
604 {
605 	apicid |= uv_apicid_hibits;
606 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
607 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
608 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
609 			(vector << UVH_IPI_INT_VECTOR_SHFT);
610 }
611 
612 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
613 {
614 	unsigned long val;
615 	unsigned long dmode = dest_Fixed;
616 
617 	if (vector == NMI_VECTOR)
618 		dmode = dest_NMI;
619 
620 	val = uv_hub_ipi_value(apicid, vector, dmode);
621 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
622 }
623 
624 /*
625  * Get the minimum revision number of the hub chips within the partition.
626  *     1 - UV1 rev 1.0 initial silicon
627  *     2 - UV1 rev 2.0 production silicon
628  *     3 - UV2 rev 1.0 initial silicon
629  *     5 - UV3 rev 1.0 initial silicon
630  */
631 static inline int uv_get_min_hub_revision_id(void)
632 {
633 	return uv_hub_info->hub_revision;
634 }
635 
636 #endif /* CONFIG_X86_64 */
637 #endif /* _ASM_X86_UV_UV_HUB_H */
638