1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * SGI UV architectural definitions 7 * 8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. 9 */ 10 11 #ifndef _ASM_X86_UV_UV_HUB_H 12 #define _ASM_X86_UV_UV_HUB_H 13 14 #ifdef CONFIG_X86_64 15 #include <linux/numa.h> 16 #include <linux/percpu.h> 17 #include <linux/timer.h> 18 #include <linux/io.h> 19 #include <asm/types.h> 20 #include <asm/percpu.h> 21 #include <asm/uv/uv_mmrs.h> 22 #include <asm/irq_vectors.h> 23 #include <asm/io_apic.h> 24 25 26 /* 27 * Addressing Terminology 28 * 29 * M - The low M bits of a physical address represent the offset 30 * into the blade local memory. RAM memory on a blade is physically 31 * contiguous (although various IO spaces may punch holes in 32 * it).. 33 * 34 * N - Number of bits in the node portion of a socket physical 35 * address. 36 * 37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of 38 * routers always have low bit of 1, C/MBricks have low bit 39 * equal to 0. Most addressing macros that target UV hub chips 40 * right shift the NASID by 1 to exclude the always-zero bit. 41 * NASIDs contain up to 15 bits. 42 * 43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead 44 * of nasids. 45 * 46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant 47 * of the nasid for socket usage. 48 * 49 * GPA - (global physical address) a socket physical address converted 50 * so that it can be used by the GRU as a global address. Socket 51 * physical addresses 1) need additional NASID (node) bits added 52 * to the high end of the address, and 2) unaliased if the 53 * partition does not have a physical address 0. In addition, on 54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40. 55 * 56 * 57 * NumaLink Global Physical Address Format: 58 * +--------------------------------+---------------------+ 59 * |00..000| GNODE | NodeOffset | 60 * +--------------------------------+---------------------+ 61 * |<-------53 - M bits --->|<--------M bits -----> 62 * 63 * M - number of node offset bits (35 .. 40) 64 * 65 * 66 * Memory/UV-HUB Processor Socket Address Format: 67 * +----------------+---------------+---------------------+ 68 * |00..000000000000| PNODE | NodeOffset | 69 * +----------------+---------------+---------------------+ 70 * <--- N bits --->|<--------M bits -----> 71 * 72 * M - number of node offset bits (35 .. 40) 73 * N - number of PNODE bits (0 .. 10) 74 * 75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64). 76 * The actual values are configuration dependent and are set at 77 * boot time. M & N values are set by the hardware/BIOS at boot. 78 * 79 * 80 * APICID format 81 * NOTE!!!!!! This is the current format of the APICID. However, code 82 * should assume that this will change in the future. Use functions 83 * in this file for all APICID bit manipulations and conversion. 84 * 85 * 1111110000000000 86 * 5432109876543210 87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg) 88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg) 89 * pppppppppppcccch SandyBridge (15 bits in hdw reg) 90 * sssssssssss 91 * 92 * p = pnode bits 93 * l = socket number on board 94 * c = core 95 * h = hyperthread 96 * s = bits that are in the SOCKET_ID CSR 97 * 98 * Note: Processor may support fewer bits in the APICID register. The ACPI 99 * tables hold all 16 bits. Software needs to be aware of this. 100 * 101 * Unless otherwise specified, all references to APICID refer to 102 * the FULL value contained in ACPI tables, not the subset in the 103 * processor APICID register. 104 */ 105 106 107 /* 108 * Maximum number of bricks in all partitions and in all coherency domains. 109 * This is the total number of bricks accessible in the numalink fabric. It 110 * includes all C & M bricks. Routers are NOT included. 111 * 112 * This value is also the value of the maximum number of non-router NASIDs 113 * in the numalink fabric. 114 * 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused. 116 */ 117 #define UV_MAX_NUMALINK_BLADES 16384 118 119 /* 120 * Maximum number of C/Mbricks within a software SSI (hardware may support 121 * more). 122 */ 123 #define UV_MAX_SSI_BLADES 256 124 125 /* 126 * The largest possible NASID of a C or M brick (+ 2) 127 */ 128 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2) 129 130 struct uv_scir_s { 131 struct timer_list timer; 132 unsigned long offset; 133 unsigned long last; 134 unsigned long idle_on; 135 unsigned long idle_off; 136 unsigned char state; 137 unsigned char enabled; 138 }; 139 140 /* 141 * The following defines attributes of the HUB chip. These attributes are 142 * frequently referenced and are kept in the per-cpu data areas of each cpu. 143 * They are kept together in a struct to minimize cache misses. 144 */ 145 struct uv_hub_info_s { 146 unsigned long global_mmr_base; 147 unsigned long gpa_mask; 148 unsigned int gnode_extra; 149 unsigned char hub_revision; 150 unsigned char apic_pnode_shift; 151 unsigned char m_shift; 152 unsigned char n_lshift; 153 unsigned long gnode_upper; 154 unsigned long lowmem_remap_top; 155 unsigned long lowmem_remap_base; 156 unsigned short pnode; 157 unsigned short pnode_mask; 158 unsigned short coherency_domain_number; 159 unsigned short numa_blade_id; 160 unsigned char blade_processor_id; 161 unsigned char m_val; 162 unsigned char n_val; 163 struct uv_scir_s scir; 164 }; 165 166 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); 167 #define uv_hub_info this_cpu_ptr(&__uv_hub_info) 168 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu)) 169 170 /* 171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2 172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE. 173 * This is a software convention - NOT the hardware revision numbers in 174 * the hub chip. 175 */ 176 #define UV1_HUB_REVISION_BASE 1 177 #define UV2_HUB_REVISION_BASE 3 178 #define UV3_HUB_REVISION_BASE 5 179 180 static inline int is_uv1_hub(void) 181 { 182 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE; 183 } 184 185 static inline int is_uv2_hub(void) 186 { 187 return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) && 188 (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE)); 189 } 190 191 static inline int is_uv3_hub(void) 192 { 193 return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE; 194 } 195 196 static inline int is_uv_hub(void) 197 { 198 return uv_hub_info->hub_revision; 199 } 200 201 /* code common to uv2 and uv3 only */ 202 static inline int is_uvx_hub(void) 203 { 204 return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE; 205 } 206 207 union uvh_apicid { 208 unsigned long v; 209 struct uvh_apicid_s { 210 unsigned long local_apic_mask : 24; 211 unsigned long local_apic_shift : 5; 212 unsigned long unused1 : 3; 213 unsigned long pnode_mask : 24; 214 unsigned long pnode_shift : 5; 215 unsigned long unused2 : 3; 216 } s; 217 }; 218 219 /* 220 * Local & Global MMR space macros. 221 * Note: macros are intended to be used ONLY by inline functions 222 * in this file - not by other kernel code. 223 * n - NASID (full 15-bit global nasid) 224 * g - GNODE (full 15-bit global nasid, right shifted 1) 225 * p - PNODE (local part of nsids, right shifted 1) 226 */ 227 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask) 228 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra) 229 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1) 230 231 #define UV1_LOCAL_MMR_BASE 0xf4000000UL 232 #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL 233 #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024) 234 #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024) 235 236 #define UV2_LOCAL_MMR_BASE 0xfa000000UL 237 #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL 238 #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024) 239 #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) 240 241 #define UV3_LOCAL_MMR_BASE 0xfa000000UL 242 #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL 243 #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024) 244 #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) 245 246 #define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \ 247 (is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \ 248 UV3_LOCAL_MMR_BASE)) 249 #define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\ 250 (is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\ 251 UV3_GLOBAL_MMR32_BASE)) 252 #define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \ 253 (is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \ 254 UV3_LOCAL_MMR_SIZE)) 255 #define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\ 256 (is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\ 257 UV3_GLOBAL_MMR32_SIZE)) 258 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) 259 260 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000 261 262 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15 263 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26 264 265 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT)) 266 267 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \ 268 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT) 269 270 #define UVH_APICID 0x002D0E00L 271 #define UV_APIC_PNODE_SHIFT 6 272 273 #define UV_APICID_HIBIT_MASK 0xffff0000 274 275 /* Local Bus from cpu's perspective */ 276 #define LOCAL_BUS_BASE 0x1c00000 277 #define LOCAL_BUS_SIZE (4 * 1024 * 1024) 278 279 /* 280 * System Controller Interface Reg 281 * 282 * Note there are NO leds on a UV system. This register is only 283 * used by the system controller to monitor system-wide operation. 284 * There are 64 regs per node. With Nahelem cpus (2 cores per node, 285 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on 286 * a node. 287 * 288 * The window is located at top of ACPI MMR space 289 */ 290 #define SCIR_WINDOW_COUNT 64 291 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \ 292 LOCAL_BUS_SIZE - \ 293 SCIR_WINDOW_COUNT) 294 295 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */ 296 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */ 297 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */ 298 299 /* Loop through all installed blades */ 300 #define for_each_possible_blade(bid) \ 301 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++) 302 303 /* 304 * Macros for converting between kernel virtual addresses, socket local physical 305 * addresses, and UV global physical addresses. 306 * Note: use the standard __pa() & __va() macros for converting 307 * between socket virtual and socket physical addresses. 308 */ 309 310 /* socket phys RAM --> UV global physical address */ 311 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr) 312 { 313 if (paddr < uv_hub_info->lowmem_remap_top) 314 paddr |= uv_hub_info->lowmem_remap_base; 315 paddr |= uv_hub_info->gnode_upper; 316 paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | 317 ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift); 318 return paddr; 319 } 320 321 322 /* socket virtual --> UV global physical address */ 323 static inline unsigned long uv_gpa(void *v) 324 { 325 return uv_soc_phys_ram_to_gpa(__pa(v)); 326 } 327 328 /* Top two bits indicate the requested address is in MMR space. */ 329 static inline int 330 uv_gpa_in_mmr_space(unsigned long gpa) 331 { 332 return (gpa >> 62) == 0x3UL; 333 } 334 335 /* UV global physical address --> socket phys RAM */ 336 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa) 337 { 338 unsigned long paddr; 339 unsigned long remap_base = uv_hub_info->lowmem_remap_base; 340 unsigned long remap_top = uv_hub_info->lowmem_remap_top; 341 342 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | 343 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val); 344 paddr = gpa & uv_hub_info->gpa_mask; 345 if (paddr >= remap_base && paddr < remap_base + remap_top) 346 paddr -= remap_base; 347 return paddr; 348 } 349 350 351 /* gpa -> pnode */ 352 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa) 353 { 354 return gpa >> uv_hub_info->n_lshift; 355 } 356 357 /* gpa -> pnode */ 358 static inline int uv_gpa_to_pnode(unsigned long gpa) 359 { 360 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1; 361 362 return uv_gpa_to_gnode(gpa) & n_mask; 363 } 364 365 /* gpa -> node offset*/ 366 static inline unsigned long uv_gpa_to_offset(unsigned long gpa) 367 { 368 return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift; 369 } 370 371 /* pnode, offset --> socket virtual */ 372 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset) 373 { 374 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset); 375 } 376 377 378 /* 379 * Extract a PNODE from an APICID (full apicid, not processor subset) 380 */ 381 static inline int uv_apicid_to_pnode(int apicid) 382 { 383 return (apicid >> uv_hub_info->apic_pnode_shift); 384 } 385 386 /* 387 * Convert an apicid to the socket number on the blade 388 */ 389 static inline int uv_apicid_to_socket(int apicid) 390 { 391 if (is_uv1_hub()) 392 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1; 393 else 394 return 0; 395 } 396 397 /* 398 * Access global MMRs using the low memory MMR32 space. This region supports 399 * faster MMR access but not all MMRs are accessible in this space. 400 */ 401 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset) 402 { 403 return __va(UV_GLOBAL_MMR32_BASE | 404 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset); 405 } 406 407 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val) 408 { 409 writeq(val, uv_global_mmr32_address(pnode, offset)); 410 } 411 412 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset) 413 { 414 return readq(uv_global_mmr32_address(pnode, offset)); 415 } 416 417 /* 418 * Access Global MMR space using the MMR space located at the top of physical 419 * memory. 420 */ 421 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset) 422 { 423 return __va(UV_GLOBAL_MMR64_BASE | 424 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset); 425 } 426 427 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val) 428 { 429 writeq(val, uv_global_mmr64_address(pnode, offset)); 430 } 431 432 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset) 433 { 434 return readq(uv_global_mmr64_address(pnode, offset)); 435 } 436 437 /* 438 * Global MMR space addresses when referenced by the GRU. (GRU does 439 * NOT use socket addressing). 440 */ 441 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset) 442 { 443 return UV_GLOBAL_GRU_MMR_BASE | offset | 444 ((unsigned long)pnode << uv_hub_info->m_val); 445 } 446 447 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val) 448 { 449 writeb(val, uv_global_mmr64_address(pnode, offset)); 450 } 451 452 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset) 453 { 454 return readb(uv_global_mmr64_address(pnode, offset)); 455 } 456 457 /* 458 * Access hub local MMRs. Faster than using global space but only local MMRs 459 * are accessible. 460 */ 461 static inline unsigned long *uv_local_mmr_address(unsigned long offset) 462 { 463 return __va(UV_LOCAL_MMR_BASE | offset); 464 } 465 466 static inline unsigned long uv_read_local_mmr(unsigned long offset) 467 { 468 return readq(uv_local_mmr_address(offset)); 469 } 470 471 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val) 472 { 473 writeq(val, uv_local_mmr_address(offset)); 474 } 475 476 static inline unsigned char uv_read_local_mmr8(unsigned long offset) 477 { 478 return readb(uv_local_mmr_address(offset)); 479 } 480 481 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val) 482 { 483 writeb(val, uv_local_mmr_address(offset)); 484 } 485 486 /* 487 * Structures and definitions for converting between cpu, node, pnode, and blade 488 * numbers. 489 */ 490 struct uv_blade_info { 491 unsigned short nr_possible_cpus; 492 unsigned short nr_online_cpus; 493 unsigned short pnode; 494 short memory_nid; 495 spinlock_t nmi_lock; /* obsolete, see uv_hub_nmi */ 496 unsigned long nmi_count; /* obsolete, see uv_hub_nmi */ 497 }; 498 extern struct uv_blade_info *uv_blade_info; 499 extern short *uv_node_to_blade; 500 extern short *uv_cpu_to_blade; 501 extern short uv_possible_blades; 502 503 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ 504 static inline int uv_blade_processor_id(void) 505 { 506 return uv_hub_info->blade_processor_id; 507 } 508 509 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */ 510 static inline int uv_numa_blade_id(void) 511 { 512 return uv_hub_info->numa_blade_id; 513 } 514 515 /* Convert a cpu number to the the UV blade number */ 516 static inline int uv_cpu_to_blade_id(int cpu) 517 { 518 return uv_cpu_to_blade[cpu]; 519 } 520 521 /* Convert linux node number to the UV blade number */ 522 static inline int uv_node_to_blade_id(int nid) 523 { 524 return uv_node_to_blade[nid]; 525 } 526 527 /* Convert a blade id to the PNODE of the blade */ 528 static inline int uv_blade_to_pnode(int bid) 529 { 530 return uv_blade_info[bid].pnode; 531 } 532 533 /* Nid of memory node on blade. -1 if no blade-local memory */ 534 static inline int uv_blade_to_memory_nid(int bid) 535 { 536 return uv_blade_info[bid].memory_nid; 537 } 538 539 /* Determine the number of possible cpus on a blade */ 540 static inline int uv_blade_nr_possible_cpus(int bid) 541 { 542 return uv_blade_info[bid].nr_possible_cpus; 543 } 544 545 /* Determine the number of online cpus on a blade */ 546 static inline int uv_blade_nr_online_cpus(int bid) 547 { 548 return uv_blade_info[bid].nr_online_cpus; 549 } 550 551 /* Convert a cpu id to the PNODE of the blade containing the cpu */ 552 static inline int uv_cpu_to_pnode(int cpu) 553 { 554 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode; 555 } 556 557 /* Convert a linux node number to the PNODE of the blade */ 558 static inline int uv_node_to_pnode(int nid) 559 { 560 return uv_blade_info[uv_node_to_blade_id(nid)].pnode; 561 } 562 563 /* Maximum possible number of blades */ 564 static inline int uv_num_possible_blades(void) 565 { 566 return uv_possible_blades; 567 } 568 569 /* Per Hub NMI support */ 570 extern void uv_nmi_setup(void); 571 572 /* BMC sets a bit this MMR non-zero before sending an NMI */ 573 #define UVH_NMI_MMR UVH_SCRATCH5 574 #define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS 575 #define UVH_NMI_MMR_SHIFT 63 576 #define UVH_NMI_MMR_TYPE "SCRATCH5" 577 578 /* Newer SMM NMI handler, not present in all systems */ 579 #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0 580 #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS 581 #define UVH_NMI_MMRX_SHIFT (is_uv1_hub() ? \ 582 UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\ 583 UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT) 584 #define UVH_NMI_MMRX_TYPE "EXTIO_INT0" 585 586 /* Non-zero indicates newer SMM NMI handler present */ 587 #define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST 588 589 /* Indicates to BIOS that we want to use the newer SMM NMI handler */ 590 #define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2 591 #define UVH_NMI_MMRX_REQ_SHIFT 62 592 593 struct uv_hub_nmi_s { 594 raw_spinlock_t nmi_lock; 595 atomic_t in_nmi; /* flag this node in UV NMI IRQ */ 596 atomic_t cpu_owner; /* last locker of this struct */ 597 atomic_t read_mmr_count; /* count of MMR reads */ 598 atomic_t nmi_count; /* count of true UV NMIs */ 599 unsigned long nmi_value; /* last value read from NMI MMR */ 600 }; 601 602 struct uv_cpu_nmi_s { 603 struct uv_hub_nmi_s *hub; 604 int state; 605 int pinging; 606 int queries; 607 int pings; 608 }; 609 610 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); 611 612 #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub) 613 #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu)) 614 #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub) 615 616 /* uv_cpu_nmi_states */ 617 #define UV_NMI_STATE_OUT 0 618 #define UV_NMI_STATE_IN 1 619 #define UV_NMI_STATE_DUMP 2 620 #define UV_NMI_STATE_DUMP_DONE 3 621 622 /* Update SCIR state */ 623 static inline void uv_set_scir_bits(unsigned char value) 624 { 625 if (uv_hub_info->scir.state != value) { 626 uv_hub_info->scir.state = value; 627 uv_write_local_mmr8(uv_hub_info->scir.offset, value); 628 } 629 } 630 631 static inline unsigned long uv_scir_offset(int apicid) 632 { 633 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f); 634 } 635 636 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value) 637 { 638 if (uv_cpu_hub_info(cpu)->scir.state != value) { 639 uv_write_global_mmr8(uv_cpu_to_pnode(cpu), 640 uv_cpu_hub_info(cpu)->scir.offset, value); 641 uv_cpu_hub_info(cpu)->scir.state = value; 642 } 643 } 644 645 extern unsigned int uv_apicid_hibits; 646 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode) 647 { 648 apicid |= uv_apicid_hibits; 649 return (1UL << UVH_IPI_INT_SEND_SHFT) | 650 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) | 651 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) | 652 (vector << UVH_IPI_INT_VECTOR_SHFT); 653 } 654 655 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector) 656 { 657 unsigned long val; 658 unsigned long dmode = dest_Fixed; 659 660 if (vector == NMI_VECTOR) 661 dmode = dest_NMI; 662 663 val = uv_hub_ipi_value(apicid, vector, dmode); 664 uv_write_global_mmr64(pnode, UVH_IPI_INT, val); 665 } 666 667 /* 668 * Get the minimum revision number of the hub chips within the partition. 669 * 1 - UV1 rev 1.0 initial silicon 670 * 2 - UV1 rev 2.0 production silicon 671 * 3 - UV2 rev 1.0 initial silicon 672 * 5 - UV3 rev 1.0 initial silicon 673 */ 674 static inline int uv_get_min_hub_revision_id(void) 675 { 676 return uv_hub_info->hub_revision; 677 } 678 679 #endif /* CONFIG_X86_64 */ 680 #endif /* _ASM_X86_UV_UV_HUB_H */ 681