xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision 6e27b91c)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/irq_vectors.h>
24 #include <asm/io_apic.h>
25 
26 
27 /*
28  * Addressing Terminology
29  *
30  *	M       - The low M bits of a physical address represent the offset
31  *		  into the blade local memory. RAM memory on a blade is physically
32  *		  contiguous (although various IO spaces may punch holes in
33  *		  it)..
34  *
35  *	N	- Number of bits in the node portion of a socket physical
36  *		  address.
37  *
38  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
39  *		  routers always have low bit of 1, C/MBricks have low bit
40  *		  equal to 0. Most addressing macros that target UV hub chips
41  *		  right shift the NASID by 1 to exclude the always-zero bit.
42  *		  NASIDs contain up to 15 bits.
43  *
44  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
45  *		  of nasids.
46  *
47  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
48  *		  of the nasid for socket usage.
49  *
50  *	GPA	- (global physical address) a socket physical address converted
51  *		  so that it can be used by the GRU as a global address. Socket
52  *		  physical addresses 1) need additional NASID (node) bits added
53  *		  to the high end of the address, and 2) unaliased if the
54  *		  partition does not have a physical address 0. In addition, on
55  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
56  *
57  *
58  *  NumaLink Global Physical Address Format:
59  *  +--------------------------------+---------------------+
60  *  |00..000|      GNODE             |      NodeOffset     |
61  *  +--------------------------------+---------------------+
62  *          |<-------53 - M bits --->|<--------M bits ----->
63  *
64  *	M - number of node offset bits (35 .. 40)
65  *
66  *
67  *  Memory/UV-HUB Processor Socket Address Format:
68  *  +----------------+---------------+---------------------+
69  *  |00..000000000000|   PNODE       |      NodeOffset     |
70  *  +----------------+---------------+---------------------+
71  *                   <--- N bits --->|<--------M bits ----->
72  *
73  *	M - number of node offset bits (35 .. 40)
74  *	N - number of PNODE bits (0 .. 10)
75  *
76  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
77  *		The actual values are configuration dependent and are set at
78  *		boot time. M & N values are set by the hardware/BIOS at boot.
79  *
80  *
81  * APICID format
82  *	NOTE!!!!!! This is the current format of the APICID. However, code
83  *	should assume that this will change in the future. Use functions
84  *	in this file for all APICID bit manipulations and conversion.
85  *
86  *		1111110000000000
87  *		5432109876543210
88  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
89  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
90  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
91  *		sssssssssss
92  *
93  *			p  = pnode bits
94  *			l =  socket number on board
95  *			c  = core
96  *			h  = hyperthread
97  *			s  = bits that are in the SOCKET_ID CSR
98  *
99  *	Note: Processor may support fewer bits in the APICID register. The ACPI
100  *	      tables hold all 16 bits. Software needs to be aware of this.
101  *
102  *	      Unless otherwise specified, all references to APICID refer to
103  *	      the FULL value contained in ACPI tables, not the subset in the
104  *	      processor APICID register.
105  */
106 
107 
108 /*
109  * Maximum number of bricks in all partitions and in all coherency domains.
110  * This is the total number of bricks accessible in the numalink fabric. It
111  * includes all C & M bricks. Routers are NOT included.
112  *
113  * This value is also the value of the maximum number of non-router NASIDs
114  * in the numalink fabric.
115  *
116  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117  */
118 #define UV_MAX_NUMALINK_BLADES	16384
119 
120 /*
121  * Maximum number of C/Mbricks within a software SSI (hardware may support
122  * more).
123  */
124 #define UV_MAX_SSI_BLADES	256
125 
126 /*
127  * The largest possible NASID of a C or M brick (+ 2)
128  */
129 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
130 
131 /* System Controller Interface Reg info */
132 struct uv_scir_s {
133 	struct timer_list timer;
134 	unsigned long	offset;
135 	unsigned long	last;
136 	unsigned long	idle_on;
137 	unsigned long	idle_off;
138 	unsigned char	state;
139 	unsigned char	enabled;
140 };
141 
142 /*
143  * The following defines attributes of the HUB chip. These attributes are
144  * frequently referenced and are kept in a common per hub struct.
145  * After setup, the struct is read only, so it should be readily
146  * available in the L3 cache on the cpu socket for the node.
147  */
148 struct uv_hub_info_s {
149 	unsigned long		global_mmr_base;
150 	unsigned long		global_mmr_shift;
151 	unsigned long		gpa_mask;
152 	unsigned short		*socket_to_node;
153 	unsigned short		*socket_to_pnode;
154 	unsigned short		*pnode_to_socket;
155 	unsigned short		min_socket;
156 	unsigned short		min_pnode;
157 	unsigned char		hub_revision;
158 	unsigned char		apic_pnode_shift;
159 	unsigned char		gpa_shift;
160 	unsigned char		m_shift;
161 	unsigned char		n_lshift;
162 	unsigned int		gnode_extra;
163 	unsigned long		gnode_upper;
164 	unsigned long		lowmem_remap_top;
165 	unsigned long		lowmem_remap_base;
166 	unsigned long		global_gru_base;
167 	unsigned long		global_gru_shift;
168 	unsigned short		pnode;
169 	unsigned short		pnode_mask;
170 	unsigned short		coherency_domain_number;
171 	unsigned short		numa_blade_id;
172 	unsigned char		m_val;
173 	unsigned char		n_val;
174 	unsigned short		nr_possible_cpus;
175 	unsigned short		nr_online_cpus;
176 	short			memory_nid;
177 };
178 
179 /* CPU specific info with a pointer to the hub common info struct */
180 struct uv_cpu_info_s {
181 	void			*p_uv_hub_info;
182 	unsigned char		blade_cpu_id;
183 	struct uv_scir_s	scir;
184 };
185 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
186 
187 #define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
188 #define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
189 
190 #define	uv_scir_info		(&uv_cpu_info->scir)
191 #define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)
192 
193 /* Node specific hub common info struct */
194 extern void **__uv_hub_info_list;
195 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
196 {
197 	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
198 }
199 
200 static inline struct uv_hub_info_s *_uv_hub_info(void)
201 {
202 	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
203 }
204 #define	uv_hub_info	_uv_hub_info()
205 
206 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
207 {
208 	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
209 }
210 
211 #define	UV_HUB_INFO_VERSION	0x7150
212 extern int uv_hub_info_version(void);
213 static inline int uv_hub_info_check(int version)
214 {
215 	if (uv_hub_info_version() == version)
216 		return 0;
217 
218 	pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
219 		uv_hub_info_version(), version);
220 
221 	BUG();	/* Catastrophic - cannot continue on unknown UV system */
222 }
223 #define	_uv_hub_info_check()	uv_hub_info_check(UV_HUB_INFO_VERSION)
224 
225 /*
226  * HUB revision ranges for each UV HUB architecture.
227  * This is a software convention - NOT the hardware revision numbers in
228  * the hub chip.
229  */
230 #define UV1_HUB_REVISION_BASE		1
231 #define UV2_HUB_REVISION_BASE		3
232 #define UV3_HUB_REVISION_BASE		5
233 #define UV4_HUB_REVISION_BASE		7
234 
235 #ifdef	UV1_HUB_IS_SUPPORTED
236 static inline int is_uv1_hub(void)
237 {
238 	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
239 }
240 #else
241 static inline int is_uv1_hub(void)
242 {
243 	return 0;
244 }
245 #endif
246 
247 #ifdef	UV2_HUB_IS_SUPPORTED
248 static inline int is_uv2_hub(void)
249 {
250 	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
251 		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
252 }
253 #else
254 static inline int is_uv2_hub(void)
255 {
256 	return 0;
257 }
258 #endif
259 
260 #ifdef	UV3_HUB_IS_SUPPORTED
261 static inline int is_uv3_hub(void)
262 {
263 	return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
264 		(uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
265 }
266 #else
267 static inline int is_uv3_hub(void)
268 {
269 	return 0;
270 }
271 #endif
272 
273 #ifdef	UV4_HUB_IS_SUPPORTED
274 static inline int is_uv4_hub(void)
275 {
276 	return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
277 }
278 #else
279 static inline int is_uv4_hub(void)
280 {
281 	return 0;
282 }
283 #endif
284 
285 static inline int is_uvx_hub(void)
286 {
287 	if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
288 		return uv_hub_info->hub_revision;
289 
290 	return 0;
291 }
292 
293 static inline int is_uv_hub(void)
294 {
295 #ifdef	UV1_HUB_IS_SUPPORTED
296 	return uv_hub_info->hub_revision;
297 #endif
298 	return is_uvx_hub();
299 }
300 
301 union uvh_apicid {
302     unsigned long       v;
303     struct uvh_apicid_s {
304         unsigned long   local_apic_mask  : 24;
305         unsigned long   local_apic_shift :  5;
306         unsigned long   unused1          :  3;
307         unsigned long   pnode_mask       : 24;
308         unsigned long   pnode_shift      :  5;
309         unsigned long   unused2          :  3;
310     } s;
311 };
312 
313 /*
314  * Local & Global MMR space macros.
315  *	Note: macros are intended to be used ONLY by inline functions
316  *	in this file - not by other kernel code.
317  *		n -  NASID (full 15-bit global nasid)
318  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
319  *		p -  PNODE (local part of nsids, right shifted 1)
320  */
321 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
322 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
323 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
324 
325 #define UV1_LOCAL_MMR_BASE		0xf4000000UL
326 #define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
327 #define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
328 #define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
329 
330 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
331 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
332 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
333 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
334 
335 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
336 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
337 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
338 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
339 
340 #define UV4_LOCAL_MMR_BASE		0xfa000000UL
341 #define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
342 #define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
343 #define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)
344 
345 #define UV_LOCAL_MMR_BASE		(				\
346 					is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
347 					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
348 					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
349 					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
350 
351 #define UV_GLOBAL_MMR32_BASE		(				\
352 					is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
353 					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
354 					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
355 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
356 
357 #define UV_LOCAL_MMR_SIZE		(				\
358 					is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
359 					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
360 					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
361 					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
362 
363 #define UV_GLOBAL_MMR32_SIZE		(				\
364 					is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
365 					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
366 					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
367 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
368 
369 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
370 
371 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
372 
373 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
374 #define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
375 #define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
376 
377 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
378 
379 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
380 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
381 
382 #define UVH_APICID		0x002D0E00L
383 #define UV_APIC_PNODE_SHIFT	6
384 
385 #define UV_APICID_HIBIT_MASK	0xffff0000
386 
387 /* Local Bus from cpu's perspective */
388 #define LOCAL_BUS_BASE		0x1c00000
389 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
390 
391 /*
392  * System Controller Interface Reg
393  *
394  * Note there are NO leds on a UV system.  This register is only
395  * used by the system controller to monitor system-wide operation.
396  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
397  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
398  * a node.
399  *
400  * The window is located at top of ACPI MMR space
401  */
402 #define SCIR_WINDOW_COUNT	64
403 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
404 				 LOCAL_BUS_SIZE - \
405 				 SCIR_WINDOW_COUNT)
406 
407 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
408 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
409 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
410 
411 /* Loop through all installed blades */
412 #define for_each_possible_blade(bid)		\
413 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
414 
415 /*
416  * Macros for converting between kernel virtual addresses, socket local physical
417  * addresses, and UV global physical addresses.
418  *	Note: use the standard __pa() & __va() macros for converting
419  *	      between socket virtual and socket physical addresses.
420  */
421 
422 /* socket phys RAM --> UV global physical address */
423 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
424 {
425 	if (paddr < uv_hub_info->lowmem_remap_top)
426 		paddr |= uv_hub_info->lowmem_remap_base;
427 	paddr |= uv_hub_info->gnode_upper;
428 	paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
429 		((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
430 	return paddr;
431 }
432 
433 
434 /* socket virtual --> UV global physical address */
435 static inline unsigned long uv_gpa(void *v)
436 {
437 	return uv_soc_phys_ram_to_gpa(__pa(v));
438 }
439 
440 /* Top two bits indicate the requested address is in MMR space.  */
441 static inline int
442 uv_gpa_in_mmr_space(unsigned long gpa)
443 {
444 	return (gpa >> 62) == 0x3UL;
445 }
446 
447 /* UV global physical address --> socket phys RAM */
448 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
449 {
450 	unsigned long paddr;
451 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
452 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
453 
454 	gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
455 		((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
456 	paddr = gpa & uv_hub_info->gpa_mask;
457 	if (paddr >= remap_base && paddr < remap_base + remap_top)
458 		paddr -= remap_base;
459 	return paddr;
460 }
461 
462 
463 /* gpa -> gnode */
464 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
465 {
466 	return gpa >> uv_hub_info->n_lshift;
467 }
468 
469 /* gpa -> pnode */
470 static inline int uv_gpa_to_pnode(unsigned long gpa)
471 {
472 	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
473 }
474 
475 /* gpa -> node offset */
476 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
477 {
478 	return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
479 }
480 
481 /* pnode, offset --> socket virtual */
482 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
483 {
484 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
485 }
486 
487 /* Convert socket to node */
488 static inline int uv_socket_to_node(int socket)
489 {
490 	unsigned short *s2nid = uv_hub_info->socket_to_node;
491 
492 	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
493 }
494 
495 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
496 static inline int uv_apicid_to_pnode(int apicid)
497 {
498 	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
499 	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
500 
501 	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
502 }
503 
504 /* Convert an apicid to the socket number on the blade */
505 static inline int uv_apicid_to_socket(int apicid)
506 {
507 	if (is_uv1_hub())
508 		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
509 	else
510 		return 0;
511 }
512 
513 /*
514  * Access global MMRs using the low memory MMR32 space. This region supports
515  * faster MMR access but not all MMRs are accessible in this space.
516  */
517 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
518 {
519 	return __va(UV_GLOBAL_MMR32_BASE |
520 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
521 }
522 
523 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
524 {
525 	writeq(val, uv_global_mmr32_address(pnode, offset));
526 }
527 
528 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
529 {
530 	return readq(uv_global_mmr32_address(pnode, offset));
531 }
532 
533 /*
534  * Access Global MMR space using the MMR space located at the top of physical
535  * memory.
536  */
537 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
538 {
539 	return __va(UV_GLOBAL_MMR64_BASE |
540 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
541 }
542 
543 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
544 {
545 	writeq(val, uv_global_mmr64_address(pnode, offset));
546 }
547 
548 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
549 {
550 	return readq(uv_global_mmr64_address(pnode, offset));
551 }
552 
553 /*
554  * Global MMR space addresses when referenced by the GRU. (GRU does
555  * NOT use socket addressing).
556  */
557 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
558 {
559 	return UV_GLOBAL_GRU_MMR_BASE | offset |
560 		((unsigned long)pnode << uv_hub_info->m_val);
561 }
562 
563 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
564 {
565 	writeb(val, uv_global_mmr64_address(pnode, offset));
566 }
567 
568 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
569 {
570 	return readb(uv_global_mmr64_address(pnode, offset));
571 }
572 
573 /*
574  * Access hub local MMRs. Faster than using global space but only local MMRs
575  * are accessible.
576  */
577 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
578 {
579 	return __va(UV_LOCAL_MMR_BASE | offset);
580 }
581 
582 static inline unsigned long uv_read_local_mmr(unsigned long offset)
583 {
584 	return readq(uv_local_mmr_address(offset));
585 }
586 
587 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
588 {
589 	writeq(val, uv_local_mmr_address(offset));
590 }
591 
592 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
593 {
594 	return readb(uv_local_mmr_address(offset));
595 }
596 
597 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
598 {
599 	writeb(val, uv_local_mmr_address(offset));
600 }
601 
602 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
603 static inline int uv_blade_processor_id(void)
604 {
605 	return uv_cpu_info->blade_cpu_id;
606 }
607 
608 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
609 static inline int uv_cpu_blade_processor_id(int cpu)
610 {
611 	return uv_cpu_info_per(cpu)->blade_cpu_id;
612 }
613 #define _uv_cpu_blade_processor_id 1	/* indicate function available */
614 
615 /* Blade number to Node number (UV1..UV4 is 1:1) */
616 static inline int uv_blade_to_node(int blade)
617 {
618 	return blade;
619 }
620 
621 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
622 static inline int uv_numa_blade_id(void)
623 {
624 	return uv_hub_info->numa_blade_id;
625 }
626 
627 /*
628  * Convert linux node number to the UV blade number.
629  * .. Currently for UV1 thru UV4 the node and the blade are identical.
630  * .. If this changes then you MUST check references to this function!
631  */
632 static inline int uv_node_to_blade_id(int nid)
633 {
634 	return nid;
635 }
636 
637 /* Convert a cpu number to the the UV blade number */
638 static inline int uv_cpu_to_blade_id(int cpu)
639 {
640 	return uv_node_to_blade_id(cpu_to_node(cpu));
641 }
642 
643 /* Convert a blade id to the PNODE of the blade */
644 static inline int uv_blade_to_pnode(int bid)
645 {
646 	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
647 }
648 
649 /* Nid of memory node on blade. -1 if no blade-local memory */
650 static inline int uv_blade_to_memory_nid(int bid)
651 {
652 	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
653 }
654 
655 /* Determine the number of possible cpus on a blade */
656 static inline int uv_blade_nr_possible_cpus(int bid)
657 {
658 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
659 }
660 
661 /* Determine the number of online cpus on a blade */
662 static inline int uv_blade_nr_online_cpus(int bid)
663 {
664 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
665 }
666 
667 /* Convert a cpu id to the PNODE of the blade containing the cpu */
668 static inline int uv_cpu_to_pnode(int cpu)
669 {
670 	return uv_cpu_hub_info(cpu)->pnode;
671 }
672 
673 /* Convert a linux node number to the PNODE of the blade */
674 static inline int uv_node_to_pnode(int nid)
675 {
676 	return uv_hub_info_list(nid)->pnode;
677 }
678 
679 /* Maximum possible number of blades */
680 extern short uv_possible_blades;
681 static inline int uv_num_possible_blades(void)
682 {
683 	return uv_possible_blades;
684 }
685 
686 /* Per Hub NMI support */
687 extern void uv_nmi_setup(void);
688 
689 /* BMC sets a bit this MMR non-zero before sending an NMI */
690 #define UVH_NMI_MMR		UVH_SCRATCH5
691 #define UVH_NMI_MMR_CLEAR	UVH_SCRATCH5_ALIAS
692 #define UVH_NMI_MMR_SHIFT	63
693 #define	UVH_NMI_MMR_TYPE	"SCRATCH5"
694 
695 /* Newer SMM NMI handler, not present in all systems */
696 #define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
697 #define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
698 #define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
699 #define	UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
700 
701 /* Non-zero indicates newer SMM NMI handler present */
702 #define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST
703 
704 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
705 #define UVH_NMI_MMRX_REQ	UVH_SCRATCH5_ALIAS_2
706 #define UVH_NMI_MMRX_REQ_SHIFT	62
707 
708 struct uv_hub_nmi_s {
709 	raw_spinlock_t	nmi_lock;
710 	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
711 	atomic_t	cpu_owner;	/* last locker of this struct */
712 	atomic_t	read_mmr_count;	/* count of MMR reads */
713 	atomic_t	nmi_count;	/* count of true UV NMIs */
714 	unsigned long	nmi_value;	/* last value read from NMI MMR */
715 };
716 
717 struct uv_cpu_nmi_s {
718 	struct uv_hub_nmi_s	*hub;
719 	int			state;
720 	int			pinging;
721 	int			queries;
722 	int			pings;
723 };
724 
725 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
726 
727 #define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
728 #define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
729 #define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
730 
731 /* uv_cpu_nmi_states */
732 #define	UV_NMI_STATE_OUT		0
733 #define	UV_NMI_STATE_IN			1
734 #define	UV_NMI_STATE_DUMP		2
735 #define	UV_NMI_STATE_DUMP_DONE		3
736 
737 /* Update SCIR state */
738 static inline void uv_set_scir_bits(unsigned char value)
739 {
740 	if (uv_scir_info->state != value) {
741 		uv_scir_info->state = value;
742 		uv_write_local_mmr8(uv_scir_info->offset, value);
743 	}
744 }
745 
746 static inline unsigned long uv_scir_offset(int apicid)
747 {
748 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
749 }
750 
751 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
752 {
753 	if (uv_cpu_scir_info(cpu)->state != value) {
754 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
755 				uv_cpu_scir_info(cpu)->offset, value);
756 		uv_cpu_scir_info(cpu)->state = value;
757 	}
758 }
759 
760 extern unsigned int uv_apicid_hibits;
761 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
762 {
763 	apicid |= uv_apicid_hibits;
764 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
765 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
766 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
767 			(vector << UVH_IPI_INT_VECTOR_SHFT);
768 }
769 
770 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
771 {
772 	unsigned long val;
773 	unsigned long dmode = dest_Fixed;
774 
775 	if (vector == NMI_VECTOR)
776 		dmode = dest_NMI;
777 
778 	val = uv_hub_ipi_value(apicid, vector, dmode);
779 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
780 }
781 
782 /*
783  * Get the minimum revision number of the hub chips within the partition.
784  * (See UVx_HUB_REVISION_BASE above for specific values.)
785  */
786 static inline int uv_get_min_hub_revision_id(void)
787 {
788 	return uv_hub_info->hub_revision;
789 }
790 
791 #endif /* CONFIG_X86_64 */
792 #endif /* _ASM_X86_UV_UV_HUB_H */
793