xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv.h>
23 #include <asm/uv/uv_mmrs.h>
24 #include <asm/uv/bios.h>
25 #include <asm/irq_vectors.h>
26 #include <asm/io_apic.h>
27 
28 
29 /*
30  * Addressing Terminology
31  *
32  *	M       - The low M bits of a physical address represent the offset
33  *		  into the blade local memory. RAM memory on a blade is physically
34  *		  contiguous (although various IO spaces may punch holes in
35  *		  it)..
36  *
37  *	N	- Number of bits in the node portion of a socket physical
38  *		  address.
39  *
40  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
41  *		  routers always have low bit of 1, C/MBricks have low bit
42  *		  equal to 0. Most addressing macros that target UV hub chips
43  *		  right shift the NASID by 1 to exclude the always-zero bit.
44  *		  NASIDs contain up to 15 bits.
45  *
46  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
47  *		  of nasids.
48  *
49  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
50  *		  of the nasid for socket usage.
51  *
52  *	GPA	- (global physical address) a socket physical address converted
53  *		  so that it can be used by the GRU as a global address. Socket
54  *		  physical addresses 1) need additional NASID (node) bits added
55  *		  to the high end of the address, and 2) unaliased if the
56  *		  partition does not have a physical address 0. In addition, on
57  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
58  *
59  *
60  *  NumaLink Global Physical Address Format:
61  *  +--------------------------------+---------------------+
62  *  |00..000|      GNODE             |      NodeOffset     |
63  *  +--------------------------------+---------------------+
64  *          |<-------53 - M bits --->|<--------M bits ----->
65  *
66  *	M - number of node offset bits (35 .. 40)
67  *
68  *
69  *  Memory/UV-HUB Processor Socket Address Format:
70  *  +----------------+---------------+---------------------+
71  *  |00..000000000000|   PNODE       |      NodeOffset     |
72  *  +----------------+---------------+---------------------+
73  *                   <--- N bits --->|<--------M bits ----->
74  *
75  *	M - number of node offset bits (35 .. 40)
76  *	N - number of PNODE bits (0 .. 10)
77  *
78  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
79  *		The actual values are configuration dependent and are set at
80  *		boot time. M & N values are set by the hardware/BIOS at boot.
81  *
82  *
83  * APICID format
84  *	NOTE!!!!!! This is the current format of the APICID. However, code
85  *	should assume that this will change in the future. Use functions
86  *	in this file for all APICID bit manipulations and conversion.
87  *
88  *		1111110000000000
89  *		5432109876543210
90  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
91  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
92  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
93  *		sssssssssss
94  *
95  *			p  = pnode bits
96  *			l =  socket number on board
97  *			c  = core
98  *			h  = hyperthread
99  *			s  = bits that are in the SOCKET_ID CSR
100  *
101  *	Note: Processor may support fewer bits in the APICID register. The ACPI
102  *	      tables hold all 16 bits. Software needs to be aware of this.
103  *
104  *	      Unless otherwise specified, all references to APICID refer to
105  *	      the FULL value contained in ACPI tables, not the subset in the
106  *	      processor APICID register.
107  */
108 
109 /*
110  * Maximum number of bricks in all partitions and in all coherency domains.
111  * This is the total number of bricks accessible in the numalink fabric. It
112  * includes all C & M bricks. Routers are NOT included.
113  *
114  * This value is also the value of the maximum number of non-router NASIDs
115  * in the numalink fabric.
116  *
117  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
118  */
119 #define UV_MAX_NUMALINK_BLADES	16384
120 
121 /*
122  * Maximum number of C/Mbricks within a software SSI (hardware may support
123  * more).
124  */
125 #define UV_MAX_SSI_BLADES	256
126 
127 /*
128  * The largest possible NASID of a C or M brick (+ 2)
129  */
130 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
131 
132 /* System Controller Interface Reg info */
133 struct uv_scir_s {
134 	struct timer_list timer;
135 	unsigned long	offset;
136 	unsigned long	last;
137 	unsigned long	idle_on;
138 	unsigned long	idle_off;
139 	unsigned char	state;
140 	unsigned char	enabled;
141 };
142 
143 /* GAM (globally addressed memory) range table */
144 struct uv_gam_range_s {
145 	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
146 	u16	nasid;		/* node's global physical address */
147 	s8	base;		/* entry index of node's base addr */
148 	u8	reserved;
149 };
150 
151 /*
152  * The following defines attributes of the HUB chip. These attributes are
153  * frequently referenced and are kept in a common per hub struct.
154  * After setup, the struct is read only, so it should be readily
155  * available in the L3 cache on the cpu socket for the node.
156  */
157 struct uv_hub_info_s {
158 	unsigned long		global_mmr_base;
159 	unsigned long		global_mmr_shift;
160 	unsigned long		gpa_mask;
161 	unsigned short		*socket_to_node;
162 	unsigned short		*socket_to_pnode;
163 	unsigned short		*pnode_to_socket;
164 	struct uv_gam_range_s	*gr_table;
165 	unsigned short		min_socket;
166 	unsigned short		min_pnode;
167 	unsigned char		m_val;
168 	unsigned char		n_val;
169 	unsigned char		gr_table_len;
170 	unsigned char		hub_revision;
171 	unsigned char		apic_pnode_shift;
172 	unsigned char		gpa_shift;
173 	unsigned char		m_shift;
174 	unsigned char		n_lshift;
175 	unsigned int		gnode_extra;
176 	unsigned long		gnode_upper;
177 	unsigned long		lowmem_remap_top;
178 	unsigned long		lowmem_remap_base;
179 	unsigned long		global_gru_base;
180 	unsigned long		global_gru_shift;
181 	unsigned short		pnode;
182 	unsigned short		pnode_mask;
183 	unsigned short		coherency_domain_number;
184 	unsigned short		numa_blade_id;
185 	unsigned short		nr_possible_cpus;
186 	unsigned short		nr_online_cpus;
187 	short			memory_nid;
188 };
189 
190 /* CPU specific info with a pointer to the hub common info struct */
191 struct uv_cpu_info_s {
192 	void			*p_uv_hub_info;
193 	unsigned char		blade_cpu_id;
194 	struct uv_scir_s	scir;
195 };
196 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
197 
198 #define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
199 #define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
200 
201 #define	uv_scir_info		(&uv_cpu_info->scir)
202 #define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)
203 
204 /* Node specific hub common info struct */
205 extern void **__uv_hub_info_list;
206 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
207 {
208 	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
209 }
210 
211 static inline struct uv_hub_info_s *_uv_hub_info(void)
212 {
213 	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
214 }
215 #define	uv_hub_info	_uv_hub_info()
216 
217 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
218 {
219 	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
220 }
221 
222 /*
223  * HUB revision ranges for each UV HUB architecture.
224  * This is a software convention - NOT the hardware revision numbers in
225  * the hub chip.
226  */
227 #define UV2_HUB_REVISION_BASE		3
228 #define UV3_HUB_REVISION_BASE		5
229 #define UV4_HUB_REVISION_BASE		7
230 #define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
231 
232 static inline int is_uv2_hub(void)
233 {
234 	return is_uv_hubbed(uv(2));
235 }
236 
237 static inline int is_uv3_hub(void)
238 {
239 	return is_uv_hubbed(uv(3));
240 }
241 
242 /* First test "is UV4A", then "is UV4" */
243 static inline int is_uv4a_hub(void)
244 {
245 	if (is_uv_hubbed(uv(4)))
246 		return (uv_hub_info->hub_revision == UV4A_HUB_REVISION_BASE);
247 	return 0;
248 }
249 
250 static inline int is_uv4_hub(void)
251 {
252 	return is_uv_hubbed(uv(4));
253 }
254 
255 static inline int is_uvx_hub(void)
256 {
257 	return (is_uv_hubbed(-2) >= uv(2));
258 }
259 
260 static inline int is_uv_hub(void)
261 {
262 	return is_uvx_hub();
263 }
264 
265 union uvh_apicid {
266     unsigned long       v;
267     struct uvh_apicid_s {
268         unsigned long   local_apic_mask  : 24;
269         unsigned long   local_apic_shift :  5;
270         unsigned long   unused1          :  3;
271         unsigned long   pnode_mask       : 24;
272         unsigned long   pnode_shift      :  5;
273         unsigned long   unused2          :  3;
274     } s;
275 };
276 
277 /*
278  * Local & Global MMR space macros.
279  *	Note: macros are intended to be used ONLY by inline functions
280  *	in this file - not by other kernel code.
281  *		n -  NASID (full 15-bit global nasid)
282  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
283  *		p -  PNODE (local part of nsids, right shifted 1)
284  */
285 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
286 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
287 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
288 
289 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
290 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
291 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
292 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
293 
294 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
295 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
296 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
297 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
298 
299 #define UV4_LOCAL_MMR_BASE		0xfa000000UL
300 #define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
301 #define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
302 #define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)
303 
304 #define UV_LOCAL_MMR_BASE		(				\
305 					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
306 					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
307 					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
308 
309 #define UV_GLOBAL_MMR32_BASE		(				\
310 					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
311 					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
312 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
313 
314 #define UV_LOCAL_MMR_SIZE		(				\
315 					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
316 					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
317 					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
318 
319 #define UV_GLOBAL_MMR32_SIZE		(				\
320 					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
321 					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
322 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
323 
324 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
325 
326 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
327 
328 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
329 #define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
330 #define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
331 
332 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
333 
334 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
335 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
336 
337 #define UVH_APICID		0x002D0E00L
338 #define UV_APIC_PNODE_SHIFT	6
339 
340 /* Local Bus from cpu's perspective */
341 #define LOCAL_BUS_BASE		0x1c00000
342 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
343 
344 /*
345  * System Controller Interface Reg
346  *
347  * Note there are NO leds on a UV system.  This register is only
348  * used by the system controller to monitor system-wide operation.
349  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
350  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
351  * a node.
352  *
353  * The window is located at top of ACPI MMR space
354  */
355 #define SCIR_WINDOW_COUNT	64
356 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
357 				 LOCAL_BUS_SIZE - \
358 				 SCIR_WINDOW_COUNT)
359 
360 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
361 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
362 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
363 
364 /* Loop through all installed blades */
365 #define for_each_possible_blade(bid)		\
366 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
367 
368 /*
369  * Macros for converting between kernel virtual addresses, socket local physical
370  * addresses, and UV global physical addresses.
371  *	Note: use the standard __pa() & __va() macros for converting
372  *	      between socket virtual and socket physical addresses.
373  */
374 
375 /* global bits offset - number of local address bits in gpa for this UV arch */
376 static inline unsigned int uv_gpa_shift(void)
377 {
378 	return uv_hub_info->gpa_shift;
379 }
380 #define	_uv_gpa_shift
381 
382 /* Find node that has the address range that contains global address  */
383 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
384 {
385 	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
386 	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
387 	int i, num = uv_hub_info->gr_table_len;
388 
389 	if (gr) {
390 		for (i = 0; i < num; i++, gr++) {
391 			if (pal < gr->limit)
392 				return gr;
393 		}
394 	}
395 	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
396 	BUG();
397 }
398 
399 /* Return base address of node that contains global address  */
400 static inline unsigned long uv_gam_range_base(unsigned long pa)
401 {
402 	struct uv_gam_range_s *gr = uv_gam_range(pa);
403 	int base = gr->base;
404 
405 	if (base < 0)
406 		return 0UL;
407 
408 	return uv_hub_info->gr_table[base].limit;
409 }
410 
411 /* socket phys RAM --> UV global NASID (UV4+) */
412 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
413 {
414 	return uv_gam_range(paddr)->nasid;
415 }
416 #define	_uv_soc_phys_ram_to_nasid
417 
418 /* socket virtual --> UV global NASID (UV4+) */
419 static inline unsigned long uv_gpa_nasid(void *v)
420 {
421 	return uv_soc_phys_ram_to_nasid(__pa(v));
422 }
423 
424 /* socket phys RAM --> UV global physical address */
425 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
426 {
427 	unsigned int m_val = uv_hub_info->m_val;
428 
429 	if (paddr < uv_hub_info->lowmem_remap_top)
430 		paddr |= uv_hub_info->lowmem_remap_base;
431 
432 	if (m_val) {
433 		paddr |= uv_hub_info->gnode_upper;
434 		paddr = ((paddr << uv_hub_info->m_shift)
435 						>> uv_hub_info->m_shift) |
436 			((paddr >> uv_hub_info->m_val)
437 						<< uv_hub_info->n_lshift);
438 	} else {
439 		paddr |= uv_soc_phys_ram_to_nasid(paddr)
440 						<< uv_hub_info->gpa_shift;
441 	}
442 	return paddr;
443 }
444 
445 /* socket virtual --> UV global physical address */
446 static inline unsigned long uv_gpa(void *v)
447 {
448 	return uv_soc_phys_ram_to_gpa(__pa(v));
449 }
450 
451 /* Top two bits indicate the requested address is in MMR space.  */
452 static inline int
453 uv_gpa_in_mmr_space(unsigned long gpa)
454 {
455 	return (gpa >> 62) == 0x3UL;
456 }
457 
458 /* UV global physical address --> socket phys RAM */
459 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
460 {
461 	unsigned long paddr;
462 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
463 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
464 	unsigned int m_val = uv_hub_info->m_val;
465 
466 	if (m_val)
467 		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
468 			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
469 
470 	paddr = gpa & uv_hub_info->gpa_mask;
471 	if (paddr >= remap_base && paddr < remap_base + remap_top)
472 		paddr -= remap_base;
473 	return paddr;
474 }
475 
476 /* gpa -> gnode */
477 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
478 {
479 	unsigned int n_lshift = uv_hub_info->n_lshift;
480 
481 	if (n_lshift)
482 		return gpa >> n_lshift;
483 
484 	return uv_gam_range(gpa)->nasid >> 1;
485 }
486 
487 /* gpa -> pnode */
488 static inline int uv_gpa_to_pnode(unsigned long gpa)
489 {
490 	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
491 }
492 
493 /* gpa -> node offset */
494 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
495 {
496 	unsigned int m_shift = uv_hub_info->m_shift;
497 
498 	if (m_shift)
499 		return (gpa << m_shift) >> m_shift;
500 
501 	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
502 }
503 
504 /* Convert socket to node */
505 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
506 {
507 	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
508 }
509 
510 static inline int uv_socket_to_node(int socket)
511 {
512 	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
513 }
514 
515 /* pnode, offset --> socket virtual */
516 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
517 {
518 	unsigned int m_val = uv_hub_info->m_val;
519 	unsigned long base;
520 	unsigned short sockid, node, *p2s;
521 
522 	if (m_val)
523 		return __va(((unsigned long)pnode << m_val) | offset);
524 
525 	p2s = uv_hub_info->pnode_to_socket;
526 	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
527 	node = uv_socket_to_node(sockid);
528 
529 	/* limit address of previous socket is our base, except node 0 is 0 */
530 	if (!node)
531 		return __va((unsigned long)offset);
532 
533 	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
534 	return __va(base << UV_GAM_RANGE_SHFT | offset);
535 }
536 
537 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
538 static inline int uv_apicid_to_pnode(int apicid)
539 {
540 	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
541 	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
542 
543 	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
544 }
545 
546 /*
547  * Access global MMRs using the low memory MMR32 space. This region supports
548  * faster MMR access but not all MMRs are accessible in this space.
549  */
550 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
551 {
552 	return __va(UV_GLOBAL_MMR32_BASE |
553 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
554 }
555 
556 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
557 {
558 	writeq(val, uv_global_mmr32_address(pnode, offset));
559 }
560 
561 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
562 {
563 	return readq(uv_global_mmr32_address(pnode, offset));
564 }
565 
566 /*
567  * Access Global MMR space using the MMR space located at the top of physical
568  * memory.
569  */
570 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
571 {
572 	return __va(UV_GLOBAL_MMR64_BASE |
573 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
574 }
575 
576 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
577 {
578 	writeq(val, uv_global_mmr64_address(pnode, offset));
579 }
580 
581 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
582 {
583 	return readq(uv_global_mmr64_address(pnode, offset));
584 }
585 
586 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
587 {
588 	writeb(val, uv_global_mmr64_address(pnode, offset));
589 }
590 
591 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
592 {
593 	return readb(uv_global_mmr64_address(pnode, offset));
594 }
595 
596 /*
597  * Access hub local MMRs. Faster than using global space but only local MMRs
598  * are accessible.
599  */
600 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
601 {
602 	return __va(UV_LOCAL_MMR_BASE | offset);
603 }
604 
605 static inline unsigned long uv_read_local_mmr(unsigned long offset)
606 {
607 	return readq(uv_local_mmr_address(offset));
608 }
609 
610 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
611 {
612 	writeq(val, uv_local_mmr_address(offset));
613 }
614 
615 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
616 {
617 	return readb(uv_local_mmr_address(offset));
618 }
619 
620 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
621 {
622 	writeb(val, uv_local_mmr_address(offset));
623 }
624 
625 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
626 static inline int uv_blade_processor_id(void)
627 {
628 	return uv_cpu_info->blade_cpu_id;
629 }
630 
631 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
632 static inline int uv_cpu_blade_processor_id(int cpu)
633 {
634 	return uv_cpu_info_per(cpu)->blade_cpu_id;
635 }
636 
637 /* Blade number to Node number (UV2..UV4 is 1:1) */
638 static inline int uv_blade_to_node(int blade)
639 {
640 	return blade;
641 }
642 
643 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
644 static inline int uv_numa_blade_id(void)
645 {
646 	return uv_hub_info->numa_blade_id;
647 }
648 
649 /*
650  * Convert linux node number to the UV blade number.
651  * .. Currently for UV2 thru UV4 the node and the blade are identical.
652  * .. If this changes then you MUST check references to this function!
653  */
654 static inline int uv_node_to_blade_id(int nid)
655 {
656 	return nid;
657 }
658 
659 /* Convert a CPU number to the UV blade number */
660 static inline int uv_cpu_to_blade_id(int cpu)
661 {
662 	return uv_node_to_blade_id(cpu_to_node(cpu));
663 }
664 
665 /* Convert a blade id to the PNODE of the blade */
666 static inline int uv_blade_to_pnode(int bid)
667 {
668 	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
669 }
670 
671 /* Nid of memory node on blade. -1 if no blade-local memory */
672 static inline int uv_blade_to_memory_nid(int bid)
673 {
674 	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
675 }
676 
677 /* Determine the number of possible cpus on a blade */
678 static inline int uv_blade_nr_possible_cpus(int bid)
679 {
680 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
681 }
682 
683 /* Determine the number of online cpus on a blade */
684 static inline int uv_blade_nr_online_cpus(int bid)
685 {
686 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
687 }
688 
689 /* Convert a cpu id to the PNODE of the blade containing the cpu */
690 static inline int uv_cpu_to_pnode(int cpu)
691 {
692 	return uv_cpu_hub_info(cpu)->pnode;
693 }
694 
695 /* Convert a linux node number to the PNODE of the blade */
696 static inline int uv_node_to_pnode(int nid)
697 {
698 	return uv_hub_info_list(nid)->pnode;
699 }
700 
701 /* Maximum possible number of blades */
702 extern short uv_possible_blades;
703 static inline int uv_num_possible_blades(void)
704 {
705 	return uv_possible_blades;
706 }
707 
708 /* Per Hub NMI support */
709 extern void uv_nmi_setup(void);
710 extern void uv_nmi_setup_hubless(void);
711 
712 /* BIOS/Kernel flags exchange MMR */
713 #define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
714 #define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
715 #define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
716 
717 /* TSC sync valid, set by BIOS */
718 #define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
719 #define UVH_TSC_SYNC_SHIFT	10
720 #define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
721 #define UVH_TSC_SYNC_MASK	3	/* 0011 */
722 #define UVH_TSC_SYNC_VALID	3	/* 0011 */
723 #define UVH_TSC_SYNC_INVALID	2	/* 0010 */
724 
725 /* BMC sets a bit this MMR non-zero before sending an NMI */
726 #define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
727 #define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
728 #define UVH_NMI_MMR_SHIFT	63
729 #define UVH_NMI_MMR_TYPE	"SCRATCH5"
730 
731 /* Newer SMM NMI handler, not present in all systems */
732 #define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
733 #define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
734 #define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
735 #define UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
736 
737 /* Non-zero indicates newer SMM NMI handler present */
738 #define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST
739 
740 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
741 #define UVH_NMI_MMRX_REQ	UVH_BIOS_KERNEL_MMR_ALIAS_2
742 #define UVH_NMI_MMRX_REQ_SHIFT	62
743 
744 struct uv_hub_nmi_s {
745 	raw_spinlock_t	nmi_lock;
746 	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
747 	atomic_t	cpu_owner;	/* last locker of this struct */
748 	atomic_t	read_mmr_count;	/* count of MMR reads */
749 	atomic_t	nmi_count;	/* count of true UV NMIs */
750 	unsigned long	nmi_value;	/* last value read from NMI MMR */
751 	bool		hub_present;	/* false means UV hubless system */
752 	bool		pch_owner;	/* indicates this hub owns PCH */
753 };
754 
755 struct uv_cpu_nmi_s {
756 	struct uv_hub_nmi_s	*hub;
757 	int			state;
758 	int			pinging;
759 	int			queries;
760 	int			pings;
761 };
762 
763 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
764 
765 #define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
766 #define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
767 #define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
768 
769 /* uv_cpu_nmi_states */
770 #define	UV_NMI_STATE_OUT		0
771 #define	UV_NMI_STATE_IN			1
772 #define	UV_NMI_STATE_DUMP		2
773 #define	UV_NMI_STATE_DUMP_DONE		3
774 
775 /* Update SCIR state */
776 static inline void uv_set_scir_bits(unsigned char value)
777 {
778 	if (uv_scir_info->state != value) {
779 		uv_scir_info->state = value;
780 		uv_write_local_mmr8(uv_scir_info->offset, value);
781 	}
782 }
783 
784 static inline unsigned long uv_scir_offset(int apicid)
785 {
786 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
787 }
788 
789 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
790 {
791 	if (uv_cpu_scir_info(cpu)->state != value) {
792 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
793 				uv_cpu_scir_info(cpu)->offset, value);
794 		uv_cpu_scir_info(cpu)->state = value;
795 	}
796 }
797 
798 /*
799  * Get the minimum revision number of the hub chips within the partition.
800  * (See UVx_HUB_REVISION_BASE above for specific values.)
801  */
802 static inline int uv_get_min_hub_revision_id(void)
803 {
804 	return uv_hub_info->hub_revision;
805 }
806 
807 #endif /* CONFIG_X86_64 */
808 #endif /* _ASM_X86_UV_UV_HUB_H */
809