xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision 4800cd83)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
24 
25 
26 /*
27  * Addressing Terminology
28  *
29  *	M       - The low M bits of a physical address represent the offset
30  *		  into the blade local memory. RAM memory on a blade is physically
31  *		  contiguous (although various IO spaces may punch holes in
32  *		  it)..
33  *
34  *	N	- Number of bits in the node portion of a socket physical
35  *		  address.
36  *
37  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
38  *		  routers always have low bit of 1, C/MBricks have low bit
39  *		  equal to 0. Most addressing macros that target UV hub chips
40  *		  right shift the NASID by 1 to exclude the always-zero bit.
41  *		  NASIDs contain up to 15 bits.
42  *
43  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44  *		  of nasids.
45  *
46  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
47  *		  of the nasid for socket usage.
48  *
49  *
50  *  NumaLink Global Physical Address Format:
51  *  +--------------------------------+---------------------+
52  *  |00..000|      GNODE             |      NodeOffset     |
53  *  +--------------------------------+---------------------+
54  *          |<-------53 - M bits --->|<--------M bits ----->
55  *
56  *	M - number of node offset bits (35 .. 40)
57  *
58  *
59  *  Memory/UV-HUB Processor Socket Address Format:
60  *  +----------------+---------------+---------------------+
61  *  |00..000000000000|   PNODE       |      NodeOffset     |
62  *  +----------------+---------------+---------------------+
63  *                   <--- N bits --->|<--------M bits ----->
64  *
65  *	M - number of node offset bits (35 .. 40)
66  *	N - number of PNODE bits (0 .. 10)
67  *
68  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69  *		The actual values are configuration dependent and are set at
70  *		boot time. M & N values are set by the hardware/BIOS at boot.
71  *
72  *
73  * APICID format
74  *	NOTE!!!!!! This is the current format of the APICID. However, code
75  *	should assume that this will change in the future. Use functions
76  *	in this file for all APICID bit manipulations and conversion.
77  *
78  *		1111110000000000
79  *		5432109876543210
80  *		pppppppppplc0cch	Nehalem-EX
81  *		ppppppppplcc0cch	Westmere-EX
82  *		sssssssssss
83  *
84  *			p  = pnode bits
85  *			l =  socket number on board
86  *			c  = core
87  *			h  = hyperthread
88  *			s  = bits that are in the SOCKET_ID CSR
89  *
90  *	Note: Processor only supports 12 bits in the APICID register. The ACPI
91  *	      tables hold all 16 bits. Software needs to be aware of this.
92  *
93  *	      Unless otherwise specified, all references to APICID refer to
94  *	      the FULL value contained in ACPI tables, not the subset in the
95  *	      processor APICID register.
96  */
97 
98 
99 /*
100  * Maximum number of bricks in all partitions and in all coherency domains.
101  * This is the total number of bricks accessible in the numalink fabric. It
102  * includes all C & M bricks. Routers are NOT included.
103  *
104  * This value is also the value of the maximum number of non-router NASIDs
105  * in the numalink fabric.
106  *
107  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
108  */
109 #define UV_MAX_NUMALINK_BLADES	16384
110 
111 /*
112  * Maximum number of C/Mbricks within a software SSI (hardware may support
113  * more).
114  */
115 #define UV_MAX_SSI_BLADES	256
116 
117 /*
118  * The largest possible NASID of a C or M brick (+ 2)
119  */
120 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
121 
122 struct uv_scir_s {
123 	struct timer_list timer;
124 	unsigned long	offset;
125 	unsigned long	last;
126 	unsigned long	idle_on;
127 	unsigned long	idle_off;
128 	unsigned char	state;
129 	unsigned char	enabled;
130 };
131 
132 /*
133  * The following defines attributes of the HUB chip. These attributes are
134  * frequently referenced and are kept in the per-cpu data areas of each cpu.
135  * They are kept together in a struct to minimize cache misses.
136  */
137 struct uv_hub_info_s {
138 	unsigned long		global_mmr_base;
139 	unsigned long		gpa_mask;
140 	unsigned int		gnode_extra;
141 	unsigned long		gnode_upper;
142 	unsigned long		lowmem_remap_top;
143 	unsigned long		lowmem_remap_base;
144 	unsigned short		pnode;
145 	unsigned short		pnode_mask;
146 	unsigned short		coherency_domain_number;
147 	unsigned short		numa_blade_id;
148 	unsigned char		blade_processor_id;
149 	unsigned char		m_val;
150 	unsigned char		n_val;
151 	struct uv_scir_s	scir;
152 	unsigned char		apic_pnode_shift;
153 };
154 
155 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
156 #define uv_hub_info		(&__get_cpu_var(__uv_hub_info))
157 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
158 
159 union uvh_apicid {
160     unsigned long       v;
161     struct uvh_apicid_s {
162         unsigned long   local_apic_mask  : 24;
163         unsigned long   local_apic_shift :  5;
164         unsigned long   unused1          :  3;
165         unsigned long   pnode_mask       : 24;
166         unsigned long   pnode_shift      :  5;
167         unsigned long   unused2          :  3;
168     } s;
169 };
170 
171 /*
172  * Local & Global MMR space macros.
173  *	Note: macros are intended to be used ONLY by inline functions
174  *	in this file - not by other kernel code.
175  *		n -  NASID (full 15-bit global nasid)
176  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
177  *		p -  PNODE (local part of nsids, right shifted 1)
178  */
179 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
180 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
181 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
182 
183 #define UV_LOCAL_MMR_BASE		0xf4000000UL
184 #define UV_GLOBAL_MMR32_BASE		0xf8000000UL
185 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
186 #define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
187 #define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
188 
189 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
190 
191 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
192 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
193 
194 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
195 
196 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
197 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
198 
199 #define UVH_APICID		0x002D0E00L
200 #define UV_APIC_PNODE_SHIFT	6
201 
202 #define UV_APICID_HIBIT_MASK	0xffff0000
203 
204 /* Local Bus from cpu's perspective */
205 #define LOCAL_BUS_BASE		0x1c00000
206 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
207 
208 /*
209  * System Controller Interface Reg
210  *
211  * Note there are NO leds on a UV system.  This register is only
212  * used by the system controller to monitor system-wide operation.
213  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
214  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
215  * a node.
216  *
217  * The window is located at top of ACPI MMR space
218  */
219 #define SCIR_WINDOW_COUNT	64
220 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
221 				 LOCAL_BUS_SIZE - \
222 				 SCIR_WINDOW_COUNT)
223 
224 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
225 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
226 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
227 
228 /* Loop through all installed blades */
229 #define for_each_possible_blade(bid)		\
230 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
231 
232 /*
233  * Macros for converting between kernel virtual addresses, socket local physical
234  * addresses, and UV global physical addresses.
235  *	Note: use the standard __pa() & __va() macros for converting
236  *	      between socket virtual and socket physical addresses.
237  */
238 
239 /* socket phys RAM --> UV global physical address */
240 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
241 {
242 	if (paddr < uv_hub_info->lowmem_remap_top)
243 		paddr |= uv_hub_info->lowmem_remap_base;
244 	return paddr | uv_hub_info->gnode_upper;
245 }
246 
247 
248 /* socket virtual --> UV global physical address */
249 static inline unsigned long uv_gpa(void *v)
250 {
251 	return uv_soc_phys_ram_to_gpa(__pa(v));
252 }
253 
254 /* Top two bits indicate the requested address is in MMR space.  */
255 static inline int
256 uv_gpa_in_mmr_space(unsigned long gpa)
257 {
258 	return (gpa >> 62) == 0x3UL;
259 }
260 
261 /* UV global physical address --> socket phys RAM */
262 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
263 {
264 	unsigned long paddr = gpa & uv_hub_info->gpa_mask;
265 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
266 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
267 
268 	if (paddr >= remap_base && paddr < remap_base + remap_top)
269 		paddr -= remap_base;
270 	return paddr;
271 }
272 
273 
274 /* gnode -> pnode */
275 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
276 {
277 	return gpa >> uv_hub_info->m_val;
278 }
279 
280 /* gpa -> pnode */
281 static inline int uv_gpa_to_pnode(unsigned long gpa)
282 {
283 	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
284 
285 	return uv_gpa_to_gnode(gpa) & n_mask;
286 }
287 
288 /* pnode, offset --> socket virtual */
289 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
290 {
291 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
292 }
293 
294 
295 /*
296  * Extract a PNODE from an APICID (full apicid, not processor subset)
297  */
298 static inline int uv_apicid_to_pnode(int apicid)
299 {
300 	return (apicid >> uv_hub_info->apic_pnode_shift);
301 }
302 
303 /*
304  * Access global MMRs using the low memory MMR32 space. This region supports
305  * faster MMR access but not all MMRs are accessible in this space.
306  */
307 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
308 {
309 	return __va(UV_GLOBAL_MMR32_BASE |
310 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
311 }
312 
313 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
314 {
315 	writeq(val, uv_global_mmr32_address(pnode, offset));
316 }
317 
318 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
319 {
320 	return readq(uv_global_mmr32_address(pnode, offset));
321 }
322 
323 /*
324  * Access Global MMR space using the MMR space located at the top of physical
325  * memory.
326  */
327 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
328 {
329 	return __va(UV_GLOBAL_MMR64_BASE |
330 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
331 }
332 
333 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
334 {
335 	writeq(val, uv_global_mmr64_address(pnode, offset));
336 }
337 
338 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
339 {
340 	return readq(uv_global_mmr64_address(pnode, offset));
341 }
342 
343 /*
344  * Global MMR space addresses when referenced by the GRU. (GRU does
345  * NOT use socket addressing).
346  */
347 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
348 {
349 	return UV_GLOBAL_GRU_MMR_BASE | offset |
350 		((unsigned long)pnode << uv_hub_info->m_val);
351 }
352 
353 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
354 {
355 	writeb(val, uv_global_mmr64_address(pnode, offset));
356 }
357 
358 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
359 {
360 	return readb(uv_global_mmr64_address(pnode, offset));
361 }
362 
363 /*
364  * Access hub local MMRs. Faster than using global space but only local MMRs
365  * are accessible.
366  */
367 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
368 {
369 	return __va(UV_LOCAL_MMR_BASE | offset);
370 }
371 
372 static inline unsigned long uv_read_local_mmr(unsigned long offset)
373 {
374 	return readq(uv_local_mmr_address(offset));
375 }
376 
377 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
378 {
379 	writeq(val, uv_local_mmr_address(offset));
380 }
381 
382 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
383 {
384 	return readb(uv_local_mmr_address(offset));
385 }
386 
387 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
388 {
389 	writeb(val, uv_local_mmr_address(offset));
390 }
391 
392 /*
393  * Structures and definitions for converting between cpu, node, pnode, and blade
394  * numbers.
395  */
396 struct uv_blade_info {
397 	unsigned short	nr_possible_cpus;
398 	unsigned short	nr_online_cpus;
399 	unsigned short	pnode;
400 	short		memory_nid;
401 };
402 extern struct uv_blade_info *uv_blade_info;
403 extern short *uv_node_to_blade;
404 extern short *uv_cpu_to_blade;
405 extern short uv_possible_blades;
406 
407 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
408 static inline int uv_blade_processor_id(void)
409 {
410 	return uv_hub_info->blade_processor_id;
411 }
412 
413 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
414 static inline int uv_numa_blade_id(void)
415 {
416 	return uv_hub_info->numa_blade_id;
417 }
418 
419 /* Convert a cpu number to the the UV blade number */
420 static inline int uv_cpu_to_blade_id(int cpu)
421 {
422 	return uv_cpu_to_blade[cpu];
423 }
424 
425 /* Convert linux node number to the UV blade number */
426 static inline int uv_node_to_blade_id(int nid)
427 {
428 	return uv_node_to_blade[nid];
429 }
430 
431 /* Convert a blade id to the PNODE of the blade */
432 static inline int uv_blade_to_pnode(int bid)
433 {
434 	return uv_blade_info[bid].pnode;
435 }
436 
437 /* Nid of memory node on blade. -1 if no blade-local memory */
438 static inline int uv_blade_to_memory_nid(int bid)
439 {
440 	return uv_blade_info[bid].memory_nid;
441 }
442 
443 /* Determine the number of possible cpus on a blade */
444 static inline int uv_blade_nr_possible_cpus(int bid)
445 {
446 	return uv_blade_info[bid].nr_possible_cpus;
447 }
448 
449 /* Determine the number of online cpus on a blade */
450 static inline int uv_blade_nr_online_cpus(int bid)
451 {
452 	return uv_blade_info[bid].nr_online_cpus;
453 }
454 
455 /* Convert a cpu id to the PNODE of the blade containing the cpu */
456 static inline int uv_cpu_to_pnode(int cpu)
457 {
458 	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
459 }
460 
461 /* Convert a linux node number to the PNODE of the blade */
462 static inline int uv_node_to_pnode(int nid)
463 {
464 	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
465 }
466 
467 /* Maximum possible number of blades */
468 static inline int uv_num_possible_blades(void)
469 {
470 	return uv_possible_blades;
471 }
472 
473 /* Update SCIR state */
474 static inline void uv_set_scir_bits(unsigned char value)
475 {
476 	if (uv_hub_info->scir.state != value) {
477 		uv_hub_info->scir.state = value;
478 		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
479 	}
480 }
481 
482 static inline unsigned long uv_scir_offset(int apicid)
483 {
484 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
485 }
486 
487 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
488 {
489 	if (uv_cpu_hub_info(cpu)->scir.state != value) {
490 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
491 				uv_cpu_hub_info(cpu)->scir.offset, value);
492 		uv_cpu_hub_info(cpu)->scir.state = value;
493 	}
494 }
495 
496 extern unsigned int uv_apicid_hibits;
497 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
498 {
499 	apicid |= uv_apicid_hibits;
500 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
501 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
502 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
503 			(vector << UVH_IPI_INT_VECTOR_SHFT);
504 }
505 
506 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
507 {
508 	unsigned long val;
509 	unsigned long dmode = dest_Fixed;
510 
511 	if (vector == NMI_VECTOR)
512 		dmode = dest_NMI;
513 
514 	val = uv_hub_ipi_value(apicid, vector, dmode);
515 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
516 }
517 
518 /*
519  * Get the minimum revision number of the hub chips within the partition.
520  *     1 - initial rev 1.0 silicon
521  *     2 - rev 2.0 production silicon
522  */
523 static inline int uv_get_min_hub_revision_id(void)
524 {
525 	extern int uv_min_hub_revision_id;
526 
527 	return uv_min_hub_revision_id;
528 }
529 
530 #endif /* CONFIG_X86_64 */
531 #endif /* _ASM_X86_UV_UV_HUB_H */
532