xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision 2f828fb2)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/uv/bios.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/io_apic.h>
26 
27 
28 /*
29  * Addressing Terminology
30  *
31  *	M       - The low M bits of a physical address represent the offset
32  *		  into the blade local memory. RAM memory on a blade is physically
33  *		  contiguous (although various IO spaces may punch holes in
34  *		  it)..
35  *
36  *	N	- Number of bits in the node portion of a socket physical
37  *		  address.
38  *
39  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
40  *		  routers always have low bit of 1, C/MBricks have low bit
41  *		  equal to 0. Most addressing macros that target UV hub chips
42  *		  right shift the NASID by 1 to exclude the always-zero bit.
43  *		  NASIDs contain up to 15 bits.
44  *
45  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
46  *		  of nasids.
47  *
48  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
49  *		  of the nasid for socket usage.
50  *
51  *	GPA	- (global physical address) a socket physical address converted
52  *		  so that it can be used by the GRU as a global address. Socket
53  *		  physical addresses 1) need additional NASID (node) bits added
54  *		  to the high end of the address, and 2) unaliased if the
55  *		  partition does not have a physical address 0. In addition, on
56  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
57  *
58  *
59  *  NumaLink Global Physical Address Format:
60  *  +--------------------------------+---------------------+
61  *  |00..000|      GNODE             |      NodeOffset     |
62  *  +--------------------------------+---------------------+
63  *          |<-------53 - M bits --->|<--------M bits ----->
64  *
65  *	M - number of node offset bits (35 .. 40)
66  *
67  *
68  *  Memory/UV-HUB Processor Socket Address Format:
69  *  +----------------+---------------+---------------------+
70  *  |00..000000000000|   PNODE       |      NodeOffset     |
71  *  +----------------+---------------+---------------------+
72  *                   <--- N bits --->|<--------M bits ----->
73  *
74  *	M - number of node offset bits (35 .. 40)
75  *	N - number of PNODE bits (0 .. 10)
76  *
77  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
78  *		The actual values are configuration dependent and are set at
79  *		boot time. M & N values are set by the hardware/BIOS at boot.
80  *
81  *
82  * APICID format
83  *	NOTE!!!!!! This is the current format of the APICID. However, code
84  *	should assume that this will change in the future. Use functions
85  *	in this file for all APICID bit manipulations and conversion.
86  *
87  *		1111110000000000
88  *		5432109876543210
89  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
90  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
91  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
92  *		sssssssssss
93  *
94  *			p  = pnode bits
95  *			l =  socket number on board
96  *			c  = core
97  *			h  = hyperthread
98  *			s  = bits that are in the SOCKET_ID CSR
99  *
100  *	Note: Processor may support fewer bits in the APICID register. The ACPI
101  *	      tables hold all 16 bits. Software needs to be aware of this.
102  *
103  *	      Unless otherwise specified, all references to APICID refer to
104  *	      the FULL value contained in ACPI tables, not the subset in the
105  *	      processor APICID register.
106  */
107 
108 /*
109  * Maximum number of bricks in all partitions and in all coherency domains.
110  * This is the total number of bricks accessible in the numalink fabric. It
111  * includes all C & M bricks. Routers are NOT included.
112  *
113  * This value is also the value of the maximum number of non-router NASIDs
114  * in the numalink fabric.
115  *
116  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117  */
118 #define UV_MAX_NUMALINK_BLADES	16384
119 
120 /*
121  * Maximum number of C/Mbricks within a software SSI (hardware may support
122  * more).
123  */
124 #define UV_MAX_SSI_BLADES	256
125 
126 /*
127  * The largest possible NASID of a C or M brick (+ 2)
128  */
129 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
130 
131 /* System Controller Interface Reg info */
132 struct uv_scir_s {
133 	struct timer_list timer;
134 	unsigned long	offset;
135 	unsigned long	last;
136 	unsigned long	idle_on;
137 	unsigned long	idle_off;
138 	unsigned char	state;
139 	unsigned char	enabled;
140 };
141 
142 /* GAM (globally addressed memory) range table */
143 struct uv_gam_range_s {
144 	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
145 	u16	nasid;		/* node's global physical address */
146 	s8	base;		/* entry index of node's base addr */
147 	u8	reserved;
148 };
149 
150 /*
151  * The following defines attributes of the HUB chip. These attributes are
152  * frequently referenced and are kept in a common per hub struct.
153  * After setup, the struct is read only, so it should be readily
154  * available in the L3 cache on the cpu socket for the node.
155  */
156 struct uv_hub_info_s {
157 	unsigned long		global_mmr_base;
158 	unsigned long		global_mmr_shift;
159 	unsigned long		gpa_mask;
160 	unsigned short		*socket_to_node;
161 	unsigned short		*socket_to_pnode;
162 	unsigned short		*pnode_to_socket;
163 	struct uv_gam_range_s	*gr_table;
164 	unsigned short		min_socket;
165 	unsigned short		min_pnode;
166 	unsigned char		m_val;
167 	unsigned char		n_val;
168 	unsigned char		gr_table_len;
169 	unsigned char		hub_revision;
170 	unsigned char		apic_pnode_shift;
171 	unsigned char		gpa_shift;
172 	unsigned char		m_shift;
173 	unsigned char		n_lshift;
174 	unsigned int		gnode_extra;
175 	unsigned long		gnode_upper;
176 	unsigned long		lowmem_remap_top;
177 	unsigned long		lowmem_remap_base;
178 	unsigned long		global_gru_base;
179 	unsigned long		global_gru_shift;
180 	unsigned short		pnode;
181 	unsigned short		pnode_mask;
182 	unsigned short		coherency_domain_number;
183 	unsigned short		numa_blade_id;
184 	unsigned short		nr_possible_cpus;
185 	unsigned short		nr_online_cpus;
186 	short			memory_nid;
187 };
188 
189 /* CPU specific info with a pointer to the hub common info struct */
190 struct uv_cpu_info_s {
191 	void			*p_uv_hub_info;
192 	unsigned char		blade_cpu_id;
193 	struct uv_scir_s	scir;
194 };
195 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
196 
197 #define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
198 #define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
199 
200 #define	uv_scir_info		(&uv_cpu_info->scir)
201 #define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)
202 
203 /* Node specific hub common info struct */
204 extern void **__uv_hub_info_list;
205 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
206 {
207 	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
208 }
209 
210 static inline struct uv_hub_info_s *_uv_hub_info(void)
211 {
212 	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
213 }
214 #define	uv_hub_info	_uv_hub_info()
215 
216 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
217 {
218 	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
219 }
220 
221 #define	UV_HUB_INFO_VERSION	0x7150
222 extern int uv_hub_info_version(void);
223 static inline int uv_hub_info_check(int version)
224 {
225 	if (uv_hub_info_version() == version)
226 		return 0;
227 
228 	pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
229 		uv_hub_info_version(), version);
230 
231 	BUG();	/* Catastrophic - cannot continue on unknown UV system */
232 }
233 #define	_uv_hub_info_check()	uv_hub_info_check(UV_HUB_INFO_VERSION)
234 
235 /*
236  * HUB revision ranges for each UV HUB architecture.
237  * This is a software convention - NOT the hardware revision numbers in
238  * the hub chip.
239  */
240 #define UV1_HUB_REVISION_BASE		1
241 #define UV2_HUB_REVISION_BASE		3
242 #define UV3_HUB_REVISION_BASE		5
243 #define UV4_HUB_REVISION_BASE		7
244 
245 #ifdef	UV1_HUB_IS_SUPPORTED
246 static inline int is_uv1_hub(void)
247 {
248 	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
249 }
250 #else
251 static inline int is_uv1_hub(void)
252 {
253 	return 0;
254 }
255 #endif
256 
257 #ifdef	UV2_HUB_IS_SUPPORTED
258 static inline int is_uv2_hub(void)
259 {
260 	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
261 		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
262 }
263 #else
264 static inline int is_uv2_hub(void)
265 {
266 	return 0;
267 }
268 #endif
269 
270 #ifdef	UV3_HUB_IS_SUPPORTED
271 static inline int is_uv3_hub(void)
272 {
273 	return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
274 		(uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
275 }
276 #else
277 static inline int is_uv3_hub(void)
278 {
279 	return 0;
280 }
281 #endif
282 
283 #ifdef	UV4_HUB_IS_SUPPORTED
284 static inline int is_uv4_hub(void)
285 {
286 	return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
287 }
288 #else
289 static inline int is_uv4_hub(void)
290 {
291 	return 0;
292 }
293 #endif
294 
295 static inline int is_uvx_hub(void)
296 {
297 	if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
298 		return uv_hub_info->hub_revision;
299 
300 	return 0;
301 }
302 
303 static inline int is_uv_hub(void)
304 {
305 #ifdef	UV1_HUB_IS_SUPPORTED
306 	return uv_hub_info->hub_revision;
307 #endif
308 	return is_uvx_hub();
309 }
310 
311 union uvh_apicid {
312     unsigned long       v;
313     struct uvh_apicid_s {
314         unsigned long   local_apic_mask  : 24;
315         unsigned long   local_apic_shift :  5;
316         unsigned long   unused1          :  3;
317         unsigned long   pnode_mask       : 24;
318         unsigned long   pnode_shift      :  5;
319         unsigned long   unused2          :  3;
320     } s;
321 };
322 
323 /*
324  * Local & Global MMR space macros.
325  *	Note: macros are intended to be used ONLY by inline functions
326  *	in this file - not by other kernel code.
327  *		n -  NASID (full 15-bit global nasid)
328  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
329  *		p -  PNODE (local part of nsids, right shifted 1)
330  */
331 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
332 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
333 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
334 
335 #define UV1_LOCAL_MMR_BASE		0xf4000000UL
336 #define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
337 #define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
338 #define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
339 
340 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
341 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
342 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
343 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
344 
345 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
346 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
347 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
348 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
349 
350 #define UV4_LOCAL_MMR_BASE		0xfa000000UL
351 #define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
352 #define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
353 #define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)
354 
355 #define UV_LOCAL_MMR_BASE		(				\
356 					is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
357 					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
358 					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
359 					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
360 
361 #define UV_GLOBAL_MMR32_BASE		(				\
362 					is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
363 					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
364 					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
365 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
366 
367 #define UV_LOCAL_MMR_SIZE		(				\
368 					is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
369 					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
370 					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
371 					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
372 
373 #define UV_GLOBAL_MMR32_SIZE		(				\
374 					is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
375 					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
376 					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
377 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
378 
379 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
380 
381 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
382 
383 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
384 #define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
385 #define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
386 
387 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
388 
389 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
390 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
391 
392 #define UVH_APICID		0x002D0E00L
393 #define UV_APIC_PNODE_SHIFT	6
394 
395 #define UV_APICID_HIBIT_MASK	0xffff0000
396 
397 /* Local Bus from cpu's perspective */
398 #define LOCAL_BUS_BASE		0x1c00000
399 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
400 
401 /*
402  * System Controller Interface Reg
403  *
404  * Note there are NO leds on a UV system.  This register is only
405  * used by the system controller to monitor system-wide operation.
406  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
407  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
408  * a node.
409  *
410  * The window is located at top of ACPI MMR space
411  */
412 #define SCIR_WINDOW_COUNT	64
413 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
414 				 LOCAL_BUS_SIZE - \
415 				 SCIR_WINDOW_COUNT)
416 
417 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
418 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
419 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
420 
421 /* Loop through all installed blades */
422 #define for_each_possible_blade(bid)		\
423 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
424 
425 /*
426  * Macros for converting between kernel virtual addresses, socket local physical
427  * addresses, and UV global physical addresses.
428  *	Note: use the standard __pa() & __va() macros for converting
429  *	      between socket virtual and socket physical addresses.
430  */
431 
432 /* global bits offset - number of local address bits in gpa for this UV arch */
433 static inline unsigned int uv_gpa_shift(void)
434 {
435 	return uv_hub_info->gpa_shift;
436 }
437 #define	_uv_gpa_shift
438 
439 /* Find node that has the address range that contains global address  */
440 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
441 {
442 	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
443 	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
444 	int i, num = uv_hub_info->gr_table_len;
445 
446 	if (gr) {
447 		for (i = 0; i < num; i++, gr++) {
448 			if (pal < gr->limit)
449 				return gr;
450 		}
451 	}
452 	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
453 	BUG();
454 }
455 
456 /* Return base address of node that contains global address  */
457 static inline unsigned long uv_gam_range_base(unsigned long pa)
458 {
459 	struct uv_gam_range_s *gr = uv_gam_range(pa);
460 	int base = gr->base;
461 
462 	if (base < 0)
463 		return 0UL;
464 
465 	return uv_hub_info->gr_table[base].limit;
466 }
467 
468 /* socket phys RAM --> UV global NASID (UV4+) */
469 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
470 {
471 	return uv_gam_range(paddr)->nasid;
472 }
473 #define	_uv_soc_phys_ram_to_nasid
474 
475 /* socket virtual --> UV global NASID (UV4+) */
476 static inline unsigned long uv_gpa_nasid(void *v)
477 {
478 	return uv_soc_phys_ram_to_nasid(__pa(v));
479 }
480 
481 /* socket phys RAM --> UV global physical address */
482 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
483 {
484 	unsigned int m_val = uv_hub_info->m_val;
485 
486 	if (paddr < uv_hub_info->lowmem_remap_top)
487 		paddr |= uv_hub_info->lowmem_remap_base;
488 
489 	if (m_val) {
490 		paddr |= uv_hub_info->gnode_upper;
491 		paddr = ((paddr << uv_hub_info->m_shift)
492 						>> uv_hub_info->m_shift) |
493 			((paddr >> uv_hub_info->m_val)
494 						<< uv_hub_info->n_lshift);
495 	} else {
496 		paddr |= uv_soc_phys_ram_to_nasid(paddr)
497 						<< uv_hub_info->gpa_shift;
498 	}
499 	return paddr;
500 }
501 
502 /* socket virtual --> UV global physical address */
503 static inline unsigned long uv_gpa(void *v)
504 {
505 	return uv_soc_phys_ram_to_gpa(__pa(v));
506 }
507 
508 /* Top two bits indicate the requested address is in MMR space.  */
509 static inline int
510 uv_gpa_in_mmr_space(unsigned long gpa)
511 {
512 	return (gpa >> 62) == 0x3UL;
513 }
514 
515 /* UV global physical address --> socket phys RAM */
516 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
517 {
518 	unsigned long paddr;
519 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
520 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
521 	unsigned int m_val = uv_hub_info->m_val;
522 
523 	if (m_val)
524 		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
525 			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
526 
527 	paddr = gpa & uv_hub_info->gpa_mask;
528 	if (paddr >= remap_base && paddr < remap_base + remap_top)
529 		paddr -= remap_base;
530 	return paddr;
531 }
532 
533 /* gpa -> gnode */
534 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
535 {
536 	unsigned int n_lshift = uv_hub_info->n_lshift;
537 
538 	if (n_lshift)
539 		return gpa >> n_lshift;
540 
541 	return uv_gam_range(gpa)->nasid >> 1;
542 }
543 
544 /* gpa -> pnode */
545 static inline int uv_gpa_to_pnode(unsigned long gpa)
546 {
547 	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
548 }
549 
550 /* gpa -> node offset */
551 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
552 {
553 	unsigned int m_shift = uv_hub_info->m_shift;
554 
555 	if (m_shift)
556 		return (gpa << m_shift) >> m_shift;
557 
558 	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
559 }
560 
561 /* Convert socket to node */
562 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
563 {
564 	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
565 }
566 
567 static inline int uv_socket_to_node(int socket)
568 {
569 	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
570 }
571 
572 /* pnode, offset --> socket virtual */
573 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
574 {
575 	unsigned int m_val = uv_hub_info->m_val;
576 	unsigned long base;
577 	unsigned short sockid, node, *p2s;
578 
579 	if (m_val)
580 		return __va(((unsigned long)pnode << m_val) | offset);
581 
582 	p2s = uv_hub_info->pnode_to_socket;
583 	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
584 	node = uv_socket_to_node(sockid);
585 
586 	/* limit address of previous socket is our base, except node 0 is 0 */
587 	if (!node)
588 		return __va((unsigned long)offset);
589 
590 	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
591 	return __va(base << UV_GAM_RANGE_SHFT | offset);
592 }
593 
594 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
595 static inline int uv_apicid_to_pnode(int apicid)
596 {
597 	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
598 	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
599 
600 	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
601 }
602 
603 /* Convert an apicid to the socket number on the blade */
604 static inline int uv_apicid_to_socket(int apicid)
605 {
606 	if (is_uv1_hub())
607 		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
608 	else
609 		return 0;
610 }
611 
612 /*
613  * Access global MMRs using the low memory MMR32 space. This region supports
614  * faster MMR access but not all MMRs are accessible in this space.
615  */
616 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
617 {
618 	return __va(UV_GLOBAL_MMR32_BASE |
619 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
620 }
621 
622 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
623 {
624 	writeq(val, uv_global_mmr32_address(pnode, offset));
625 }
626 
627 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
628 {
629 	return readq(uv_global_mmr32_address(pnode, offset));
630 }
631 
632 /*
633  * Access Global MMR space using the MMR space located at the top of physical
634  * memory.
635  */
636 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
637 {
638 	return __va(UV_GLOBAL_MMR64_BASE |
639 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
640 }
641 
642 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
643 {
644 	writeq(val, uv_global_mmr64_address(pnode, offset));
645 }
646 
647 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
648 {
649 	return readq(uv_global_mmr64_address(pnode, offset));
650 }
651 
652 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
653 {
654 	writeb(val, uv_global_mmr64_address(pnode, offset));
655 }
656 
657 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
658 {
659 	return readb(uv_global_mmr64_address(pnode, offset));
660 }
661 
662 /*
663  * Access hub local MMRs. Faster than using global space but only local MMRs
664  * are accessible.
665  */
666 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
667 {
668 	return __va(UV_LOCAL_MMR_BASE | offset);
669 }
670 
671 static inline unsigned long uv_read_local_mmr(unsigned long offset)
672 {
673 	return readq(uv_local_mmr_address(offset));
674 }
675 
676 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
677 {
678 	writeq(val, uv_local_mmr_address(offset));
679 }
680 
681 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
682 {
683 	return readb(uv_local_mmr_address(offset));
684 }
685 
686 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
687 {
688 	writeb(val, uv_local_mmr_address(offset));
689 }
690 
691 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
692 static inline int uv_blade_processor_id(void)
693 {
694 	return uv_cpu_info->blade_cpu_id;
695 }
696 
697 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
698 static inline int uv_cpu_blade_processor_id(int cpu)
699 {
700 	return uv_cpu_info_per(cpu)->blade_cpu_id;
701 }
702 #define _uv_cpu_blade_processor_id 1	/* indicate function available */
703 
704 /* Blade number to Node number (UV1..UV4 is 1:1) */
705 static inline int uv_blade_to_node(int blade)
706 {
707 	return blade;
708 }
709 
710 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
711 static inline int uv_numa_blade_id(void)
712 {
713 	return uv_hub_info->numa_blade_id;
714 }
715 
716 /*
717  * Convert linux node number to the UV blade number.
718  * .. Currently for UV1 thru UV4 the node and the blade are identical.
719  * .. If this changes then you MUST check references to this function!
720  */
721 static inline int uv_node_to_blade_id(int nid)
722 {
723 	return nid;
724 }
725 
726 /* Convert a cpu number to the the UV blade number */
727 static inline int uv_cpu_to_blade_id(int cpu)
728 {
729 	return uv_node_to_blade_id(cpu_to_node(cpu));
730 }
731 
732 /* Convert a blade id to the PNODE of the blade */
733 static inline int uv_blade_to_pnode(int bid)
734 {
735 	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
736 }
737 
738 /* Nid of memory node on blade. -1 if no blade-local memory */
739 static inline int uv_blade_to_memory_nid(int bid)
740 {
741 	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
742 }
743 
744 /* Determine the number of possible cpus on a blade */
745 static inline int uv_blade_nr_possible_cpus(int bid)
746 {
747 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
748 }
749 
750 /* Determine the number of online cpus on a blade */
751 static inline int uv_blade_nr_online_cpus(int bid)
752 {
753 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
754 }
755 
756 /* Convert a cpu id to the PNODE of the blade containing the cpu */
757 static inline int uv_cpu_to_pnode(int cpu)
758 {
759 	return uv_cpu_hub_info(cpu)->pnode;
760 }
761 
762 /* Convert a linux node number to the PNODE of the blade */
763 static inline int uv_node_to_pnode(int nid)
764 {
765 	return uv_hub_info_list(nid)->pnode;
766 }
767 
768 /* Maximum possible number of blades */
769 extern short uv_possible_blades;
770 static inline int uv_num_possible_blades(void)
771 {
772 	return uv_possible_blades;
773 }
774 
775 /* Per Hub NMI support */
776 extern void uv_nmi_setup(void);
777 extern void uv_nmi_setup_hubless(void);
778 
779 /* BIOS/Kernel flags exchange MMR */
780 #define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
781 #define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
782 #define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
783 
784 /* TSC sync valid, set by BIOS */
785 #define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
786 #define UVH_TSC_SYNC_SHIFT	10
787 #define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
788 #define UVH_TSC_SYNC_MASK	3	/* 0011 */
789 #define UVH_TSC_SYNC_VALID	3	/* 0011 */
790 #define UVH_TSC_SYNC_INVALID	2	/* 0010 */
791 
792 /* BMC sets a bit this MMR non-zero before sending an NMI */
793 #define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
794 #define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
795 #define UVH_NMI_MMR_SHIFT	63
796 #define UVH_NMI_MMR_TYPE	"SCRATCH5"
797 
798 /* Newer SMM NMI handler, not present in all systems */
799 #define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
800 #define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
801 #define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
802 #define UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
803 
804 /* Non-zero indicates newer SMM NMI handler present */
805 #define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST
806 
807 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
808 #define UVH_NMI_MMRX_REQ	UVH_BIOS_KERNEL_MMR_ALIAS_2
809 #define UVH_NMI_MMRX_REQ_SHIFT	62
810 
811 struct uv_hub_nmi_s {
812 	raw_spinlock_t	nmi_lock;
813 	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
814 	atomic_t	cpu_owner;	/* last locker of this struct */
815 	atomic_t	read_mmr_count;	/* count of MMR reads */
816 	atomic_t	nmi_count;	/* count of true UV NMIs */
817 	unsigned long	nmi_value;	/* last value read from NMI MMR */
818 	bool		hub_present;	/* false means UV hubless system */
819 	bool		pch_owner;	/* indicates this hub owns PCH */
820 };
821 
822 struct uv_cpu_nmi_s {
823 	struct uv_hub_nmi_s	*hub;
824 	int			state;
825 	int			pinging;
826 	int			queries;
827 	int			pings;
828 };
829 
830 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
831 
832 #define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
833 #define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
834 #define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
835 
836 /* uv_cpu_nmi_states */
837 #define	UV_NMI_STATE_OUT		0
838 #define	UV_NMI_STATE_IN			1
839 #define	UV_NMI_STATE_DUMP		2
840 #define	UV_NMI_STATE_DUMP_DONE		3
841 
842 /* Update SCIR state */
843 static inline void uv_set_scir_bits(unsigned char value)
844 {
845 	if (uv_scir_info->state != value) {
846 		uv_scir_info->state = value;
847 		uv_write_local_mmr8(uv_scir_info->offset, value);
848 	}
849 }
850 
851 static inline unsigned long uv_scir_offset(int apicid)
852 {
853 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
854 }
855 
856 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
857 {
858 	if (uv_cpu_scir_info(cpu)->state != value) {
859 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
860 				uv_cpu_scir_info(cpu)->offset, value);
861 		uv_cpu_scir_info(cpu)->state = value;
862 	}
863 }
864 
865 extern unsigned int uv_apicid_hibits;
866 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
867 {
868 	apicid |= uv_apicid_hibits;
869 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
870 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
871 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
872 			(vector << UVH_IPI_INT_VECTOR_SHFT);
873 }
874 
875 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
876 {
877 	unsigned long val;
878 	unsigned long dmode = dest_Fixed;
879 
880 	if (vector == NMI_VECTOR)
881 		dmode = dest_NMI;
882 
883 	val = uv_hub_ipi_value(apicid, vector, dmode);
884 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
885 }
886 
887 /*
888  * Get the minimum revision number of the hub chips within the partition.
889  * (See UVx_HUB_REVISION_BASE above for specific values.)
890  */
891 static inline int uv_get_min_hub_revision_id(void)
892 {
893 	return uv_hub_info->hub_revision;
894 }
895 
896 #endif /* CONFIG_X86_64 */
897 #endif /* _ASM_X86_UV_UV_HUB_H */
898