xref: /openbmc/linux/arch/x86/include/asm/uv/uv_hub.h (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv.h>
23 #include <asm/uv/uv_mmrs.h>
24 #include <asm/uv/bios.h>
25 #include <asm/irq_vectors.h>
26 #include <asm/io_apic.h>
27 
28 
29 /*
30  * Addressing Terminology
31  *
32  *	M       - The low M bits of a physical address represent the offset
33  *		  into the blade local memory. RAM memory on a blade is physically
34  *		  contiguous (although various IO spaces may punch holes in
35  *		  it)..
36  *
37  *	N	- Number of bits in the node portion of a socket physical
38  *		  address.
39  *
40  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
41  *		  routers always have low bit of 1, C/MBricks have low bit
42  *		  equal to 0. Most addressing macros that target UV hub chips
43  *		  right shift the NASID by 1 to exclude the always-zero bit.
44  *		  NASIDs contain up to 15 bits.
45  *
46  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
47  *		  of nasids.
48  *
49  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
50  *		  of the nasid for socket usage.
51  *
52  *	GPA	- (global physical address) a socket physical address converted
53  *		  so that it can be used by the GRU as a global address. Socket
54  *		  physical addresses 1) need additional NASID (node) bits added
55  *		  to the high end of the address, and 2) unaliased if the
56  *		  partition does not have a physical address 0. In addition, on
57  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
58  *
59  *
60  *  NumaLink Global Physical Address Format:
61  *  +--------------------------------+---------------------+
62  *  |00..000|      GNODE             |      NodeOffset     |
63  *  +--------------------------------+---------------------+
64  *          |<-------53 - M bits --->|<--------M bits ----->
65  *
66  *	M - number of node offset bits (35 .. 40)
67  *
68  *
69  *  Memory/UV-HUB Processor Socket Address Format:
70  *  +----------------+---------------+---------------------+
71  *  |00..000000000000|   PNODE       |      NodeOffset     |
72  *  +----------------+---------------+---------------------+
73  *                   <--- N bits --->|<--------M bits ----->
74  *
75  *	M - number of node offset bits (35 .. 40)
76  *	N - number of PNODE bits (0 .. 10)
77  *
78  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
79  *		The actual values are configuration dependent and are set at
80  *		boot time. M & N values are set by the hardware/BIOS at boot.
81  *
82  *
83  * APICID format
84  *	NOTE!!!!!! This is the current format of the APICID. However, code
85  *	should assume that this will change in the future. Use functions
86  *	in this file for all APICID bit manipulations and conversion.
87  *
88  *		1111110000000000
89  *		5432109876543210
90  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
91  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
92  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
93  *		sssssssssss
94  *
95  *			p  = pnode bits
96  *			l =  socket number on board
97  *			c  = core
98  *			h  = hyperthread
99  *			s  = bits that are in the SOCKET_ID CSR
100  *
101  *	Note: Processor may support fewer bits in the APICID register. The ACPI
102  *	      tables hold all 16 bits. Software needs to be aware of this.
103  *
104  *	      Unless otherwise specified, all references to APICID refer to
105  *	      the FULL value contained in ACPI tables, not the subset in the
106  *	      processor APICID register.
107  */
108 
109 /*
110  * Maximum number of bricks in all partitions and in all coherency domains.
111  * This is the total number of bricks accessible in the numalink fabric. It
112  * includes all C & M bricks. Routers are NOT included.
113  *
114  * This value is also the value of the maximum number of non-router NASIDs
115  * in the numalink fabric.
116  *
117  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
118  */
119 #define UV_MAX_NUMALINK_BLADES	16384
120 
121 /*
122  * Maximum number of C/Mbricks within a software SSI (hardware may support
123  * more).
124  */
125 #define UV_MAX_SSI_BLADES	256
126 
127 /*
128  * The largest possible NASID of a C or M brick (+ 2)
129  */
130 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
131 
132 /* System Controller Interface Reg info */
133 struct uv_scir_s {
134 	struct timer_list timer;
135 	unsigned long	offset;
136 	unsigned long	last;
137 	unsigned long	idle_on;
138 	unsigned long	idle_off;
139 	unsigned char	state;
140 	unsigned char	enabled;
141 };
142 
143 /* GAM (globally addressed memory) range table */
144 struct uv_gam_range_s {
145 	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
146 	u16	nasid;		/* node's global physical address */
147 	s8	base;		/* entry index of node's base addr */
148 	u8	reserved;
149 };
150 
151 /*
152  * The following defines attributes of the HUB chip. These attributes are
153  * frequently referenced and are kept in a common per hub struct.
154  * After setup, the struct is read only, so it should be readily
155  * available in the L3 cache on the cpu socket for the node.
156  */
157 struct uv_hub_info_s {
158 	unsigned long		global_mmr_base;
159 	unsigned long		global_mmr_shift;
160 	unsigned long		gpa_mask;
161 	unsigned short		*socket_to_node;
162 	unsigned short		*socket_to_pnode;
163 	unsigned short		*pnode_to_socket;
164 	struct uv_gam_range_s	*gr_table;
165 	unsigned short		min_socket;
166 	unsigned short		min_pnode;
167 	unsigned char		m_val;
168 	unsigned char		n_val;
169 	unsigned char		gr_table_len;
170 	unsigned char		hub_revision;
171 	unsigned char		apic_pnode_shift;
172 	unsigned char		gpa_shift;
173 	unsigned char		m_shift;
174 	unsigned char		n_lshift;
175 	unsigned int		gnode_extra;
176 	unsigned long		gnode_upper;
177 	unsigned long		lowmem_remap_top;
178 	unsigned long		lowmem_remap_base;
179 	unsigned long		global_gru_base;
180 	unsigned long		global_gru_shift;
181 	unsigned short		pnode;
182 	unsigned short		pnode_mask;
183 	unsigned short		coherency_domain_number;
184 	unsigned short		numa_blade_id;
185 	unsigned short		nr_possible_cpus;
186 	unsigned short		nr_online_cpus;
187 	short			memory_nid;
188 };
189 
190 /* CPU specific info with a pointer to the hub common info struct */
191 struct uv_cpu_info_s {
192 	void			*p_uv_hub_info;
193 	unsigned char		blade_cpu_id;
194 	struct uv_scir_s	scir;
195 };
196 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
197 
198 #define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
199 #define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
200 
201 #define	uv_scir_info		(&uv_cpu_info->scir)
202 #define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)
203 
204 /* Node specific hub common info struct */
205 extern void **__uv_hub_info_list;
206 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
207 {
208 	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
209 }
210 
211 static inline struct uv_hub_info_s *_uv_hub_info(void)
212 {
213 	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
214 }
215 #define	uv_hub_info	_uv_hub_info()
216 
217 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
218 {
219 	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
220 }
221 
222 /*
223  * HUB revision ranges for each UV HUB architecture.
224  * This is a software convention - NOT the hardware revision numbers in
225  * the hub chip.
226  */
227 #define UV1_HUB_REVISION_BASE		1
228 #define UV2_HUB_REVISION_BASE		3
229 #define UV3_HUB_REVISION_BASE		5
230 #define UV4_HUB_REVISION_BASE		7
231 #define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
232 
233 static inline int is_uv1_hub(void)
234 {
235 	return is_uv_hubbed(uv(1));
236 }
237 
238 static inline int is_uv2_hub(void)
239 {
240 	return is_uv_hubbed(uv(2));
241 }
242 
243 static inline int is_uv3_hub(void)
244 {
245 	return is_uv_hubbed(uv(3));
246 }
247 
248 /* First test "is UV4A", then "is UV4" */
249 static inline int is_uv4a_hub(void)
250 {
251 	if (is_uv_hubbed(uv(4)))
252 		return (uv_hub_info->hub_revision == UV4A_HUB_REVISION_BASE);
253 	return 0;
254 }
255 
256 static inline int is_uv4_hub(void)
257 {
258 	return is_uv_hubbed(uv(4));
259 }
260 
261 static inline int is_uvx_hub(void)
262 {
263 	return (is_uv_hubbed(-2) >= uv(2));
264 }
265 
266 static inline int is_uv_hub(void)
267 {
268 	return is_uv1_hub() || is_uvx_hub();
269 }
270 
271 union uvh_apicid {
272     unsigned long       v;
273     struct uvh_apicid_s {
274         unsigned long   local_apic_mask  : 24;
275         unsigned long   local_apic_shift :  5;
276         unsigned long   unused1          :  3;
277         unsigned long   pnode_mask       : 24;
278         unsigned long   pnode_shift      :  5;
279         unsigned long   unused2          :  3;
280     } s;
281 };
282 
283 /*
284  * Local & Global MMR space macros.
285  *	Note: macros are intended to be used ONLY by inline functions
286  *	in this file - not by other kernel code.
287  *		n -  NASID (full 15-bit global nasid)
288  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
289  *		p -  PNODE (local part of nsids, right shifted 1)
290  */
291 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
292 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
293 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
294 
295 #define UV1_LOCAL_MMR_BASE		0xf4000000UL
296 #define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
297 #define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
298 #define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
299 
300 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
301 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
302 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
303 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
304 
305 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
306 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
307 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
308 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
309 
310 #define UV4_LOCAL_MMR_BASE		0xfa000000UL
311 #define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
312 #define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
313 #define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)
314 
315 #define UV_LOCAL_MMR_BASE		(				\
316 					is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
317 					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
318 					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
319 					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
320 
321 #define UV_GLOBAL_MMR32_BASE		(				\
322 					is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
323 					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
324 					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
325 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
326 
327 #define UV_LOCAL_MMR_SIZE		(				\
328 					is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
329 					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
330 					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
331 					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
332 
333 #define UV_GLOBAL_MMR32_SIZE		(				\
334 					is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
335 					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
336 					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
337 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
338 
339 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
340 
341 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
342 
343 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
344 #define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
345 #define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
346 
347 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
348 
349 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
350 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
351 
352 #define UVH_APICID		0x002D0E00L
353 #define UV_APIC_PNODE_SHIFT	6
354 
355 #define UV_APICID_HIBIT_MASK	0xffff0000
356 
357 /* Local Bus from cpu's perspective */
358 #define LOCAL_BUS_BASE		0x1c00000
359 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
360 
361 /*
362  * System Controller Interface Reg
363  *
364  * Note there are NO leds on a UV system.  This register is only
365  * used by the system controller to monitor system-wide operation.
366  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
367  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
368  * a node.
369  *
370  * The window is located at top of ACPI MMR space
371  */
372 #define SCIR_WINDOW_COUNT	64
373 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
374 				 LOCAL_BUS_SIZE - \
375 				 SCIR_WINDOW_COUNT)
376 
377 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
378 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
379 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
380 
381 /* Loop through all installed blades */
382 #define for_each_possible_blade(bid)		\
383 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
384 
385 /*
386  * Macros for converting between kernel virtual addresses, socket local physical
387  * addresses, and UV global physical addresses.
388  *	Note: use the standard __pa() & __va() macros for converting
389  *	      between socket virtual and socket physical addresses.
390  */
391 
392 /* global bits offset - number of local address bits in gpa for this UV arch */
393 static inline unsigned int uv_gpa_shift(void)
394 {
395 	return uv_hub_info->gpa_shift;
396 }
397 #define	_uv_gpa_shift
398 
399 /* Find node that has the address range that contains global address  */
400 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
401 {
402 	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
403 	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
404 	int i, num = uv_hub_info->gr_table_len;
405 
406 	if (gr) {
407 		for (i = 0; i < num; i++, gr++) {
408 			if (pal < gr->limit)
409 				return gr;
410 		}
411 	}
412 	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
413 	BUG();
414 }
415 
416 /* Return base address of node that contains global address  */
417 static inline unsigned long uv_gam_range_base(unsigned long pa)
418 {
419 	struct uv_gam_range_s *gr = uv_gam_range(pa);
420 	int base = gr->base;
421 
422 	if (base < 0)
423 		return 0UL;
424 
425 	return uv_hub_info->gr_table[base].limit;
426 }
427 
428 /* socket phys RAM --> UV global NASID (UV4+) */
429 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
430 {
431 	return uv_gam_range(paddr)->nasid;
432 }
433 #define	_uv_soc_phys_ram_to_nasid
434 
435 /* socket virtual --> UV global NASID (UV4+) */
436 static inline unsigned long uv_gpa_nasid(void *v)
437 {
438 	return uv_soc_phys_ram_to_nasid(__pa(v));
439 }
440 
441 /* socket phys RAM --> UV global physical address */
442 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
443 {
444 	unsigned int m_val = uv_hub_info->m_val;
445 
446 	if (paddr < uv_hub_info->lowmem_remap_top)
447 		paddr |= uv_hub_info->lowmem_remap_base;
448 
449 	if (m_val) {
450 		paddr |= uv_hub_info->gnode_upper;
451 		paddr = ((paddr << uv_hub_info->m_shift)
452 						>> uv_hub_info->m_shift) |
453 			((paddr >> uv_hub_info->m_val)
454 						<< uv_hub_info->n_lshift);
455 	} else {
456 		paddr |= uv_soc_phys_ram_to_nasid(paddr)
457 						<< uv_hub_info->gpa_shift;
458 	}
459 	return paddr;
460 }
461 
462 /* socket virtual --> UV global physical address */
463 static inline unsigned long uv_gpa(void *v)
464 {
465 	return uv_soc_phys_ram_to_gpa(__pa(v));
466 }
467 
468 /* Top two bits indicate the requested address is in MMR space.  */
469 static inline int
470 uv_gpa_in_mmr_space(unsigned long gpa)
471 {
472 	return (gpa >> 62) == 0x3UL;
473 }
474 
475 /* UV global physical address --> socket phys RAM */
476 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
477 {
478 	unsigned long paddr;
479 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
480 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
481 	unsigned int m_val = uv_hub_info->m_val;
482 
483 	if (m_val)
484 		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
485 			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
486 
487 	paddr = gpa & uv_hub_info->gpa_mask;
488 	if (paddr >= remap_base && paddr < remap_base + remap_top)
489 		paddr -= remap_base;
490 	return paddr;
491 }
492 
493 /* gpa -> gnode */
494 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
495 {
496 	unsigned int n_lshift = uv_hub_info->n_lshift;
497 
498 	if (n_lshift)
499 		return gpa >> n_lshift;
500 
501 	return uv_gam_range(gpa)->nasid >> 1;
502 }
503 
504 /* gpa -> pnode */
505 static inline int uv_gpa_to_pnode(unsigned long gpa)
506 {
507 	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
508 }
509 
510 /* gpa -> node offset */
511 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
512 {
513 	unsigned int m_shift = uv_hub_info->m_shift;
514 
515 	if (m_shift)
516 		return (gpa << m_shift) >> m_shift;
517 
518 	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
519 }
520 
521 /* Convert socket to node */
522 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
523 {
524 	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
525 }
526 
527 static inline int uv_socket_to_node(int socket)
528 {
529 	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
530 }
531 
532 /* pnode, offset --> socket virtual */
533 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
534 {
535 	unsigned int m_val = uv_hub_info->m_val;
536 	unsigned long base;
537 	unsigned short sockid, node, *p2s;
538 
539 	if (m_val)
540 		return __va(((unsigned long)pnode << m_val) | offset);
541 
542 	p2s = uv_hub_info->pnode_to_socket;
543 	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
544 	node = uv_socket_to_node(sockid);
545 
546 	/* limit address of previous socket is our base, except node 0 is 0 */
547 	if (!node)
548 		return __va((unsigned long)offset);
549 
550 	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
551 	return __va(base << UV_GAM_RANGE_SHFT | offset);
552 }
553 
554 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
555 static inline int uv_apicid_to_pnode(int apicid)
556 {
557 	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
558 	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
559 
560 	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
561 }
562 
563 /* Convert an apicid to the socket number on the blade */
564 static inline int uv_apicid_to_socket(int apicid)
565 {
566 	if (is_uv1_hub())
567 		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
568 	else
569 		return 0;
570 }
571 
572 /*
573  * Access global MMRs using the low memory MMR32 space. This region supports
574  * faster MMR access but not all MMRs are accessible in this space.
575  */
576 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
577 {
578 	return __va(UV_GLOBAL_MMR32_BASE |
579 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
580 }
581 
582 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
583 {
584 	writeq(val, uv_global_mmr32_address(pnode, offset));
585 }
586 
587 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
588 {
589 	return readq(uv_global_mmr32_address(pnode, offset));
590 }
591 
592 /*
593  * Access Global MMR space using the MMR space located at the top of physical
594  * memory.
595  */
596 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
597 {
598 	return __va(UV_GLOBAL_MMR64_BASE |
599 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
600 }
601 
602 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
603 {
604 	writeq(val, uv_global_mmr64_address(pnode, offset));
605 }
606 
607 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
608 {
609 	return readq(uv_global_mmr64_address(pnode, offset));
610 }
611 
612 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
613 {
614 	writeb(val, uv_global_mmr64_address(pnode, offset));
615 }
616 
617 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
618 {
619 	return readb(uv_global_mmr64_address(pnode, offset));
620 }
621 
622 /*
623  * Access hub local MMRs. Faster than using global space but only local MMRs
624  * are accessible.
625  */
626 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
627 {
628 	return __va(UV_LOCAL_MMR_BASE | offset);
629 }
630 
631 static inline unsigned long uv_read_local_mmr(unsigned long offset)
632 {
633 	return readq(uv_local_mmr_address(offset));
634 }
635 
636 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
637 {
638 	writeq(val, uv_local_mmr_address(offset));
639 }
640 
641 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
642 {
643 	return readb(uv_local_mmr_address(offset));
644 }
645 
646 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
647 {
648 	writeb(val, uv_local_mmr_address(offset));
649 }
650 
651 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
652 static inline int uv_blade_processor_id(void)
653 {
654 	return uv_cpu_info->blade_cpu_id;
655 }
656 
657 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
658 static inline int uv_cpu_blade_processor_id(int cpu)
659 {
660 	return uv_cpu_info_per(cpu)->blade_cpu_id;
661 }
662 
663 /* Blade number to Node number (UV1..UV4 is 1:1) */
664 static inline int uv_blade_to_node(int blade)
665 {
666 	return blade;
667 }
668 
669 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
670 static inline int uv_numa_blade_id(void)
671 {
672 	return uv_hub_info->numa_blade_id;
673 }
674 
675 /*
676  * Convert linux node number to the UV blade number.
677  * .. Currently for UV1 thru UV4 the node and the blade are identical.
678  * .. If this changes then you MUST check references to this function!
679  */
680 static inline int uv_node_to_blade_id(int nid)
681 {
682 	return nid;
683 }
684 
685 /* Convert a cpu number to the the UV blade number */
686 static inline int uv_cpu_to_blade_id(int cpu)
687 {
688 	return uv_node_to_blade_id(cpu_to_node(cpu));
689 }
690 
691 /* Convert a blade id to the PNODE of the blade */
692 static inline int uv_blade_to_pnode(int bid)
693 {
694 	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
695 }
696 
697 /* Nid of memory node on blade. -1 if no blade-local memory */
698 static inline int uv_blade_to_memory_nid(int bid)
699 {
700 	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
701 }
702 
703 /* Determine the number of possible cpus on a blade */
704 static inline int uv_blade_nr_possible_cpus(int bid)
705 {
706 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
707 }
708 
709 /* Determine the number of online cpus on a blade */
710 static inline int uv_blade_nr_online_cpus(int bid)
711 {
712 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
713 }
714 
715 /* Convert a cpu id to the PNODE of the blade containing the cpu */
716 static inline int uv_cpu_to_pnode(int cpu)
717 {
718 	return uv_cpu_hub_info(cpu)->pnode;
719 }
720 
721 /* Convert a linux node number to the PNODE of the blade */
722 static inline int uv_node_to_pnode(int nid)
723 {
724 	return uv_hub_info_list(nid)->pnode;
725 }
726 
727 /* Maximum possible number of blades */
728 extern short uv_possible_blades;
729 static inline int uv_num_possible_blades(void)
730 {
731 	return uv_possible_blades;
732 }
733 
734 /* Per Hub NMI support */
735 extern void uv_nmi_setup(void);
736 extern void uv_nmi_setup_hubless(void);
737 
738 /* BIOS/Kernel flags exchange MMR */
739 #define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
740 #define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
741 #define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
742 
743 /* TSC sync valid, set by BIOS */
744 #define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
745 #define UVH_TSC_SYNC_SHIFT	10
746 #define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
747 #define UVH_TSC_SYNC_MASK	3	/* 0011 */
748 #define UVH_TSC_SYNC_VALID	3	/* 0011 */
749 #define UVH_TSC_SYNC_INVALID	2	/* 0010 */
750 
751 /* BMC sets a bit this MMR non-zero before sending an NMI */
752 #define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
753 #define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
754 #define UVH_NMI_MMR_SHIFT	63
755 #define UVH_NMI_MMR_TYPE	"SCRATCH5"
756 
757 /* Newer SMM NMI handler, not present in all systems */
758 #define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
759 #define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
760 #define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
761 #define UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
762 
763 /* Non-zero indicates newer SMM NMI handler present */
764 #define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST
765 
766 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
767 #define UVH_NMI_MMRX_REQ	UVH_BIOS_KERNEL_MMR_ALIAS_2
768 #define UVH_NMI_MMRX_REQ_SHIFT	62
769 
770 struct uv_hub_nmi_s {
771 	raw_spinlock_t	nmi_lock;
772 	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
773 	atomic_t	cpu_owner;	/* last locker of this struct */
774 	atomic_t	read_mmr_count;	/* count of MMR reads */
775 	atomic_t	nmi_count;	/* count of true UV NMIs */
776 	unsigned long	nmi_value;	/* last value read from NMI MMR */
777 	bool		hub_present;	/* false means UV hubless system */
778 	bool		pch_owner;	/* indicates this hub owns PCH */
779 };
780 
781 struct uv_cpu_nmi_s {
782 	struct uv_hub_nmi_s	*hub;
783 	int			state;
784 	int			pinging;
785 	int			queries;
786 	int			pings;
787 };
788 
789 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
790 
791 #define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
792 #define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
793 #define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
794 
795 /* uv_cpu_nmi_states */
796 #define	UV_NMI_STATE_OUT		0
797 #define	UV_NMI_STATE_IN			1
798 #define	UV_NMI_STATE_DUMP		2
799 #define	UV_NMI_STATE_DUMP_DONE		3
800 
801 /* Update SCIR state */
802 static inline void uv_set_scir_bits(unsigned char value)
803 {
804 	if (uv_scir_info->state != value) {
805 		uv_scir_info->state = value;
806 		uv_write_local_mmr8(uv_scir_info->offset, value);
807 	}
808 }
809 
810 static inline unsigned long uv_scir_offset(int apicid)
811 {
812 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
813 }
814 
815 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
816 {
817 	if (uv_cpu_scir_info(cpu)->state != value) {
818 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
819 				uv_cpu_scir_info(cpu)->offset, value);
820 		uv_cpu_scir_info(cpu)->state = value;
821 	}
822 }
823 
824 extern unsigned int uv_apicid_hibits;
825 
826 /*
827  * Get the minimum revision number of the hub chips within the partition.
828  * (See UVx_HUB_REVISION_BASE above for specific values.)
829  */
830 static inline int uv_get_min_hub_revision_id(void)
831 {
832 	return uv_hub_info->hub_revision;
833 }
834 
835 #endif /* CONFIG_X86_64 */
836 #endif /* _ASM_X86_UV_UV_HUB_H */
837