1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_TLBFLUSH_H 3 #define _ASM_X86_TLBFLUSH_H 4 5 #include <linux/mm.h> 6 #include <linux/sched.h> 7 8 #include <asm/processor.h> 9 #include <asm/cpufeature.h> 10 #include <asm/special_insns.h> 11 #include <asm/smp.h> 12 #include <asm/invpcid.h> 13 #include <asm/pti.h> 14 #include <asm/processor-flags.h> 15 16 /* 17 * The x86 feature is called PCID (Process Context IDentifier). It is similar 18 * to what is traditionally called ASID on the RISC processors. 19 * 20 * We don't use the traditional ASID implementation, where each process/mm gets 21 * its own ASID and flush/restart when we run out of ASID space. 22 * 23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 24 * that came by on this CPU, allowing cheaper switch_mm between processes on 25 * this CPU. 26 * 27 * We end up with different spaces for different things. To avoid confusion we 28 * use different names for each of them: 29 * 30 * ASID - [0, TLB_NR_DYN_ASIDS-1] 31 * the canonical identifier for an mm 32 * 33 * kPCID - [1, TLB_NR_DYN_ASIDS] 34 * the value we write into the PCID part of CR3; corresponds to the 35 * ASID+1, because PCID 0 is special. 36 * 37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 38 * for KPTI each mm has two address spaces and thus needs two 39 * PCID values, but we can still do with a single ASID denomination 40 * for each mm. Corresponds to kPCID + 2048. 41 * 42 */ 43 44 /* There are 12 bits of space for ASIDS in CR3 */ 45 #define CR3_HW_ASID_BITS 12 46 47 /* 48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 49 * user/kernel switches 50 */ 51 #ifdef CONFIG_PAGE_TABLE_ISOLATION 52 # define PTI_CONSUMED_PCID_BITS 1 53 #else 54 # define PTI_CONSUMED_PCID_BITS 0 55 #endif 56 57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 58 59 /* 60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 61 * for them being zero-based. Another -1 is because PCID 0 is reserved for 62 * use by non-PCID-aware users. 63 */ 64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 65 66 /* 67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache 68 * lines. 69 */ 70 #define TLB_NR_DYN_ASIDS 6 71 72 /* 73 * Given @asid, compute kPCID 74 */ 75 static inline u16 kern_pcid(u16 asid) 76 { 77 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 78 79 #ifdef CONFIG_PAGE_TABLE_ISOLATION 80 /* 81 * Make sure that the dynamic ASID space does not confict with the 82 * bit we are using to switch between user and kernel ASIDs. 83 */ 84 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 85 86 /* 87 * The ASID being passed in here should have respected the 88 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 89 */ 90 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 91 #endif 92 /* 93 * The dynamically-assigned ASIDs that get passed in are small 94 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 95 * so do not bother to clear it. 96 * 97 * If PCID is on, ASID-aware code paths put the ASID+1 into the 98 * PCID bits. This serves two purposes. It prevents a nasty 99 * situation in which PCID-unaware code saves CR3, loads some other 100 * value (with PCID == 0), and then restores CR3, thus corrupting 101 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 102 * that any bugs involving loading a PCID-enabled CR3 with 103 * CR4.PCIDE off will trigger deterministically. 104 */ 105 return asid + 1; 106 } 107 108 /* 109 * Given @asid, compute uPCID 110 */ 111 static inline u16 user_pcid(u16 asid) 112 { 113 u16 ret = kern_pcid(asid); 114 #ifdef CONFIG_PAGE_TABLE_ISOLATION 115 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 116 #endif 117 return ret; 118 } 119 120 struct pgd_t; 121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 122 { 123 if (static_cpu_has(X86_FEATURE_PCID)) { 124 return __sme_pa(pgd) | kern_pcid(asid); 125 } else { 126 VM_WARN_ON_ONCE(asid != 0); 127 return __sme_pa(pgd); 128 } 129 } 130 131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 132 { 133 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 134 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID)); 135 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 136 } 137 138 #ifdef CONFIG_PARAVIRT 139 #include <asm/paravirt.h> 140 #else 141 #define __flush_tlb() __native_flush_tlb() 142 #define __flush_tlb_global() __native_flush_tlb_global() 143 #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr) 144 #endif 145 146 static inline bool tlb_defer_switch_to_init_mm(void) 147 { 148 /* 149 * If we have PCID, then switching to init_mm is reasonably 150 * fast. If we don't have PCID, then switching to init_mm is 151 * quite slow, so we try to defer it in the hopes that we can 152 * avoid it entirely. The latter approach runs the risk of 153 * receiving otherwise unnecessary IPIs. 154 * 155 * This choice is just a heuristic. The tlb code can handle this 156 * function returning true or false regardless of whether we have 157 * PCID. 158 */ 159 return !static_cpu_has(X86_FEATURE_PCID); 160 } 161 162 struct tlb_context { 163 u64 ctx_id; 164 u64 tlb_gen; 165 }; 166 167 struct tlb_state { 168 /* 169 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts 170 * are on. This means that it may not match current->active_mm, 171 * which will contain the previous user mm when we're in lazy TLB 172 * mode even if we've already switched back to swapper_pg_dir. 173 */ 174 struct mm_struct *loaded_mm; 175 u16 loaded_mm_asid; 176 u16 next_asid; 177 /* last user mm's ctx id */ 178 u64 last_ctx_id; 179 180 /* 181 * We can be in one of several states: 182 * 183 * - Actively using an mm. Our CPU's bit will be set in 184 * mm_cpumask(loaded_mm) and is_lazy == false; 185 * 186 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit 187 * will not be set in mm_cpumask(&init_mm) and is_lazy == false. 188 * 189 * - Lazily using a real mm. loaded_mm != &init_mm, our bit 190 * is set in mm_cpumask(loaded_mm), but is_lazy == true. 191 * We're heuristically guessing that the CR3 load we 192 * skipped more than makes up for the overhead added by 193 * lazy mode. 194 */ 195 bool is_lazy; 196 197 /* 198 * If set we changed the page tables in such a way that we 199 * needed an invalidation of all contexts (aka. PCIDs / ASIDs). 200 * This tells us to go invalidate all the non-loaded ctxs[] 201 * on the next context switch. 202 * 203 * The current ctx was kept up-to-date as it ran and does not 204 * need to be invalidated. 205 */ 206 bool invalidate_other; 207 208 /* 209 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate 210 * the corresponding user PCID needs a flush next time we 211 * switch to it; see SWITCH_TO_USER_CR3. 212 */ 213 unsigned short user_pcid_flush_mask; 214 215 /* 216 * Access to this CR4 shadow and to H/W CR4 is protected by 217 * disabling interrupts when modifying either one. 218 */ 219 unsigned long cr4; 220 221 /* 222 * This is a list of all contexts that might exist in the TLB. 223 * There is one per ASID that we use, and the ASID (what the 224 * CPU calls PCID) is the index into ctxts. 225 * 226 * For each context, ctx_id indicates which mm the TLB's user 227 * entries came from. As an invariant, the TLB will never 228 * contain entries that are out-of-date as when that mm reached 229 * the tlb_gen in the list. 230 * 231 * To be clear, this means that it's legal for the TLB code to 232 * flush the TLB without updating tlb_gen. This can happen 233 * (for now, at least) due to paravirt remote flushes. 234 * 235 * NB: context 0 is a bit special, since it's also used by 236 * various bits of init code. This is fine -- code that 237 * isn't aware of PCID will end up harmlessly flushing 238 * context 0. 239 */ 240 struct tlb_context ctxs[TLB_NR_DYN_ASIDS]; 241 }; 242 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); 243 244 /* Initialize cr4 shadow for this CPU. */ 245 static inline void cr4_init_shadow(void) 246 { 247 this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); 248 } 249 250 static inline void __cr4_set(unsigned long cr4) 251 { 252 lockdep_assert_irqs_disabled(); 253 this_cpu_write(cpu_tlbstate.cr4, cr4); 254 __write_cr4(cr4); 255 } 256 257 /* Set in this cpu's CR4. */ 258 static inline void cr4_set_bits(unsigned long mask) 259 { 260 unsigned long cr4, flags; 261 262 local_irq_save(flags); 263 cr4 = this_cpu_read(cpu_tlbstate.cr4); 264 if ((cr4 | mask) != cr4) 265 __cr4_set(cr4 | mask); 266 local_irq_restore(flags); 267 } 268 269 /* Clear in this cpu's CR4. */ 270 static inline void cr4_clear_bits(unsigned long mask) 271 { 272 unsigned long cr4, flags; 273 274 local_irq_save(flags); 275 cr4 = this_cpu_read(cpu_tlbstate.cr4); 276 if ((cr4 & ~mask) != cr4) 277 __cr4_set(cr4 & ~mask); 278 local_irq_restore(flags); 279 } 280 281 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 282 { 283 unsigned long cr4; 284 285 cr4 = this_cpu_read(cpu_tlbstate.cr4); 286 __cr4_set(cr4 ^ mask); 287 } 288 289 /* Read the CR4 shadow. */ 290 static inline unsigned long cr4_read_shadow(void) 291 { 292 return this_cpu_read(cpu_tlbstate.cr4); 293 } 294 295 /* 296 * Mark all other ASIDs as invalid, preserves the current. 297 */ 298 static inline void invalidate_other_asid(void) 299 { 300 this_cpu_write(cpu_tlbstate.invalidate_other, true); 301 } 302 303 /* 304 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 305 * enable and PPro Global page enable), so that any CPU's that boot 306 * up after us can get the correct flags. This should only be used 307 * during boot on the boot cpu. 308 */ 309 extern unsigned long mmu_cr4_features; 310 extern u32 *trampoline_cr4_features; 311 312 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 313 { 314 mmu_cr4_features |= mask; 315 if (trampoline_cr4_features) 316 *trampoline_cr4_features = mmu_cr4_features; 317 cr4_set_bits(mask); 318 } 319 320 extern void initialize_tlbstate_and_flush(void); 321 322 /* 323 * Given an ASID, flush the corresponding user ASID. We can delay this 324 * until the next time we switch to it. 325 * 326 * See SWITCH_TO_USER_CR3. 327 */ 328 static inline void invalidate_user_asid(u16 asid) 329 { 330 /* There is no user ASID if address space separation is off */ 331 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 332 return; 333 334 /* 335 * We only have a single ASID if PCID is off and the CR3 336 * write will have flushed it. 337 */ 338 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 339 return; 340 341 if (!static_cpu_has(X86_FEATURE_PTI)) 342 return; 343 344 __set_bit(kern_pcid(asid), 345 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 346 } 347 348 /* 349 * flush the entire current user mapping 350 */ 351 static inline void __native_flush_tlb(void) 352 { 353 /* 354 * Preemption or interrupts must be disabled to protect the access 355 * to the per CPU variable and to prevent being preempted between 356 * read_cr3() and write_cr3(). 357 */ 358 WARN_ON_ONCE(preemptible()); 359 360 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 361 362 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 363 native_write_cr3(__native_read_cr3()); 364 } 365 366 /* 367 * flush everything 368 */ 369 static inline void __native_flush_tlb_global(void) 370 { 371 unsigned long cr4, flags; 372 373 if (static_cpu_has(X86_FEATURE_INVPCID)) { 374 /* 375 * Using INVPCID is considerably faster than a pair of writes 376 * to CR4 sandwiched inside an IRQ flag save/restore. 377 * 378 * Note, this works with CR4.PCIDE=0 or 1. 379 */ 380 invpcid_flush_all(); 381 return; 382 } 383 384 /* 385 * Read-modify-write to CR4 - protect it from preemption and 386 * from interrupts. (Use the raw variant because this code can 387 * be called from deep inside debugging code.) 388 */ 389 raw_local_irq_save(flags); 390 391 cr4 = this_cpu_read(cpu_tlbstate.cr4); 392 /* toggle PGE */ 393 native_write_cr4(cr4 ^ X86_CR4_PGE); 394 /* write old PGE again and flush TLBs */ 395 native_write_cr4(cr4); 396 397 raw_local_irq_restore(flags); 398 } 399 400 /* 401 * flush one page in the user mapping 402 */ 403 static inline void __native_flush_tlb_one_user(unsigned long addr) 404 { 405 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 406 407 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 408 409 if (!static_cpu_has(X86_FEATURE_PTI)) 410 return; 411 412 /* 413 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 414 * Just use invalidate_user_asid() in case we are called early. 415 */ 416 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 417 invalidate_user_asid(loaded_mm_asid); 418 else 419 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 420 } 421 422 /* 423 * flush everything 424 */ 425 static inline void __flush_tlb_all(void) 426 { 427 if (boot_cpu_has(X86_FEATURE_PGE)) { 428 __flush_tlb_global(); 429 } else { 430 /* 431 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 432 */ 433 __flush_tlb(); 434 } 435 } 436 437 /* 438 * flush one page in the kernel mapping 439 */ 440 static inline void __flush_tlb_one_kernel(unsigned long addr) 441 { 442 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 443 444 /* 445 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 446 * paravirt equivalent. Even with PCID, this is sufficient: we only 447 * use PCID if we also use global PTEs for the kernel mapping, and 448 * INVLPG flushes global translations across all address spaces. 449 * 450 * If PTI is on, then the kernel is mapped with non-global PTEs, and 451 * __flush_tlb_one_user() will flush the given address for the current 452 * kernel address space and for its usermode counterpart, but it does 453 * not flush it for other address spaces. 454 */ 455 __flush_tlb_one_user(addr); 456 457 if (!static_cpu_has(X86_FEATURE_PTI)) 458 return; 459 460 /* 461 * See above. We need to propagate the flush to all other address 462 * spaces. In principle, we only need to propagate it to kernelmode 463 * address spaces, but the extra bookkeeping we would need is not 464 * worth it. 465 */ 466 invalidate_other_asid(); 467 } 468 469 #define TLB_FLUSH_ALL -1UL 470 471 /* 472 * TLB flushing: 473 * 474 * - flush_tlb_all() flushes all processes TLBs 475 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 476 * - flush_tlb_page(vma, vmaddr) flushes one page 477 * - flush_tlb_range(vma, start, end) flushes a range of pages 478 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages 479 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus 480 * 481 * ..but the i386 has somewhat limited tlb flushing capabilities, 482 * and page-granular flushes are available only on i486 and up. 483 */ 484 struct flush_tlb_info { 485 /* 486 * We support several kinds of flushes. 487 * 488 * - Fully flush a single mm. .mm will be set, .end will be 489 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to 490 * which the IPI sender is trying to catch us up. 491 * 492 * - Partially flush a single mm. .mm will be set, .start and 493 * .end will indicate the range, and .new_tlb_gen will be set 494 * such that the changes between generation .new_tlb_gen-1 and 495 * .new_tlb_gen are entirely contained in the indicated range. 496 * 497 * - Fully flush all mms whose tlb_gens have been updated. .mm 498 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen 499 * will be zero. 500 */ 501 struct mm_struct *mm; 502 unsigned long start; 503 unsigned long end; 504 u64 new_tlb_gen; 505 }; 506 507 #define local_flush_tlb() __flush_tlb() 508 509 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL) 510 511 #define flush_tlb_range(vma, start, end) \ 512 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags) 513 514 extern void flush_tlb_all(void); 515 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 516 unsigned long end, unsigned long vmflag); 517 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); 518 519 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a) 520 { 521 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE); 522 } 523 524 void native_flush_tlb_others(const struct cpumask *cpumask, 525 const struct flush_tlb_info *info); 526 527 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm) 528 { 529 /* 530 * Bump the generation count. This also serves as a full barrier 531 * that synchronizes with switch_mm(): callers are required to order 532 * their read of mm_cpumask after their writes to the paging 533 * structures. 534 */ 535 return atomic64_inc_return(&mm->context.tlb_gen); 536 } 537 538 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch, 539 struct mm_struct *mm) 540 { 541 inc_mm_tlb_gen(mm); 542 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm)); 543 } 544 545 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); 546 547 #ifndef CONFIG_PARAVIRT 548 #define flush_tlb_others(mask, info) \ 549 native_flush_tlb_others(mask, info) 550 #endif 551 552 #endif /* _ASM_X86_TLBFLUSH_H */ 553