xref: /openbmc/linux/arch/x86/include/asm/tlbflush.h (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4 
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7 
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12 #include <asm/invpcid.h>
13 #include <asm/pti.h>
14 #include <asm/processor-flags.h>
15 
16 /*
17  * The x86 feature is called PCID (Process Context IDentifier). It is similar
18  * to what is traditionally called ASID on the RISC processors.
19  *
20  * We don't use the traditional ASID implementation, where each process/mm gets
21  * its own ASID and flush/restart when we run out of ASID space.
22  *
23  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
24  * that came by on this CPU, allowing cheaper switch_mm between processes on
25  * this CPU.
26  *
27  * We end up with different spaces for different things. To avoid confusion we
28  * use different names for each of them:
29  *
30  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
31  *         the canonical identifier for an mm
32  *
33  * kPCID - [1, TLB_NR_DYN_ASIDS]
34  *         the value we write into the PCID part of CR3; corresponds to the
35  *         ASID+1, because PCID 0 is special.
36  *
37  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
38  *         for KPTI each mm has two address spaces and thus needs two
39  *         PCID values, but we can still do with a single ASID denomination
40  *         for each mm. Corresponds to kPCID + 2048.
41  *
42  */
43 
44 /* There are 12 bits of space for ASIDS in CR3 */
45 #define CR3_HW_ASID_BITS		12
46 
47 /*
48  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
49  * user/kernel switches
50  */
51 #ifdef CONFIG_PAGE_TABLE_ISOLATION
52 # define PTI_CONSUMED_PCID_BITS	1
53 #else
54 # define PTI_CONSUMED_PCID_BITS	0
55 #endif
56 
57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
58 
59 /*
60  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
61  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
62  * use by non-PCID-aware users.
63  */
64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
65 
66 /*
67  * 6 because 6 should be plenty and struct tlb_state will fit in two cache
68  * lines.
69  */
70 #define TLB_NR_DYN_ASIDS	6
71 
72 /*
73  * Given @asid, compute kPCID
74  */
75 static inline u16 kern_pcid(u16 asid)
76 {
77 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
78 
79 #ifdef CONFIG_PAGE_TABLE_ISOLATION
80 	/*
81 	 * Make sure that the dynamic ASID space does not confict with the
82 	 * bit we are using to switch between user and kernel ASIDs.
83 	 */
84 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
85 
86 	/*
87 	 * The ASID being passed in here should have respected the
88 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
89 	 */
90 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
91 #endif
92 	/*
93 	 * The dynamically-assigned ASIDs that get passed in are small
94 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
95 	 * so do not bother to clear it.
96 	 *
97 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
98 	 * PCID bits.  This serves two purposes.  It prevents a nasty
99 	 * situation in which PCID-unaware code saves CR3, loads some other
100 	 * value (with PCID == 0), and then restores CR3, thus corrupting
101 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
102 	 * that any bugs involving loading a PCID-enabled CR3 with
103 	 * CR4.PCIDE off will trigger deterministically.
104 	 */
105 	return asid + 1;
106 }
107 
108 /*
109  * Given @asid, compute uPCID
110  */
111 static inline u16 user_pcid(u16 asid)
112 {
113 	u16 ret = kern_pcid(asid);
114 #ifdef CONFIG_PAGE_TABLE_ISOLATION
115 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
116 #endif
117 	return ret;
118 }
119 
120 struct pgd_t;
121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
122 {
123 	if (static_cpu_has(X86_FEATURE_PCID)) {
124 		return __sme_pa(pgd) | kern_pcid(asid);
125 	} else {
126 		VM_WARN_ON_ONCE(asid != 0);
127 		return __sme_pa(pgd);
128 	}
129 }
130 
131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
132 {
133 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
134 	/*
135 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
136 	 * might be called during early boot. This should work even after
137 	 * boot because all CPU's the have same capabilities:
138 	 */
139 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
140 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
141 }
142 
143 #ifdef CONFIG_PARAVIRT
144 #include <asm/paravirt.h>
145 #else
146 #define __flush_tlb() __native_flush_tlb()
147 #define __flush_tlb_global() __native_flush_tlb_global()
148 #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
149 #endif
150 
151 static inline bool tlb_defer_switch_to_init_mm(void)
152 {
153 	/*
154 	 * If we have PCID, then switching to init_mm is reasonably
155 	 * fast.  If we don't have PCID, then switching to init_mm is
156 	 * quite slow, so we try to defer it in the hopes that we can
157 	 * avoid it entirely.  The latter approach runs the risk of
158 	 * receiving otherwise unnecessary IPIs.
159 	 *
160 	 * This choice is just a heuristic.  The tlb code can handle this
161 	 * function returning true or false regardless of whether we have
162 	 * PCID.
163 	 */
164 	return !static_cpu_has(X86_FEATURE_PCID);
165 }
166 
167 struct tlb_context {
168 	u64 ctx_id;
169 	u64 tlb_gen;
170 };
171 
172 struct tlb_state {
173 	/*
174 	 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
175 	 * are on.  This means that it may not match current->active_mm,
176 	 * which will contain the previous user mm when we're in lazy TLB
177 	 * mode even if we've already switched back to swapper_pg_dir.
178 	 */
179 	struct mm_struct *loaded_mm;
180 	u16 loaded_mm_asid;
181 	u16 next_asid;
182 	/* last user mm's ctx id */
183 	u64 last_ctx_id;
184 
185 	/*
186 	 * We can be in one of several states:
187 	 *
188 	 *  - Actively using an mm.  Our CPU's bit will be set in
189 	 *    mm_cpumask(loaded_mm) and is_lazy == false;
190 	 *
191 	 *  - Not using a real mm.  loaded_mm == &init_mm.  Our CPU's bit
192 	 *    will not be set in mm_cpumask(&init_mm) and is_lazy == false.
193 	 *
194 	 *  - Lazily using a real mm.  loaded_mm != &init_mm, our bit
195 	 *    is set in mm_cpumask(loaded_mm), but is_lazy == true.
196 	 *    We're heuristically guessing that the CR3 load we
197 	 *    skipped more than makes up for the overhead added by
198 	 *    lazy mode.
199 	 */
200 	bool is_lazy;
201 
202 	/*
203 	 * If set we changed the page tables in such a way that we
204 	 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
205 	 * This tells us to go invalidate all the non-loaded ctxs[]
206 	 * on the next context switch.
207 	 *
208 	 * The current ctx was kept up-to-date as it ran and does not
209 	 * need to be invalidated.
210 	 */
211 	bool invalidate_other;
212 
213 	/*
214 	 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
215 	 * the corresponding user PCID needs a flush next time we
216 	 * switch to it; see SWITCH_TO_USER_CR3.
217 	 */
218 	unsigned short user_pcid_flush_mask;
219 
220 	/*
221 	 * Access to this CR4 shadow and to H/W CR4 is protected by
222 	 * disabling interrupts when modifying either one.
223 	 */
224 	unsigned long cr4;
225 
226 	/*
227 	 * This is a list of all contexts that might exist in the TLB.
228 	 * There is one per ASID that we use, and the ASID (what the
229 	 * CPU calls PCID) is the index into ctxts.
230 	 *
231 	 * For each context, ctx_id indicates which mm the TLB's user
232 	 * entries came from.  As an invariant, the TLB will never
233 	 * contain entries that are out-of-date as when that mm reached
234 	 * the tlb_gen in the list.
235 	 *
236 	 * To be clear, this means that it's legal for the TLB code to
237 	 * flush the TLB without updating tlb_gen.  This can happen
238 	 * (for now, at least) due to paravirt remote flushes.
239 	 *
240 	 * NB: context 0 is a bit special, since it's also used by
241 	 * various bits of init code.  This is fine -- code that
242 	 * isn't aware of PCID will end up harmlessly flushing
243 	 * context 0.
244 	 */
245 	struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
246 };
247 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
248 
249 /* Initialize cr4 shadow for this CPU. */
250 static inline void cr4_init_shadow(void)
251 {
252 	this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
253 }
254 
255 static inline void __cr4_set(unsigned long cr4)
256 {
257 	lockdep_assert_irqs_disabled();
258 	this_cpu_write(cpu_tlbstate.cr4, cr4);
259 	__write_cr4(cr4);
260 }
261 
262 /* Set in this cpu's CR4. */
263 static inline void cr4_set_bits(unsigned long mask)
264 {
265 	unsigned long cr4, flags;
266 
267 	local_irq_save(flags);
268 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
269 	if ((cr4 | mask) != cr4)
270 		__cr4_set(cr4 | mask);
271 	local_irq_restore(flags);
272 }
273 
274 /* Clear in this cpu's CR4. */
275 static inline void cr4_clear_bits(unsigned long mask)
276 {
277 	unsigned long cr4, flags;
278 
279 	local_irq_save(flags);
280 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
281 	if ((cr4 & ~mask) != cr4)
282 		__cr4_set(cr4 & ~mask);
283 	local_irq_restore(flags);
284 }
285 
286 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
287 {
288 	unsigned long cr4;
289 
290 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
291 	__cr4_set(cr4 ^ mask);
292 }
293 
294 /* Read the CR4 shadow. */
295 static inline unsigned long cr4_read_shadow(void)
296 {
297 	return this_cpu_read(cpu_tlbstate.cr4);
298 }
299 
300 /*
301  * Mark all other ASIDs as invalid, preserves the current.
302  */
303 static inline void invalidate_other_asid(void)
304 {
305 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
306 }
307 
308 /*
309  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
310  * enable and PPro Global page enable), so that any CPU's that boot
311  * up after us can get the correct flags.  This should only be used
312  * during boot on the boot cpu.
313  */
314 extern unsigned long mmu_cr4_features;
315 extern u32 *trampoline_cr4_features;
316 
317 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
318 {
319 	mmu_cr4_features |= mask;
320 	if (trampoline_cr4_features)
321 		*trampoline_cr4_features = mmu_cr4_features;
322 	cr4_set_bits(mask);
323 }
324 
325 extern void initialize_tlbstate_and_flush(void);
326 
327 /*
328  * Given an ASID, flush the corresponding user ASID.  We can delay this
329  * until the next time we switch to it.
330  *
331  * See SWITCH_TO_USER_CR3.
332  */
333 static inline void invalidate_user_asid(u16 asid)
334 {
335 	/* There is no user ASID if address space separation is off */
336 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
337 		return;
338 
339 	/*
340 	 * We only have a single ASID if PCID is off and the CR3
341 	 * write will have flushed it.
342 	 */
343 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
344 		return;
345 
346 	if (!static_cpu_has(X86_FEATURE_PTI))
347 		return;
348 
349 	__set_bit(kern_pcid(asid),
350 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
351 }
352 
353 /*
354  * flush the entire current user mapping
355  */
356 static inline void __native_flush_tlb(void)
357 {
358 	/*
359 	 * Preemption or interrupts must be disabled to protect the access
360 	 * to the per CPU variable and to prevent being preempted between
361 	 * read_cr3() and write_cr3().
362 	 */
363 	WARN_ON_ONCE(preemptible());
364 
365 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
366 
367 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
368 	native_write_cr3(__native_read_cr3());
369 }
370 
371 /*
372  * flush everything
373  */
374 static inline void __native_flush_tlb_global(void)
375 {
376 	unsigned long cr4, flags;
377 
378 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
379 		/*
380 		 * Using INVPCID is considerably faster than a pair of writes
381 		 * to CR4 sandwiched inside an IRQ flag save/restore.
382 		 *
383 		 * Note, this works with CR4.PCIDE=0 or 1.
384 		 */
385 		invpcid_flush_all();
386 		return;
387 	}
388 
389 	/*
390 	 * Read-modify-write to CR4 - protect it from preemption and
391 	 * from interrupts. (Use the raw variant because this code can
392 	 * be called from deep inside debugging code.)
393 	 */
394 	raw_local_irq_save(flags);
395 
396 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
397 	/* toggle PGE */
398 	native_write_cr4(cr4 ^ X86_CR4_PGE);
399 	/* write old PGE again and flush TLBs */
400 	native_write_cr4(cr4);
401 
402 	raw_local_irq_restore(flags);
403 }
404 
405 /*
406  * flush one page in the user mapping
407  */
408 static inline void __native_flush_tlb_one_user(unsigned long addr)
409 {
410 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
411 
412 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
413 
414 	if (!static_cpu_has(X86_FEATURE_PTI))
415 		return;
416 
417 	/*
418 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
419 	 * Just use invalidate_user_asid() in case we are called early.
420 	 */
421 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
422 		invalidate_user_asid(loaded_mm_asid);
423 	else
424 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
425 }
426 
427 /*
428  * flush everything
429  */
430 static inline void __flush_tlb_all(void)
431 {
432 	if (boot_cpu_has(X86_FEATURE_PGE)) {
433 		__flush_tlb_global();
434 	} else {
435 		/*
436 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
437 		 */
438 		__flush_tlb();
439 	}
440 }
441 
442 /*
443  * flush one page in the kernel mapping
444  */
445 static inline void __flush_tlb_one_kernel(unsigned long addr)
446 {
447 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
448 
449 	/*
450 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
451 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
452 	 * use PCID if we also use global PTEs for the kernel mapping, and
453 	 * INVLPG flushes global translations across all address spaces.
454 	 *
455 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
456 	 * __flush_tlb_one_user() will flush the given address for the current
457 	 * kernel address space and for its usermode counterpart, but it does
458 	 * not flush it for other address spaces.
459 	 */
460 	__flush_tlb_one_user(addr);
461 
462 	if (!static_cpu_has(X86_FEATURE_PTI))
463 		return;
464 
465 	/*
466 	 * See above.  We need to propagate the flush to all other address
467 	 * spaces.  In principle, we only need to propagate it to kernelmode
468 	 * address spaces, but the extra bookkeeping we would need is not
469 	 * worth it.
470 	 */
471 	invalidate_other_asid();
472 }
473 
474 #define TLB_FLUSH_ALL	-1UL
475 
476 /*
477  * TLB flushing:
478  *
479  *  - flush_tlb_all() flushes all processes TLBs
480  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
481  *  - flush_tlb_page(vma, vmaddr) flushes one page
482  *  - flush_tlb_range(vma, start, end) flushes a range of pages
483  *  - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
484  *  - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
485  *
486  * ..but the i386 has somewhat limited tlb flushing capabilities,
487  * and page-granular flushes are available only on i486 and up.
488  */
489 struct flush_tlb_info {
490 	/*
491 	 * We support several kinds of flushes.
492 	 *
493 	 * - Fully flush a single mm.  .mm will be set, .end will be
494 	 *   TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
495 	 *   which the IPI sender is trying to catch us up.
496 	 *
497 	 * - Partially flush a single mm.  .mm will be set, .start and
498 	 *   .end will indicate the range, and .new_tlb_gen will be set
499 	 *   such that the changes between generation .new_tlb_gen-1 and
500 	 *   .new_tlb_gen are entirely contained in the indicated range.
501 	 *
502 	 * - Fully flush all mms whose tlb_gens have been updated.  .mm
503 	 *   will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
504 	 *   will be zero.
505 	 */
506 	struct mm_struct	*mm;
507 	unsigned long		start;
508 	unsigned long		end;
509 	u64			new_tlb_gen;
510 };
511 
512 #define local_flush_tlb() __flush_tlb()
513 
514 #define flush_tlb_mm(mm)	flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
515 
516 #define flush_tlb_range(vma, start, end)	\
517 		flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
518 
519 extern void flush_tlb_all(void);
520 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
521 				unsigned long end, unsigned long vmflag);
522 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
523 
524 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
525 {
526 	flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
527 }
528 
529 void native_flush_tlb_others(const struct cpumask *cpumask,
530 			     const struct flush_tlb_info *info);
531 
532 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
533 {
534 	/*
535 	 * Bump the generation count.  This also serves as a full barrier
536 	 * that synchronizes with switch_mm(): callers are required to order
537 	 * their read of mm_cpumask after their writes to the paging
538 	 * structures.
539 	 */
540 	return atomic64_inc_return(&mm->context.tlb_gen);
541 }
542 
543 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
544 					struct mm_struct *mm)
545 {
546 	inc_mm_tlb_gen(mm);
547 	cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
548 }
549 
550 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
551 
552 #ifndef CONFIG_PARAVIRT
553 #define flush_tlb_others(mask, info)	\
554 	native_flush_tlb_others(mask, info)
555 #endif
556 
557 #endif /* _ASM_X86_TLBFLUSH_H */
558