1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_TLBFLUSH_H 3 #define _ASM_X86_TLBFLUSH_H 4 5 #include <linux/mm.h> 6 #include <linux/sched.h> 7 8 #include <asm/processor.h> 9 #include <asm/cpufeature.h> 10 #include <asm/special_insns.h> 11 #include <asm/smp.h> 12 #include <asm/invpcid.h> 13 #include <asm/pti.h> 14 #include <asm/processor-flags.h> 15 16 /* 17 * The x86 feature is called PCID (Process Context IDentifier). It is similar 18 * to what is traditionally called ASID on the RISC processors. 19 * 20 * We don't use the traditional ASID implementation, where each process/mm gets 21 * its own ASID and flush/restart when we run out of ASID space. 22 * 23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 24 * that came by on this CPU, allowing cheaper switch_mm between processes on 25 * this CPU. 26 * 27 * We end up with different spaces for different things. To avoid confusion we 28 * use different names for each of them: 29 * 30 * ASID - [0, TLB_NR_DYN_ASIDS-1] 31 * the canonical identifier for an mm 32 * 33 * kPCID - [1, TLB_NR_DYN_ASIDS] 34 * the value we write into the PCID part of CR3; corresponds to the 35 * ASID+1, because PCID 0 is special. 36 * 37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 38 * for KPTI each mm has two address spaces and thus needs two 39 * PCID values, but we can still do with a single ASID denomination 40 * for each mm. Corresponds to kPCID + 2048. 41 * 42 */ 43 44 /* There are 12 bits of space for ASIDS in CR3 */ 45 #define CR3_HW_ASID_BITS 12 46 47 /* 48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 49 * user/kernel switches 50 */ 51 #ifdef CONFIG_PAGE_TABLE_ISOLATION 52 # define PTI_CONSUMED_PCID_BITS 1 53 #else 54 # define PTI_CONSUMED_PCID_BITS 0 55 #endif 56 57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 58 59 /* 60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 61 * for them being zero-based. Another -1 is because PCID 0 is reserved for 62 * use by non-PCID-aware users. 63 */ 64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 65 66 /* 67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache 68 * lines. 69 */ 70 #define TLB_NR_DYN_ASIDS 6 71 72 /* 73 * Given @asid, compute kPCID 74 */ 75 static inline u16 kern_pcid(u16 asid) 76 { 77 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 78 79 #ifdef CONFIG_PAGE_TABLE_ISOLATION 80 /* 81 * Make sure that the dynamic ASID space does not confict with the 82 * bit we are using to switch between user and kernel ASIDs. 83 */ 84 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 85 86 /* 87 * The ASID being passed in here should have respected the 88 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 89 */ 90 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 91 #endif 92 /* 93 * The dynamically-assigned ASIDs that get passed in are small 94 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 95 * so do not bother to clear it. 96 * 97 * If PCID is on, ASID-aware code paths put the ASID+1 into the 98 * PCID bits. This serves two purposes. It prevents a nasty 99 * situation in which PCID-unaware code saves CR3, loads some other 100 * value (with PCID == 0), and then restores CR3, thus corrupting 101 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 102 * that any bugs involving loading a PCID-enabled CR3 with 103 * CR4.PCIDE off will trigger deterministically. 104 */ 105 return asid + 1; 106 } 107 108 /* 109 * Given @asid, compute uPCID 110 */ 111 static inline u16 user_pcid(u16 asid) 112 { 113 u16 ret = kern_pcid(asid); 114 #ifdef CONFIG_PAGE_TABLE_ISOLATION 115 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 116 #endif 117 return ret; 118 } 119 120 struct pgd_t; 121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 122 { 123 if (static_cpu_has(X86_FEATURE_PCID)) { 124 return __sme_pa(pgd) | kern_pcid(asid); 125 } else { 126 VM_WARN_ON_ONCE(asid != 0); 127 return __sme_pa(pgd); 128 } 129 } 130 131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 132 { 133 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 134 /* 135 * Use boot_cpu_has() instead of this_cpu_has() as this function 136 * might be called during early boot. This should work even after 137 * boot because all CPU's the have same capabilities: 138 */ 139 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 140 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 141 } 142 143 #ifdef CONFIG_PARAVIRT 144 #include <asm/paravirt.h> 145 #else 146 #define __flush_tlb() __native_flush_tlb() 147 #define __flush_tlb_global() __native_flush_tlb_global() 148 #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr) 149 #endif 150 151 struct tlb_context { 152 u64 ctx_id; 153 u64 tlb_gen; 154 }; 155 156 struct tlb_state { 157 /* 158 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts 159 * are on. This means that it may not match current->active_mm, 160 * which will contain the previous user mm when we're in lazy TLB 161 * mode even if we've already switched back to swapper_pg_dir. 162 * 163 * During switch_mm_irqs_off(), loaded_mm will be set to 164 * LOADED_MM_SWITCHING during the brief interrupts-off window 165 * when CR3 and loaded_mm would otherwise be inconsistent. This 166 * is for nmi_uaccess_okay()'s benefit. 167 */ 168 struct mm_struct *loaded_mm; 169 170 #define LOADED_MM_SWITCHING ((struct mm_struct *)1) 171 172 u16 loaded_mm_asid; 173 u16 next_asid; 174 /* last user mm's ctx id */ 175 u64 last_ctx_id; 176 177 /* 178 * We can be in one of several states: 179 * 180 * - Actively using an mm. Our CPU's bit will be set in 181 * mm_cpumask(loaded_mm) and is_lazy == false; 182 * 183 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit 184 * will not be set in mm_cpumask(&init_mm) and is_lazy == false. 185 * 186 * - Lazily using a real mm. loaded_mm != &init_mm, our bit 187 * is set in mm_cpumask(loaded_mm), but is_lazy == true. 188 * We're heuristically guessing that the CR3 load we 189 * skipped more than makes up for the overhead added by 190 * lazy mode. 191 */ 192 bool is_lazy; 193 194 /* 195 * If set we changed the page tables in such a way that we 196 * needed an invalidation of all contexts (aka. PCIDs / ASIDs). 197 * This tells us to go invalidate all the non-loaded ctxs[] 198 * on the next context switch. 199 * 200 * The current ctx was kept up-to-date as it ran and does not 201 * need to be invalidated. 202 */ 203 bool invalidate_other; 204 205 /* 206 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate 207 * the corresponding user PCID needs a flush next time we 208 * switch to it; see SWITCH_TO_USER_CR3. 209 */ 210 unsigned short user_pcid_flush_mask; 211 212 /* 213 * Access to this CR4 shadow and to H/W CR4 is protected by 214 * disabling interrupts when modifying either one. 215 */ 216 unsigned long cr4; 217 218 /* 219 * This is a list of all contexts that might exist in the TLB. 220 * There is one per ASID that we use, and the ASID (what the 221 * CPU calls PCID) is the index into ctxts. 222 * 223 * For each context, ctx_id indicates which mm the TLB's user 224 * entries came from. As an invariant, the TLB will never 225 * contain entries that are out-of-date as when that mm reached 226 * the tlb_gen in the list. 227 * 228 * To be clear, this means that it's legal for the TLB code to 229 * flush the TLB without updating tlb_gen. This can happen 230 * (for now, at least) due to paravirt remote flushes. 231 * 232 * NB: context 0 is a bit special, since it's also used by 233 * various bits of init code. This is fine -- code that 234 * isn't aware of PCID will end up harmlessly flushing 235 * context 0. 236 */ 237 struct tlb_context ctxs[TLB_NR_DYN_ASIDS]; 238 }; 239 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); 240 241 /* 242 * Blindly accessing user memory from NMI context can be dangerous 243 * if we're in the middle of switching the current user task or 244 * switching the loaded mm. It can also be dangerous if we 245 * interrupted some kernel code that was temporarily using a 246 * different mm. 247 */ 248 static inline bool nmi_uaccess_okay(void) 249 { 250 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 251 struct mm_struct *current_mm = current->mm; 252 253 VM_WARN_ON_ONCE(!loaded_mm); 254 255 /* 256 * The condition we want to check is 257 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 258 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 259 * is supposed to be reasonably fast. 260 * 261 * Instead, we check the almost equivalent but somewhat conservative 262 * condition below, and we rely on the fact that switch_mm_irqs_off() 263 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 264 */ 265 if (loaded_mm != current_mm) 266 return false; 267 268 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 269 270 return true; 271 } 272 273 /* Initialize cr4 shadow for this CPU. */ 274 static inline void cr4_init_shadow(void) 275 { 276 this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); 277 } 278 279 static inline void __cr4_set(unsigned long cr4) 280 { 281 lockdep_assert_irqs_disabled(); 282 this_cpu_write(cpu_tlbstate.cr4, cr4); 283 __write_cr4(cr4); 284 } 285 286 /* Set in this cpu's CR4. */ 287 static inline void cr4_set_bits(unsigned long mask) 288 { 289 unsigned long cr4, flags; 290 291 local_irq_save(flags); 292 cr4 = this_cpu_read(cpu_tlbstate.cr4); 293 if ((cr4 | mask) != cr4) 294 __cr4_set(cr4 | mask); 295 local_irq_restore(flags); 296 } 297 298 /* Clear in this cpu's CR4. */ 299 static inline void cr4_clear_bits(unsigned long mask) 300 { 301 unsigned long cr4, flags; 302 303 local_irq_save(flags); 304 cr4 = this_cpu_read(cpu_tlbstate.cr4); 305 if ((cr4 & ~mask) != cr4) 306 __cr4_set(cr4 & ~mask); 307 local_irq_restore(flags); 308 } 309 310 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 311 { 312 unsigned long cr4; 313 314 cr4 = this_cpu_read(cpu_tlbstate.cr4); 315 __cr4_set(cr4 ^ mask); 316 } 317 318 /* Read the CR4 shadow. */ 319 static inline unsigned long cr4_read_shadow(void) 320 { 321 return this_cpu_read(cpu_tlbstate.cr4); 322 } 323 324 /* 325 * Mark all other ASIDs as invalid, preserves the current. 326 */ 327 static inline void invalidate_other_asid(void) 328 { 329 this_cpu_write(cpu_tlbstate.invalidate_other, true); 330 } 331 332 /* 333 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 334 * enable and PPro Global page enable), so that any CPU's that boot 335 * up after us can get the correct flags. This should only be used 336 * during boot on the boot cpu. 337 */ 338 extern unsigned long mmu_cr4_features; 339 extern u32 *trampoline_cr4_features; 340 341 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 342 { 343 mmu_cr4_features |= mask; 344 if (trampoline_cr4_features) 345 *trampoline_cr4_features = mmu_cr4_features; 346 cr4_set_bits(mask); 347 } 348 349 extern void initialize_tlbstate_and_flush(void); 350 351 /* 352 * Given an ASID, flush the corresponding user ASID. We can delay this 353 * until the next time we switch to it. 354 * 355 * See SWITCH_TO_USER_CR3. 356 */ 357 static inline void invalidate_user_asid(u16 asid) 358 { 359 /* There is no user ASID if address space separation is off */ 360 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 361 return; 362 363 /* 364 * We only have a single ASID if PCID is off and the CR3 365 * write will have flushed it. 366 */ 367 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 368 return; 369 370 if (!static_cpu_has(X86_FEATURE_PTI)) 371 return; 372 373 __set_bit(kern_pcid(asid), 374 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 375 } 376 377 /* 378 * flush the entire current user mapping 379 */ 380 static inline void __native_flush_tlb(void) 381 { 382 /* 383 * Preemption or interrupts must be disabled to protect the access 384 * to the per CPU variable and to prevent being preempted between 385 * read_cr3() and write_cr3(). 386 */ 387 WARN_ON_ONCE(preemptible()); 388 389 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 390 391 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 392 native_write_cr3(__native_read_cr3()); 393 } 394 395 /* 396 * flush everything 397 */ 398 static inline void __native_flush_tlb_global(void) 399 { 400 unsigned long cr4, flags; 401 402 if (static_cpu_has(X86_FEATURE_INVPCID)) { 403 /* 404 * Using INVPCID is considerably faster than a pair of writes 405 * to CR4 sandwiched inside an IRQ flag save/restore. 406 * 407 * Note, this works with CR4.PCIDE=0 or 1. 408 */ 409 invpcid_flush_all(); 410 return; 411 } 412 413 /* 414 * Read-modify-write to CR4 - protect it from preemption and 415 * from interrupts. (Use the raw variant because this code can 416 * be called from deep inside debugging code.) 417 */ 418 raw_local_irq_save(flags); 419 420 cr4 = this_cpu_read(cpu_tlbstate.cr4); 421 /* toggle PGE */ 422 native_write_cr4(cr4 ^ X86_CR4_PGE); 423 /* write old PGE again and flush TLBs */ 424 native_write_cr4(cr4); 425 426 raw_local_irq_restore(flags); 427 } 428 429 /* 430 * flush one page in the user mapping 431 */ 432 static inline void __native_flush_tlb_one_user(unsigned long addr) 433 { 434 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 435 436 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 437 438 if (!static_cpu_has(X86_FEATURE_PTI)) 439 return; 440 441 /* 442 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 443 * Just use invalidate_user_asid() in case we are called early. 444 */ 445 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 446 invalidate_user_asid(loaded_mm_asid); 447 else 448 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 449 } 450 451 /* 452 * flush everything 453 */ 454 static inline void __flush_tlb_all(void) 455 { 456 /* 457 * This is to catch users with enabled preemption and the PGE feature 458 * and don't trigger the warning in __native_flush_tlb(). 459 */ 460 VM_WARN_ON_ONCE(preemptible()); 461 462 if (boot_cpu_has(X86_FEATURE_PGE)) { 463 __flush_tlb_global(); 464 } else { 465 /* 466 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 467 */ 468 __flush_tlb(); 469 } 470 } 471 472 /* 473 * flush one page in the kernel mapping 474 */ 475 static inline void __flush_tlb_one_kernel(unsigned long addr) 476 { 477 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 478 479 /* 480 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 481 * paravirt equivalent. Even with PCID, this is sufficient: we only 482 * use PCID if we also use global PTEs for the kernel mapping, and 483 * INVLPG flushes global translations across all address spaces. 484 * 485 * If PTI is on, then the kernel is mapped with non-global PTEs, and 486 * __flush_tlb_one_user() will flush the given address for the current 487 * kernel address space and for its usermode counterpart, but it does 488 * not flush it for other address spaces. 489 */ 490 __flush_tlb_one_user(addr); 491 492 if (!static_cpu_has(X86_FEATURE_PTI)) 493 return; 494 495 /* 496 * See above. We need to propagate the flush to all other address 497 * spaces. In principle, we only need to propagate it to kernelmode 498 * address spaces, but the extra bookkeeping we would need is not 499 * worth it. 500 */ 501 invalidate_other_asid(); 502 } 503 504 #define TLB_FLUSH_ALL -1UL 505 506 /* 507 * TLB flushing: 508 * 509 * - flush_tlb_all() flushes all processes TLBs 510 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 511 * - flush_tlb_page(vma, vmaddr) flushes one page 512 * - flush_tlb_range(vma, start, end) flushes a range of pages 513 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages 514 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus 515 * 516 * ..but the i386 has somewhat limited tlb flushing capabilities, 517 * and page-granular flushes are available only on i486 and up. 518 */ 519 struct flush_tlb_info { 520 /* 521 * We support several kinds of flushes. 522 * 523 * - Fully flush a single mm. .mm will be set, .end will be 524 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to 525 * which the IPI sender is trying to catch us up. 526 * 527 * - Partially flush a single mm. .mm will be set, .start and 528 * .end will indicate the range, and .new_tlb_gen will be set 529 * such that the changes between generation .new_tlb_gen-1 and 530 * .new_tlb_gen are entirely contained in the indicated range. 531 * 532 * - Fully flush all mms whose tlb_gens have been updated. .mm 533 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen 534 * will be zero. 535 */ 536 struct mm_struct *mm; 537 unsigned long start; 538 unsigned long end; 539 u64 new_tlb_gen; 540 unsigned int stride_shift; 541 bool freed_tables; 542 }; 543 544 #define local_flush_tlb() __flush_tlb() 545 546 #define flush_tlb_mm(mm) \ 547 flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL, true) 548 549 #define flush_tlb_range(vma, start, end) \ 550 flush_tlb_mm_range((vma)->vm_mm, start, end, \ 551 ((vma)->vm_flags & VM_HUGETLB) \ 552 ? huge_page_shift(hstate_vma(vma)) \ 553 : PAGE_SHIFT, false) 554 555 extern void flush_tlb_all(void); 556 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 557 unsigned long end, unsigned int stride_shift, 558 bool freed_tables); 559 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); 560 561 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a) 562 { 563 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, PAGE_SHIFT, false); 564 } 565 566 void native_flush_tlb_others(const struct cpumask *cpumask, 567 const struct flush_tlb_info *info); 568 569 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm) 570 { 571 /* 572 * Bump the generation count. This also serves as a full barrier 573 * that synchronizes with switch_mm(): callers are required to order 574 * their read of mm_cpumask after their writes to the paging 575 * structures. 576 */ 577 return atomic64_inc_return(&mm->context.tlb_gen); 578 } 579 580 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch, 581 struct mm_struct *mm) 582 { 583 inc_mm_tlb_gen(mm); 584 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm)); 585 } 586 587 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); 588 589 #ifndef CONFIG_PARAVIRT 590 #define flush_tlb_others(mask, info) \ 591 native_flush_tlb_others(mask, info) 592 593 #define paravirt_tlb_remove_table(tlb, page) \ 594 tlb_remove_page(tlb, (void *)(page)) 595 #endif 596 597 #endif /* _ASM_X86_TLBFLUSH_H */ 598