xref: /openbmc/linux/arch/x86/include/asm/tlbflush.h (revision e3d786a3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4 
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7 
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12 #include <asm/invpcid.h>
13 #include <asm/pti.h>
14 #include <asm/processor-flags.h>
15 
16 /*
17  * The x86 feature is called PCID (Process Context IDentifier). It is similar
18  * to what is traditionally called ASID on the RISC processors.
19  *
20  * We don't use the traditional ASID implementation, where each process/mm gets
21  * its own ASID and flush/restart when we run out of ASID space.
22  *
23  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
24  * that came by on this CPU, allowing cheaper switch_mm between processes on
25  * this CPU.
26  *
27  * We end up with different spaces for different things. To avoid confusion we
28  * use different names for each of them:
29  *
30  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
31  *         the canonical identifier for an mm
32  *
33  * kPCID - [1, TLB_NR_DYN_ASIDS]
34  *         the value we write into the PCID part of CR3; corresponds to the
35  *         ASID+1, because PCID 0 is special.
36  *
37  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
38  *         for KPTI each mm has two address spaces and thus needs two
39  *         PCID values, but we can still do with a single ASID denomination
40  *         for each mm. Corresponds to kPCID + 2048.
41  *
42  */
43 
44 /* There are 12 bits of space for ASIDS in CR3 */
45 #define CR3_HW_ASID_BITS		12
46 
47 /*
48  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
49  * user/kernel switches
50  */
51 #ifdef CONFIG_PAGE_TABLE_ISOLATION
52 # define PTI_CONSUMED_PCID_BITS	1
53 #else
54 # define PTI_CONSUMED_PCID_BITS	0
55 #endif
56 
57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
58 
59 /*
60  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
61  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
62  * use by non-PCID-aware users.
63  */
64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
65 
66 /*
67  * 6 because 6 should be plenty and struct tlb_state will fit in two cache
68  * lines.
69  */
70 #define TLB_NR_DYN_ASIDS	6
71 
72 /*
73  * Given @asid, compute kPCID
74  */
75 static inline u16 kern_pcid(u16 asid)
76 {
77 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
78 
79 #ifdef CONFIG_PAGE_TABLE_ISOLATION
80 	/*
81 	 * Make sure that the dynamic ASID space does not confict with the
82 	 * bit we are using to switch between user and kernel ASIDs.
83 	 */
84 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
85 
86 	/*
87 	 * The ASID being passed in here should have respected the
88 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
89 	 */
90 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
91 #endif
92 	/*
93 	 * The dynamically-assigned ASIDs that get passed in are small
94 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
95 	 * so do not bother to clear it.
96 	 *
97 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
98 	 * PCID bits.  This serves two purposes.  It prevents a nasty
99 	 * situation in which PCID-unaware code saves CR3, loads some other
100 	 * value (with PCID == 0), and then restores CR3, thus corrupting
101 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
102 	 * that any bugs involving loading a PCID-enabled CR3 with
103 	 * CR4.PCIDE off will trigger deterministically.
104 	 */
105 	return asid + 1;
106 }
107 
108 /*
109  * Given @asid, compute uPCID
110  */
111 static inline u16 user_pcid(u16 asid)
112 {
113 	u16 ret = kern_pcid(asid);
114 #ifdef CONFIG_PAGE_TABLE_ISOLATION
115 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
116 #endif
117 	return ret;
118 }
119 
120 struct pgd_t;
121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
122 {
123 	if (static_cpu_has(X86_FEATURE_PCID)) {
124 		return __sme_pa(pgd) | kern_pcid(asid);
125 	} else {
126 		VM_WARN_ON_ONCE(asid != 0);
127 		return __sme_pa(pgd);
128 	}
129 }
130 
131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
132 {
133 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
134 	/*
135 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
136 	 * might be called during early boot. This should work even after
137 	 * boot because all CPU's the have same capabilities:
138 	 */
139 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
140 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
141 }
142 
143 #ifdef CONFIG_PARAVIRT
144 #include <asm/paravirt.h>
145 #else
146 #define __flush_tlb() __native_flush_tlb()
147 #define __flush_tlb_global() __native_flush_tlb_global()
148 #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
149 #endif
150 
151 struct tlb_context {
152 	u64 ctx_id;
153 	u64 tlb_gen;
154 };
155 
156 struct tlb_state {
157 	/*
158 	 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
159 	 * are on.  This means that it may not match current->active_mm,
160 	 * which will contain the previous user mm when we're in lazy TLB
161 	 * mode even if we've already switched back to swapper_pg_dir.
162 	 *
163 	 * During switch_mm_irqs_off(), loaded_mm will be set to
164 	 * LOADED_MM_SWITCHING during the brief interrupts-off window
165 	 * when CR3 and loaded_mm would otherwise be inconsistent.  This
166 	 * is for nmi_uaccess_okay()'s benefit.
167 	 */
168 	struct mm_struct *loaded_mm;
169 
170 #define LOADED_MM_SWITCHING ((struct mm_struct *)1)
171 
172 	u16 loaded_mm_asid;
173 	u16 next_asid;
174 	/* last user mm's ctx id */
175 	u64 last_ctx_id;
176 
177 	/*
178 	 * We can be in one of several states:
179 	 *
180 	 *  - Actively using an mm.  Our CPU's bit will be set in
181 	 *    mm_cpumask(loaded_mm) and is_lazy == false;
182 	 *
183 	 *  - Not using a real mm.  loaded_mm == &init_mm.  Our CPU's bit
184 	 *    will not be set in mm_cpumask(&init_mm) and is_lazy == false.
185 	 *
186 	 *  - Lazily using a real mm.  loaded_mm != &init_mm, our bit
187 	 *    is set in mm_cpumask(loaded_mm), but is_lazy == true.
188 	 *    We're heuristically guessing that the CR3 load we
189 	 *    skipped more than makes up for the overhead added by
190 	 *    lazy mode.
191 	 */
192 	bool is_lazy;
193 
194 	/*
195 	 * If set we changed the page tables in such a way that we
196 	 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
197 	 * This tells us to go invalidate all the non-loaded ctxs[]
198 	 * on the next context switch.
199 	 *
200 	 * The current ctx was kept up-to-date as it ran and does not
201 	 * need to be invalidated.
202 	 */
203 	bool invalidate_other;
204 
205 	/*
206 	 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
207 	 * the corresponding user PCID needs a flush next time we
208 	 * switch to it; see SWITCH_TO_USER_CR3.
209 	 */
210 	unsigned short user_pcid_flush_mask;
211 
212 	/*
213 	 * Access to this CR4 shadow and to H/W CR4 is protected by
214 	 * disabling interrupts when modifying either one.
215 	 */
216 	unsigned long cr4;
217 
218 	/*
219 	 * This is a list of all contexts that might exist in the TLB.
220 	 * There is one per ASID that we use, and the ASID (what the
221 	 * CPU calls PCID) is the index into ctxts.
222 	 *
223 	 * For each context, ctx_id indicates which mm the TLB's user
224 	 * entries came from.  As an invariant, the TLB will never
225 	 * contain entries that are out-of-date as when that mm reached
226 	 * the tlb_gen in the list.
227 	 *
228 	 * To be clear, this means that it's legal for the TLB code to
229 	 * flush the TLB without updating tlb_gen.  This can happen
230 	 * (for now, at least) due to paravirt remote flushes.
231 	 *
232 	 * NB: context 0 is a bit special, since it's also used by
233 	 * various bits of init code.  This is fine -- code that
234 	 * isn't aware of PCID will end up harmlessly flushing
235 	 * context 0.
236 	 */
237 	struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
238 };
239 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
240 
241 /*
242  * Blindly accessing user memory from NMI context can be dangerous
243  * if we're in the middle of switching the current user task or
244  * switching the loaded mm.  It can also be dangerous if we
245  * interrupted some kernel code that was temporarily using a
246  * different mm.
247  */
248 static inline bool nmi_uaccess_okay(void)
249 {
250 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
251 	struct mm_struct *current_mm = current->mm;
252 
253 	VM_WARN_ON_ONCE(!loaded_mm);
254 
255 	/*
256 	 * The condition we want to check is
257 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
258 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
259 	 * is supposed to be reasonably fast.
260 	 *
261 	 * Instead, we check the almost equivalent but somewhat conservative
262 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
263 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
264 	 */
265 	if (loaded_mm != current_mm)
266 		return false;
267 
268 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
269 
270 	return true;
271 }
272 
273 /* Initialize cr4 shadow for this CPU. */
274 static inline void cr4_init_shadow(void)
275 {
276 	this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
277 }
278 
279 static inline void __cr4_set(unsigned long cr4)
280 {
281 	lockdep_assert_irqs_disabled();
282 	this_cpu_write(cpu_tlbstate.cr4, cr4);
283 	__write_cr4(cr4);
284 }
285 
286 /* Set in this cpu's CR4. */
287 static inline void cr4_set_bits(unsigned long mask)
288 {
289 	unsigned long cr4, flags;
290 
291 	local_irq_save(flags);
292 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
293 	if ((cr4 | mask) != cr4)
294 		__cr4_set(cr4 | mask);
295 	local_irq_restore(flags);
296 }
297 
298 /* Clear in this cpu's CR4. */
299 static inline void cr4_clear_bits(unsigned long mask)
300 {
301 	unsigned long cr4, flags;
302 
303 	local_irq_save(flags);
304 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
305 	if ((cr4 & ~mask) != cr4)
306 		__cr4_set(cr4 & ~mask);
307 	local_irq_restore(flags);
308 }
309 
310 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
311 {
312 	unsigned long cr4;
313 
314 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
315 	__cr4_set(cr4 ^ mask);
316 }
317 
318 /* Read the CR4 shadow. */
319 static inline unsigned long cr4_read_shadow(void)
320 {
321 	return this_cpu_read(cpu_tlbstate.cr4);
322 }
323 
324 /*
325  * Mark all other ASIDs as invalid, preserves the current.
326  */
327 static inline void invalidate_other_asid(void)
328 {
329 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
330 }
331 
332 /*
333  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
334  * enable and PPro Global page enable), so that any CPU's that boot
335  * up after us can get the correct flags.  This should only be used
336  * during boot on the boot cpu.
337  */
338 extern unsigned long mmu_cr4_features;
339 extern u32 *trampoline_cr4_features;
340 
341 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
342 {
343 	mmu_cr4_features |= mask;
344 	if (trampoline_cr4_features)
345 		*trampoline_cr4_features = mmu_cr4_features;
346 	cr4_set_bits(mask);
347 }
348 
349 extern void initialize_tlbstate_and_flush(void);
350 
351 /*
352  * Given an ASID, flush the corresponding user ASID.  We can delay this
353  * until the next time we switch to it.
354  *
355  * See SWITCH_TO_USER_CR3.
356  */
357 static inline void invalidate_user_asid(u16 asid)
358 {
359 	/* There is no user ASID if address space separation is off */
360 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
361 		return;
362 
363 	/*
364 	 * We only have a single ASID if PCID is off and the CR3
365 	 * write will have flushed it.
366 	 */
367 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
368 		return;
369 
370 	if (!static_cpu_has(X86_FEATURE_PTI))
371 		return;
372 
373 	__set_bit(kern_pcid(asid),
374 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
375 }
376 
377 /*
378  * flush the entire current user mapping
379  */
380 static inline void __native_flush_tlb(void)
381 {
382 	/*
383 	 * Preemption or interrupts must be disabled to protect the access
384 	 * to the per CPU variable and to prevent being preempted between
385 	 * read_cr3() and write_cr3().
386 	 */
387 	WARN_ON_ONCE(preemptible());
388 
389 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
390 
391 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
392 	native_write_cr3(__native_read_cr3());
393 }
394 
395 /*
396  * flush everything
397  */
398 static inline void __native_flush_tlb_global(void)
399 {
400 	unsigned long cr4, flags;
401 
402 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
403 		/*
404 		 * Using INVPCID is considerably faster than a pair of writes
405 		 * to CR4 sandwiched inside an IRQ flag save/restore.
406 		 *
407 		 * Note, this works with CR4.PCIDE=0 or 1.
408 		 */
409 		invpcid_flush_all();
410 		return;
411 	}
412 
413 	/*
414 	 * Read-modify-write to CR4 - protect it from preemption and
415 	 * from interrupts. (Use the raw variant because this code can
416 	 * be called from deep inside debugging code.)
417 	 */
418 	raw_local_irq_save(flags);
419 
420 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
421 	/* toggle PGE */
422 	native_write_cr4(cr4 ^ X86_CR4_PGE);
423 	/* write old PGE again and flush TLBs */
424 	native_write_cr4(cr4);
425 
426 	raw_local_irq_restore(flags);
427 }
428 
429 /*
430  * flush one page in the user mapping
431  */
432 static inline void __native_flush_tlb_one_user(unsigned long addr)
433 {
434 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
435 
436 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
437 
438 	if (!static_cpu_has(X86_FEATURE_PTI))
439 		return;
440 
441 	/*
442 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
443 	 * Just use invalidate_user_asid() in case we are called early.
444 	 */
445 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
446 		invalidate_user_asid(loaded_mm_asid);
447 	else
448 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
449 }
450 
451 /*
452  * flush everything
453  */
454 static inline void __flush_tlb_all(void)
455 {
456 	/*
457 	 * This is to catch users with enabled preemption and the PGE feature
458 	 * and don't trigger the warning in __native_flush_tlb().
459 	 */
460 	VM_WARN_ON_ONCE(preemptible());
461 
462 	if (boot_cpu_has(X86_FEATURE_PGE)) {
463 		__flush_tlb_global();
464 	} else {
465 		/*
466 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
467 		 */
468 		__flush_tlb();
469 	}
470 }
471 
472 /*
473  * flush one page in the kernel mapping
474  */
475 static inline void __flush_tlb_one_kernel(unsigned long addr)
476 {
477 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
478 
479 	/*
480 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
481 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
482 	 * use PCID if we also use global PTEs for the kernel mapping, and
483 	 * INVLPG flushes global translations across all address spaces.
484 	 *
485 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
486 	 * __flush_tlb_one_user() will flush the given address for the current
487 	 * kernel address space and for its usermode counterpart, but it does
488 	 * not flush it for other address spaces.
489 	 */
490 	__flush_tlb_one_user(addr);
491 
492 	if (!static_cpu_has(X86_FEATURE_PTI))
493 		return;
494 
495 	/*
496 	 * See above.  We need to propagate the flush to all other address
497 	 * spaces.  In principle, we only need to propagate it to kernelmode
498 	 * address spaces, but the extra bookkeeping we would need is not
499 	 * worth it.
500 	 */
501 	invalidate_other_asid();
502 }
503 
504 #define TLB_FLUSH_ALL	-1UL
505 
506 /*
507  * TLB flushing:
508  *
509  *  - flush_tlb_all() flushes all processes TLBs
510  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
511  *  - flush_tlb_page(vma, vmaddr) flushes one page
512  *  - flush_tlb_range(vma, start, end) flushes a range of pages
513  *  - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
514  *  - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
515  *
516  * ..but the i386 has somewhat limited tlb flushing capabilities,
517  * and page-granular flushes are available only on i486 and up.
518  */
519 struct flush_tlb_info {
520 	/*
521 	 * We support several kinds of flushes.
522 	 *
523 	 * - Fully flush a single mm.  .mm will be set, .end will be
524 	 *   TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
525 	 *   which the IPI sender is trying to catch us up.
526 	 *
527 	 * - Partially flush a single mm.  .mm will be set, .start and
528 	 *   .end will indicate the range, and .new_tlb_gen will be set
529 	 *   such that the changes between generation .new_tlb_gen-1 and
530 	 *   .new_tlb_gen are entirely contained in the indicated range.
531 	 *
532 	 * - Fully flush all mms whose tlb_gens have been updated.  .mm
533 	 *   will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
534 	 *   will be zero.
535 	 */
536 	struct mm_struct	*mm;
537 	unsigned long		start;
538 	unsigned long		end;
539 	u64			new_tlb_gen;
540 	unsigned int		stride_shift;
541 	bool			freed_tables;
542 };
543 
544 #define local_flush_tlb() __flush_tlb()
545 
546 #define flush_tlb_mm(mm)						\
547 		flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL, true)
548 
549 #define flush_tlb_range(vma, start, end)				\
550 	flush_tlb_mm_range((vma)->vm_mm, start, end,			\
551 			   ((vma)->vm_flags & VM_HUGETLB)		\
552 				? huge_page_shift(hstate_vma(vma))	\
553 				: PAGE_SHIFT, false)
554 
555 extern void flush_tlb_all(void);
556 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
557 				unsigned long end, unsigned int stride_shift,
558 				bool freed_tables);
559 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
560 
561 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
562 {
563 	flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, PAGE_SHIFT, false);
564 }
565 
566 void native_flush_tlb_others(const struct cpumask *cpumask,
567 			     const struct flush_tlb_info *info);
568 
569 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
570 {
571 	/*
572 	 * Bump the generation count.  This also serves as a full barrier
573 	 * that synchronizes with switch_mm(): callers are required to order
574 	 * their read of mm_cpumask after their writes to the paging
575 	 * structures.
576 	 */
577 	return atomic64_inc_return(&mm->context.tlb_gen);
578 }
579 
580 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
581 					struct mm_struct *mm)
582 {
583 	inc_mm_tlb_gen(mm);
584 	cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
585 }
586 
587 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
588 
589 #ifndef CONFIG_PARAVIRT
590 #define flush_tlb_others(mask, info)	\
591 	native_flush_tlb_others(mask, info)
592 
593 #define paravirt_tlb_remove_table(tlb, page) \
594 	tlb_remove_page(tlb, (void *)(page))
595 #endif
596 
597 #endif /* _ASM_X86_TLBFLUSH_H */
598