1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_TLBFLUSH_H 3 #define _ASM_X86_TLBFLUSH_H 4 5 #include <linux/mm.h> 6 #include <linux/sched.h> 7 8 #include <asm/processor.h> 9 #include <asm/cpufeature.h> 10 #include <asm/special_insns.h> 11 #include <asm/smp.h> 12 13 static inline void __invpcid(unsigned long pcid, unsigned long addr, 14 unsigned long type) 15 { 16 struct { u64 d[2]; } desc = { { pcid, addr } }; 17 18 /* 19 * The memory clobber is because the whole point is to invalidate 20 * stale TLB entries and, especially if we're flushing global 21 * mappings, we don't want the compiler to reorder any subsequent 22 * memory accesses before the TLB flush. 23 * 24 * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and 25 * invpcid (%rcx), %rax in long mode. 26 */ 27 asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01" 28 : : "m" (desc), "a" (type), "c" (&desc) : "memory"); 29 } 30 31 #define INVPCID_TYPE_INDIV_ADDR 0 32 #define INVPCID_TYPE_SINGLE_CTXT 1 33 #define INVPCID_TYPE_ALL_INCL_GLOBAL 2 34 #define INVPCID_TYPE_ALL_NON_GLOBAL 3 35 36 /* Flush all mappings for a given pcid and addr, not including globals. */ 37 static inline void invpcid_flush_one(unsigned long pcid, 38 unsigned long addr) 39 { 40 __invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR); 41 } 42 43 /* Flush all mappings for a given PCID, not including globals. */ 44 static inline void invpcid_flush_single_context(unsigned long pcid) 45 { 46 __invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT); 47 } 48 49 /* Flush all mappings, including globals, for all PCIDs. */ 50 static inline void invpcid_flush_all(void) 51 { 52 __invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL); 53 } 54 55 /* Flush all mappings for all PCIDs except globals. */ 56 static inline void invpcid_flush_all_nonglobals(void) 57 { 58 __invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL); 59 } 60 61 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm) 62 { 63 u64 new_tlb_gen; 64 65 /* 66 * Bump the generation count. This also serves as a full barrier 67 * that synchronizes with switch_mm(): callers are required to order 68 * their read of mm_cpumask after their writes to the paging 69 * structures. 70 */ 71 smp_mb__before_atomic(); 72 new_tlb_gen = atomic64_inc_return(&mm->context.tlb_gen); 73 smp_mb__after_atomic(); 74 75 return new_tlb_gen; 76 } 77 78 #ifdef CONFIG_PARAVIRT 79 #include <asm/paravirt.h> 80 #else 81 #define __flush_tlb() __native_flush_tlb() 82 #define __flush_tlb_global() __native_flush_tlb_global() 83 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr) 84 #endif 85 86 static inline bool tlb_defer_switch_to_init_mm(void) 87 { 88 /* 89 * If we have PCID, then switching to init_mm is reasonably 90 * fast. If we don't have PCID, then switching to init_mm is 91 * quite slow, so we try to defer it in the hopes that we can 92 * avoid it entirely. The latter approach runs the risk of 93 * receiving otherwise unnecessary IPIs. 94 * 95 * This choice is just a heuristic. The tlb code can handle this 96 * function returning true or false regardless of whether we have 97 * PCID. 98 */ 99 return !static_cpu_has(X86_FEATURE_PCID); 100 } 101 102 /* 103 * 6 because 6 should be plenty and struct tlb_state will fit in 104 * two cache lines. 105 */ 106 #define TLB_NR_DYN_ASIDS 6 107 108 struct tlb_context { 109 u64 ctx_id; 110 u64 tlb_gen; 111 }; 112 113 struct tlb_state { 114 /* 115 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts 116 * are on. This means that it may not match current->active_mm, 117 * which will contain the previous user mm when we're in lazy TLB 118 * mode even if we've already switched back to swapper_pg_dir. 119 */ 120 struct mm_struct *loaded_mm; 121 u16 loaded_mm_asid; 122 u16 next_asid; 123 124 /* 125 * We can be in one of several states: 126 * 127 * - Actively using an mm. Our CPU's bit will be set in 128 * mm_cpumask(loaded_mm) and is_lazy == false; 129 * 130 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit 131 * will not be set in mm_cpumask(&init_mm) and is_lazy == false. 132 * 133 * - Lazily using a real mm. loaded_mm != &init_mm, our bit 134 * is set in mm_cpumask(loaded_mm), but is_lazy == true. 135 * We're heuristically guessing that the CR3 load we 136 * skipped more than makes up for the overhead added by 137 * lazy mode. 138 */ 139 bool is_lazy; 140 141 /* 142 * Access to this CR4 shadow and to H/W CR4 is protected by 143 * disabling interrupts when modifying either one. 144 */ 145 unsigned long cr4; 146 147 /* 148 * This is a list of all contexts that might exist in the TLB. 149 * There is one per ASID that we use, and the ASID (what the 150 * CPU calls PCID) is the index into ctxts. 151 * 152 * For each context, ctx_id indicates which mm the TLB's user 153 * entries came from. As an invariant, the TLB will never 154 * contain entries that are out-of-date as when that mm reached 155 * the tlb_gen in the list. 156 * 157 * To be clear, this means that it's legal for the TLB code to 158 * flush the TLB without updating tlb_gen. This can happen 159 * (for now, at least) due to paravirt remote flushes. 160 * 161 * NB: context 0 is a bit special, since it's also used by 162 * various bits of init code. This is fine -- code that 163 * isn't aware of PCID will end up harmlessly flushing 164 * context 0. 165 */ 166 struct tlb_context ctxs[TLB_NR_DYN_ASIDS]; 167 }; 168 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); 169 170 /* Initialize cr4 shadow for this CPU. */ 171 static inline void cr4_init_shadow(void) 172 { 173 this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); 174 } 175 176 static inline void __cr4_set(unsigned long cr4) 177 { 178 lockdep_assert_irqs_disabled(); 179 this_cpu_write(cpu_tlbstate.cr4, cr4); 180 __write_cr4(cr4); 181 } 182 183 /* Set in this cpu's CR4. */ 184 static inline void cr4_set_bits(unsigned long mask) 185 { 186 unsigned long cr4, flags; 187 188 local_irq_save(flags); 189 cr4 = this_cpu_read(cpu_tlbstate.cr4); 190 if ((cr4 | mask) != cr4) 191 __cr4_set(cr4 | mask); 192 local_irq_restore(flags); 193 } 194 195 /* Clear in this cpu's CR4. */ 196 static inline void cr4_clear_bits(unsigned long mask) 197 { 198 unsigned long cr4, flags; 199 200 local_irq_save(flags); 201 cr4 = this_cpu_read(cpu_tlbstate.cr4); 202 if ((cr4 & ~mask) != cr4) 203 __cr4_set(cr4 & ~mask); 204 local_irq_restore(flags); 205 } 206 207 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 208 { 209 unsigned long cr4; 210 211 cr4 = this_cpu_read(cpu_tlbstate.cr4); 212 __cr4_set(cr4 ^ mask); 213 } 214 215 /* Read the CR4 shadow. */ 216 static inline unsigned long cr4_read_shadow(void) 217 { 218 return this_cpu_read(cpu_tlbstate.cr4); 219 } 220 221 /* 222 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 223 * enable and PPro Global page enable), so that any CPU's that boot 224 * up after us can get the correct flags. This should only be used 225 * during boot on the boot cpu. 226 */ 227 extern unsigned long mmu_cr4_features; 228 extern u32 *trampoline_cr4_features; 229 230 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 231 { 232 mmu_cr4_features |= mask; 233 if (trampoline_cr4_features) 234 *trampoline_cr4_features = mmu_cr4_features; 235 cr4_set_bits(mask); 236 } 237 238 extern void initialize_tlbstate_and_flush(void); 239 240 static inline void __native_flush_tlb(void) 241 { 242 /* 243 * If current->mm == NULL then we borrow a mm which may change during a 244 * task switch and therefore we must not be preempted while we write CR3 245 * back: 246 */ 247 preempt_disable(); 248 native_write_cr3(__native_read_cr3()); 249 preempt_enable(); 250 } 251 252 static inline void __native_flush_tlb_global_irq_disabled(void) 253 { 254 unsigned long cr4; 255 256 cr4 = this_cpu_read(cpu_tlbstate.cr4); 257 /* clear PGE */ 258 native_write_cr4(cr4 & ~X86_CR4_PGE); 259 /* write old PGE again and flush TLBs */ 260 native_write_cr4(cr4); 261 } 262 263 static inline void __native_flush_tlb_global(void) 264 { 265 unsigned long flags; 266 267 if (static_cpu_has(X86_FEATURE_INVPCID)) { 268 /* 269 * Using INVPCID is considerably faster than a pair of writes 270 * to CR4 sandwiched inside an IRQ flag save/restore. 271 */ 272 invpcid_flush_all(); 273 return; 274 } 275 276 /* 277 * Read-modify-write to CR4 - protect it from preemption and 278 * from interrupts. (Use the raw variant because this code can 279 * be called from deep inside debugging code.) 280 */ 281 raw_local_irq_save(flags); 282 283 __native_flush_tlb_global_irq_disabled(); 284 285 raw_local_irq_restore(flags); 286 } 287 288 static inline void __native_flush_tlb_single(unsigned long addr) 289 { 290 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 291 } 292 293 static inline void __flush_tlb_all(void) 294 { 295 if (boot_cpu_has(X86_FEATURE_PGE)) 296 __flush_tlb_global(); 297 else 298 __flush_tlb(); 299 300 /* 301 * Note: if we somehow had PCID but not PGE, then this wouldn't work -- 302 * we'd end up flushing kernel translations for the current ASID but 303 * we might fail to flush kernel translations for other cached ASIDs. 304 * 305 * To avoid this issue, we force PCID off if PGE is off. 306 */ 307 } 308 309 static inline void __flush_tlb_one(unsigned long addr) 310 { 311 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 312 __flush_tlb_single(addr); 313 } 314 315 #define TLB_FLUSH_ALL -1UL 316 317 /* 318 * TLB flushing: 319 * 320 * - flush_tlb_all() flushes all processes TLBs 321 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 322 * - flush_tlb_page(vma, vmaddr) flushes one page 323 * - flush_tlb_range(vma, start, end) flushes a range of pages 324 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages 325 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus 326 * 327 * ..but the i386 has somewhat limited tlb flushing capabilities, 328 * and page-granular flushes are available only on i486 and up. 329 */ 330 struct flush_tlb_info { 331 /* 332 * We support several kinds of flushes. 333 * 334 * - Fully flush a single mm. .mm will be set, .end will be 335 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to 336 * which the IPI sender is trying to catch us up. 337 * 338 * - Partially flush a single mm. .mm will be set, .start and 339 * .end will indicate the range, and .new_tlb_gen will be set 340 * such that the changes between generation .new_tlb_gen-1 and 341 * .new_tlb_gen are entirely contained in the indicated range. 342 * 343 * - Fully flush all mms whose tlb_gens have been updated. .mm 344 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen 345 * will be zero. 346 */ 347 struct mm_struct *mm; 348 unsigned long start; 349 unsigned long end; 350 u64 new_tlb_gen; 351 }; 352 353 #define local_flush_tlb() __flush_tlb() 354 355 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL) 356 357 #define flush_tlb_range(vma, start, end) \ 358 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags) 359 360 extern void flush_tlb_all(void); 361 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 362 unsigned long end, unsigned long vmflag); 363 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); 364 365 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a) 366 { 367 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE); 368 } 369 370 void native_flush_tlb_others(const struct cpumask *cpumask, 371 const struct flush_tlb_info *info); 372 373 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch, 374 struct mm_struct *mm) 375 { 376 inc_mm_tlb_gen(mm); 377 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm)); 378 } 379 380 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); 381 382 #ifndef CONFIG_PARAVIRT 383 #define flush_tlb_others(mask, info) \ 384 native_flush_tlb_others(mask, info) 385 #endif 386 387 #endif /* _ASM_X86_TLBFLUSH_H */ 388