xref: /openbmc/linux/arch/x86/include/asm/tlbflush.h (revision b78412b8)
1 #ifndef _ASM_X86_TLBFLUSH_H
2 #define _ASM_X86_TLBFLUSH_H
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 
7 #include <asm/processor.h>
8 #include <asm/cpufeature.h>
9 #include <asm/special_insns.h>
10 #include <asm/smp.h>
11 
12 static inline void __invpcid(unsigned long pcid, unsigned long addr,
13 			     unsigned long type)
14 {
15 	struct { u64 d[2]; } desc = { { pcid, addr } };
16 
17 	/*
18 	 * The memory clobber is because the whole point is to invalidate
19 	 * stale TLB entries and, especially if we're flushing global
20 	 * mappings, we don't want the compiler to reorder any subsequent
21 	 * memory accesses before the TLB flush.
22 	 *
23 	 * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and
24 	 * invpcid (%rcx), %rax in long mode.
25 	 */
26 	asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01"
27 		      : : "m" (desc), "a" (type), "c" (&desc) : "memory");
28 }
29 
30 #define INVPCID_TYPE_INDIV_ADDR		0
31 #define INVPCID_TYPE_SINGLE_CTXT	1
32 #define INVPCID_TYPE_ALL_INCL_GLOBAL	2
33 #define INVPCID_TYPE_ALL_NON_GLOBAL	3
34 
35 /* Flush all mappings for a given pcid and addr, not including globals. */
36 static inline void invpcid_flush_one(unsigned long pcid,
37 				     unsigned long addr)
38 {
39 	__invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR);
40 }
41 
42 /* Flush all mappings for a given PCID, not including globals. */
43 static inline void invpcid_flush_single_context(unsigned long pcid)
44 {
45 	__invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT);
46 }
47 
48 /* Flush all mappings, including globals, for all PCIDs. */
49 static inline void invpcid_flush_all(void)
50 {
51 	__invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL);
52 }
53 
54 /* Flush all mappings for all PCIDs except globals. */
55 static inline void invpcid_flush_all_nonglobals(void)
56 {
57 	__invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL);
58 }
59 
60 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
61 {
62 	u64 new_tlb_gen;
63 
64 	/*
65 	 * Bump the generation count.  This also serves as a full barrier
66 	 * that synchronizes with switch_mm(): callers are required to order
67 	 * their read of mm_cpumask after their writes to the paging
68 	 * structures.
69 	 */
70 	smp_mb__before_atomic();
71 	new_tlb_gen = atomic64_inc_return(&mm->context.tlb_gen);
72 	smp_mb__after_atomic();
73 
74 	return new_tlb_gen;
75 }
76 
77 #ifdef CONFIG_PARAVIRT
78 #include <asm/paravirt.h>
79 #else
80 #define __flush_tlb() __native_flush_tlb()
81 #define __flush_tlb_global() __native_flush_tlb_global()
82 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
83 #endif
84 
85 /*
86  * 6 because 6 should be plenty and struct tlb_state will fit in
87  * two cache lines.
88  */
89 #define TLB_NR_DYN_ASIDS 6
90 
91 struct tlb_context {
92 	u64 ctx_id;
93 	u64 tlb_gen;
94 };
95 
96 struct tlb_state {
97 	/*
98 	 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
99 	 * are on.  This means that it may not match current->active_mm,
100 	 * which will contain the previous user mm when we're in lazy TLB
101 	 * mode even if we've already switched back to swapper_pg_dir.
102 	 */
103 	struct mm_struct *loaded_mm;
104 	u16 loaded_mm_asid;
105 	u16 next_asid;
106 
107 	/*
108 	 * Access to this CR4 shadow and to H/W CR4 is protected by
109 	 * disabling interrupts when modifying either one.
110 	 */
111 	unsigned long cr4;
112 
113 	/*
114 	 * This is a list of all contexts that might exist in the TLB.
115 	 * There is one per ASID that we use, and the ASID (what the
116 	 * CPU calls PCID) is the index into ctxts.
117 	 *
118 	 * For each context, ctx_id indicates which mm the TLB's user
119 	 * entries came from.  As an invariant, the TLB will never
120 	 * contain entries that are out-of-date as when that mm reached
121 	 * the tlb_gen in the list.
122 	 *
123 	 * To be clear, this means that it's legal for the TLB code to
124 	 * flush the TLB without updating tlb_gen.  This can happen
125 	 * (for now, at least) due to paravirt remote flushes.
126 	 *
127 	 * NB: context 0 is a bit special, since it's also used by
128 	 * various bits of init code.  This is fine -- code that
129 	 * isn't aware of PCID will end up harmlessly flushing
130 	 * context 0.
131 	 */
132 	struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
133 };
134 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
135 
136 /* Initialize cr4 shadow for this CPU. */
137 static inline void cr4_init_shadow(void)
138 {
139 	this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
140 }
141 
142 /* Set in this cpu's CR4. */
143 static inline void cr4_set_bits(unsigned long mask)
144 {
145 	unsigned long cr4;
146 
147 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
148 	if ((cr4 | mask) != cr4) {
149 		cr4 |= mask;
150 		this_cpu_write(cpu_tlbstate.cr4, cr4);
151 		__write_cr4(cr4);
152 	}
153 }
154 
155 /* Clear in this cpu's CR4. */
156 static inline void cr4_clear_bits(unsigned long mask)
157 {
158 	unsigned long cr4;
159 
160 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
161 	if ((cr4 & ~mask) != cr4) {
162 		cr4 &= ~mask;
163 		this_cpu_write(cpu_tlbstate.cr4, cr4);
164 		__write_cr4(cr4);
165 	}
166 }
167 
168 static inline void cr4_toggle_bits(unsigned long mask)
169 {
170 	unsigned long cr4;
171 
172 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
173 	cr4 ^= mask;
174 	this_cpu_write(cpu_tlbstate.cr4, cr4);
175 	__write_cr4(cr4);
176 }
177 
178 /* Read the CR4 shadow. */
179 static inline unsigned long cr4_read_shadow(void)
180 {
181 	return this_cpu_read(cpu_tlbstate.cr4);
182 }
183 
184 /*
185  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
186  * enable and PPro Global page enable), so that any CPU's that boot
187  * up after us can get the correct flags.  This should only be used
188  * during boot on the boot cpu.
189  */
190 extern unsigned long mmu_cr4_features;
191 extern u32 *trampoline_cr4_features;
192 
193 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
194 {
195 	mmu_cr4_features |= mask;
196 	if (trampoline_cr4_features)
197 		*trampoline_cr4_features = mmu_cr4_features;
198 	cr4_set_bits(mask);
199 }
200 
201 extern void initialize_tlbstate_and_flush(void);
202 
203 static inline void __native_flush_tlb(void)
204 {
205 	/*
206 	 * If current->mm == NULL then we borrow a mm which may change during a
207 	 * task switch and therefore we must not be preempted while we write CR3
208 	 * back:
209 	 */
210 	preempt_disable();
211 	native_write_cr3(__native_read_cr3());
212 	preempt_enable();
213 }
214 
215 static inline void __native_flush_tlb_global_irq_disabled(void)
216 {
217 	unsigned long cr4;
218 
219 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
220 	/* clear PGE */
221 	native_write_cr4(cr4 & ~X86_CR4_PGE);
222 	/* write old PGE again and flush TLBs */
223 	native_write_cr4(cr4);
224 }
225 
226 static inline void __native_flush_tlb_global(void)
227 {
228 	unsigned long flags;
229 
230 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
231 		/*
232 		 * Using INVPCID is considerably faster than a pair of writes
233 		 * to CR4 sandwiched inside an IRQ flag save/restore.
234 		 */
235 		invpcid_flush_all();
236 		return;
237 	}
238 
239 	/*
240 	 * Read-modify-write to CR4 - protect it from preemption and
241 	 * from interrupts. (Use the raw variant because this code can
242 	 * be called from deep inside debugging code.)
243 	 */
244 	raw_local_irq_save(flags);
245 
246 	__native_flush_tlb_global_irq_disabled();
247 
248 	raw_local_irq_restore(flags);
249 }
250 
251 static inline void __native_flush_tlb_single(unsigned long addr)
252 {
253 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
254 }
255 
256 static inline void __flush_tlb_all(void)
257 {
258 	if (boot_cpu_has(X86_FEATURE_PGE))
259 		__flush_tlb_global();
260 	else
261 		__flush_tlb();
262 
263 	/*
264 	 * Note: if we somehow had PCID but not PGE, then this wouldn't work --
265 	 * we'd end up flushing kernel translations for the current ASID but
266 	 * we might fail to flush kernel translations for other cached ASIDs.
267 	 *
268 	 * To avoid this issue, we force PCID off if PGE is off.
269 	 */
270 }
271 
272 static inline void __flush_tlb_one(unsigned long addr)
273 {
274 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
275 	__flush_tlb_single(addr);
276 }
277 
278 #define TLB_FLUSH_ALL	-1UL
279 
280 /*
281  * TLB flushing:
282  *
283  *  - flush_tlb_all() flushes all processes TLBs
284  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
285  *  - flush_tlb_page(vma, vmaddr) flushes one page
286  *  - flush_tlb_range(vma, start, end) flushes a range of pages
287  *  - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
288  *  - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
289  *
290  * ..but the i386 has somewhat limited tlb flushing capabilities,
291  * and page-granular flushes are available only on i486 and up.
292  */
293 struct flush_tlb_info {
294 	/*
295 	 * We support several kinds of flushes.
296 	 *
297 	 * - Fully flush a single mm.  .mm will be set, .end will be
298 	 *   TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
299 	 *   which the IPI sender is trying to catch us up.
300 	 *
301 	 * - Partially flush a single mm.  .mm will be set, .start and
302 	 *   .end will indicate the range, and .new_tlb_gen will be set
303 	 *   such that the changes between generation .new_tlb_gen-1 and
304 	 *   .new_tlb_gen are entirely contained in the indicated range.
305 	 *
306 	 * - Fully flush all mms whose tlb_gens have been updated.  .mm
307 	 *   will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
308 	 *   will be zero.
309 	 */
310 	struct mm_struct	*mm;
311 	unsigned long		start;
312 	unsigned long		end;
313 	u64			new_tlb_gen;
314 };
315 
316 #define local_flush_tlb() __flush_tlb()
317 
318 #define flush_tlb_mm(mm)	flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
319 
320 #define flush_tlb_range(vma, start, end)	\
321 		flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
322 
323 extern void flush_tlb_all(void);
324 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
325 				unsigned long end, unsigned long vmflag);
326 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
327 
328 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
329 {
330 	flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
331 }
332 
333 void native_flush_tlb_others(const struct cpumask *cpumask,
334 			     const struct flush_tlb_info *info);
335 
336 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
337 					struct mm_struct *mm)
338 {
339 	inc_mm_tlb_gen(mm);
340 	cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
341 }
342 
343 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
344 
345 #ifndef CONFIG_PARAVIRT
346 #define flush_tlb_others(mask, info)	\
347 	native_flush_tlb_others(mask, info)
348 #endif
349 
350 #endif /* _ASM_X86_TLBFLUSH_H */
351