1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_TLBFLUSH_H 3 #define _ASM_X86_TLBFLUSH_H 4 5 #include <linux/mm.h> 6 #include <linux/sched.h> 7 8 #include <asm/processor.h> 9 #include <asm/cpufeature.h> 10 #include <asm/special_insns.h> 11 #include <asm/smp.h> 12 #include <asm/invpcid.h> 13 14 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm) 15 { 16 /* 17 * Bump the generation count. This also serves as a full barrier 18 * that synchronizes with switch_mm(): callers are required to order 19 * their read of mm_cpumask after their writes to the paging 20 * structures. 21 */ 22 return atomic64_inc_return(&mm->context.tlb_gen); 23 } 24 25 /* There are 12 bits of space for ASIDS in CR3 */ 26 #define CR3_HW_ASID_BITS 12 27 /* 28 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 29 * user/kernel switches 30 */ 31 #define PTI_CONSUMED_ASID_BITS 0 32 33 #define CR3_AVAIL_ASID_BITS (CR3_HW_ASID_BITS - PTI_CONSUMED_ASID_BITS) 34 /* 35 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 36 * for them being zero-based. Another -1 is because ASID 0 is reserved for 37 * use by non-PCID-aware users. 38 */ 39 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_ASID_BITS) - 2) 40 41 static inline u16 kern_pcid(u16 asid) 42 { 43 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 44 /* 45 * If PCID is on, ASID-aware code paths put the ASID+1 into the 46 * PCID bits. This serves two purposes. It prevents a nasty 47 * situation in which PCID-unaware code saves CR3, loads some other 48 * value (with PCID == 0), and then restores CR3, thus corrupting 49 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 50 * that any bugs involving loading a PCID-enabled CR3 with 51 * CR4.PCIDE off will trigger deterministically. 52 */ 53 return asid + 1; 54 } 55 56 struct pgd_t; 57 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 58 { 59 if (static_cpu_has(X86_FEATURE_PCID)) { 60 return __sme_pa(pgd) | kern_pcid(asid); 61 } else { 62 VM_WARN_ON_ONCE(asid != 0); 63 return __sme_pa(pgd); 64 } 65 } 66 67 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 68 { 69 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 70 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID)); 71 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 72 } 73 74 #ifdef CONFIG_PARAVIRT 75 #include <asm/paravirt.h> 76 #else 77 #define __flush_tlb() __native_flush_tlb() 78 #define __flush_tlb_global() __native_flush_tlb_global() 79 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr) 80 #endif 81 82 static inline bool tlb_defer_switch_to_init_mm(void) 83 { 84 /* 85 * If we have PCID, then switching to init_mm is reasonably 86 * fast. If we don't have PCID, then switching to init_mm is 87 * quite slow, so we try to defer it in the hopes that we can 88 * avoid it entirely. The latter approach runs the risk of 89 * receiving otherwise unnecessary IPIs. 90 * 91 * This choice is just a heuristic. The tlb code can handle this 92 * function returning true or false regardless of whether we have 93 * PCID. 94 */ 95 return !static_cpu_has(X86_FEATURE_PCID); 96 } 97 98 /* 99 * 6 because 6 should be plenty and struct tlb_state will fit in 100 * two cache lines. 101 */ 102 #define TLB_NR_DYN_ASIDS 6 103 104 struct tlb_context { 105 u64 ctx_id; 106 u64 tlb_gen; 107 }; 108 109 struct tlb_state { 110 /* 111 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts 112 * are on. This means that it may not match current->active_mm, 113 * which will contain the previous user mm when we're in lazy TLB 114 * mode even if we've already switched back to swapper_pg_dir. 115 */ 116 struct mm_struct *loaded_mm; 117 u16 loaded_mm_asid; 118 u16 next_asid; 119 120 /* 121 * We can be in one of several states: 122 * 123 * - Actively using an mm. Our CPU's bit will be set in 124 * mm_cpumask(loaded_mm) and is_lazy == false; 125 * 126 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit 127 * will not be set in mm_cpumask(&init_mm) and is_lazy == false. 128 * 129 * - Lazily using a real mm. loaded_mm != &init_mm, our bit 130 * is set in mm_cpumask(loaded_mm), but is_lazy == true. 131 * We're heuristically guessing that the CR3 load we 132 * skipped more than makes up for the overhead added by 133 * lazy mode. 134 */ 135 bool is_lazy; 136 137 /* 138 * Access to this CR4 shadow and to H/W CR4 is protected by 139 * disabling interrupts when modifying either one. 140 */ 141 unsigned long cr4; 142 143 /* 144 * This is a list of all contexts that might exist in the TLB. 145 * There is one per ASID that we use, and the ASID (what the 146 * CPU calls PCID) is the index into ctxts. 147 * 148 * For each context, ctx_id indicates which mm the TLB's user 149 * entries came from. As an invariant, the TLB will never 150 * contain entries that are out-of-date as when that mm reached 151 * the tlb_gen in the list. 152 * 153 * To be clear, this means that it's legal for the TLB code to 154 * flush the TLB without updating tlb_gen. This can happen 155 * (for now, at least) due to paravirt remote flushes. 156 * 157 * NB: context 0 is a bit special, since it's also used by 158 * various bits of init code. This is fine -- code that 159 * isn't aware of PCID will end up harmlessly flushing 160 * context 0. 161 */ 162 struct tlb_context ctxs[TLB_NR_DYN_ASIDS]; 163 }; 164 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); 165 166 /* Initialize cr4 shadow for this CPU. */ 167 static inline void cr4_init_shadow(void) 168 { 169 this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); 170 } 171 172 static inline void __cr4_set(unsigned long cr4) 173 { 174 lockdep_assert_irqs_disabled(); 175 this_cpu_write(cpu_tlbstate.cr4, cr4); 176 __write_cr4(cr4); 177 } 178 179 /* Set in this cpu's CR4. */ 180 static inline void cr4_set_bits(unsigned long mask) 181 { 182 unsigned long cr4, flags; 183 184 local_irq_save(flags); 185 cr4 = this_cpu_read(cpu_tlbstate.cr4); 186 if ((cr4 | mask) != cr4) 187 __cr4_set(cr4 | mask); 188 local_irq_restore(flags); 189 } 190 191 /* Clear in this cpu's CR4. */ 192 static inline void cr4_clear_bits(unsigned long mask) 193 { 194 unsigned long cr4, flags; 195 196 local_irq_save(flags); 197 cr4 = this_cpu_read(cpu_tlbstate.cr4); 198 if ((cr4 & ~mask) != cr4) 199 __cr4_set(cr4 & ~mask); 200 local_irq_restore(flags); 201 } 202 203 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 204 { 205 unsigned long cr4; 206 207 cr4 = this_cpu_read(cpu_tlbstate.cr4); 208 __cr4_set(cr4 ^ mask); 209 } 210 211 /* Read the CR4 shadow. */ 212 static inline unsigned long cr4_read_shadow(void) 213 { 214 return this_cpu_read(cpu_tlbstate.cr4); 215 } 216 217 /* 218 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 219 * enable and PPro Global page enable), so that any CPU's that boot 220 * up after us can get the correct flags. This should only be used 221 * during boot on the boot cpu. 222 */ 223 extern unsigned long mmu_cr4_features; 224 extern u32 *trampoline_cr4_features; 225 226 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 227 { 228 mmu_cr4_features |= mask; 229 if (trampoline_cr4_features) 230 *trampoline_cr4_features = mmu_cr4_features; 231 cr4_set_bits(mask); 232 } 233 234 extern void initialize_tlbstate_and_flush(void); 235 236 /* 237 * flush the entire current user mapping 238 */ 239 static inline void __native_flush_tlb(void) 240 { 241 /* 242 * If current->mm == NULL then we borrow a mm which may change during a 243 * task switch and therefore we must not be preempted while we write CR3 244 * back: 245 */ 246 preempt_disable(); 247 native_write_cr3(__native_read_cr3()); 248 preempt_enable(); 249 } 250 251 /* 252 * flush everything 253 */ 254 static inline void __native_flush_tlb_global(void) 255 { 256 unsigned long cr4, flags; 257 258 if (static_cpu_has(X86_FEATURE_INVPCID)) { 259 /* 260 * Using INVPCID is considerably faster than a pair of writes 261 * to CR4 sandwiched inside an IRQ flag save/restore. 262 */ 263 invpcid_flush_all(); 264 return; 265 } 266 267 /* 268 * Read-modify-write to CR4 - protect it from preemption and 269 * from interrupts. (Use the raw variant because this code can 270 * be called from deep inside debugging code.) 271 */ 272 raw_local_irq_save(flags); 273 274 cr4 = this_cpu_read(cpu_tlbstate.cr4); 275 /* toggle PGE */ 276 native_write_cr4(cr4 ^ X86_CR4_PGE); 277 /* write old PGE again and flush TLBs */ 278 native_write_cr4(cr4); 279 280 raw_local_irq_restore(flags); 281 } 282 283 /* 284 * flush one page in the user mapping 285 */ 286 static inline void __native_flush_tlb_single(unsigned long addr) 287 { 288 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 289 } 290 291 /* 292 * flush everything 293 */ 294 static inline void __flush_tlb_all(void) 295 { 296 if (boot_cpu_has(X86_FEATURE_PGE)) { 297 __flush_tlb_global(); 298 } else { 299 /* 300 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 301 */ 302 __flush_tlb(); 303 } 304 305 /* 306 * Note: if we somehow had PCID but not PGE, then this wouldn't work -- 307 * we'd end up flushing kernel translations for the current ASID but 308 * we might fail to flush kernel translations for other cached ASIDs. 309 * 310 * To avoid this issue, we force PCID off if PGE is off. 311 */ 312 } 313 314 /* 315 * flush one page in the kernel mapping 316 */ 317 static inline void __flush_tlb_one(unsigned long addr) 318 { 319 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 320 __flush_tlb_single(addr); 321 } 322 323 #define TLB_FLUSH_ALL -1UL 324 325 /* 326 * TLB flushing: 327 * 328 * - flush_tlb_all() flushes all processes TLBs 329 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 330 * - flush_tlb_page(vma, vmaddr) flushes one page 331 * - flush_tlb_range(vma, start, end) flushes a range of pages 332 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages 333 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus 334 * 335 * ..but the i386 has somewhat limited tlb flushing capabilities, 336 * and page-granular flushes are available only on i486 and up. 337 */ 338 struct flush_tlb_info { 339 /* 340 * We support several kinds of flushes. 341 * 342 * - Fully flush a single mm. .mm will be set, .end will be 343 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to 344 * which the IPI sender is trying to catch us up. 345 * 346 * - Partially flush a single mm. .mm will be set, .start and 347 * .end will indicate the range, and .new_tlb_gen will be set 348 * such that the changes between generation .new_tlb_gen-1 and 349 * .new_tlb_gen are entirely contained in the indicated range. 350 * 351 * - Fully flush all mms whose tlb_gens have been updated. .mm 352 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen 353 * will be zero. 354 */ 355 struct mm_struct *mm; 356 unsigned long start; 357 unsigned long end; 358 u64 new_tlb_gen; 359 }; 360 361 #define local_flush_tlb() __flush_tlb() 362 363 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL) 364 365 #define flush_tlb_range(vma, start, end) \ 366 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags) 367 368 extern void flush_tlb_all(void); 369 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 370 unsigned long end, unsigned long vmflag); 371 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); 372 373 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a) 374 { 375 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE); 376 } 377 378 void native_flush_tlb_others(const struct cpumask *cpumask, 379 const struct flush_tlb_info *info); 380 381 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch, 382 struct mm_struct *mm) 383 { 384 inc_mm_tlb_gen(mm); 385 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm)); 386 } 387 388 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); 389 390 #ifndef CONFIG_PARAVIRT 391 #define flush_tlb_others(mask, info) \ 392 native_flush_tlb_others(mask, info) 393 #endif 394 395 #endif /* _ASM_X86_TLBFLUSH_H */ 396