1 #ifndef _ASM_X86_TLBFLUSH_H 2 #define _ASM_X86_TLBFLUSH_H 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 7 #include <asm/processor.h> 8 #include <asm/cpufeature.h> 9 #include <asm/special_insns.h> 10 #include <asm/smp.h> 11 12 static inline void __invpcid(unsigned long pcid, unsigned long addr, 13 unsigned long type) 14 { 15 struct { u64 d[2]; } desc = { { pcid, addr } }; 16 17 /* 18 * The memory clobber is because the whole point is to invalidate 19 * stale TLB entries and, especially if we're flushing global 20 * mappings, we don't want the compiler to reorder any subsequent 21 * memory accesses before the TLB flush. 22 * 23 * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and 24 * invpcid (%rcx), %rax in long mode. 25 */ 26 asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01" 27 : : "m" (desc), "a" (type), "c" (&desc) : "memory"); 28 } 29 30 #define INVPCID_TYPE_INDIV_ADDR 0 31 #define INVPCID_TYPE_SINGLE_CTXT 1 32 #define INVPCID_TYPE_ALL_INCL_GLOBAL 2 33 #define INVPCID_TYPE_ALL_NON_GLOBAL 3 34 35 /* Flush all mappings for a given pcid and addr, not including globals. */ 36 static inline void invpcid_flush_one(unsigned long pcid, 37 unsigned long addr) 38 { 39 __invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR); 40 } 41 42 /* Flush all mappings for a given PCID, not including globals. */ 43 static inline void invpcid_flush_single_context(unsigned long pcid) 44 { 45 __invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT); 46 } 47 48 /* Flush all mappings, including globals, for all PCIDs. */ 49 static inline void invpcid_flush_all(void) 50 { 51 __invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL); 52 } 53 54 /* Flush all mappings for all PCIDs except globals. */ 55 static inline void invpcid_flush_all_nonglobals(void) 56 { 57 __invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL); 58 } 59 60 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm) 61 { 62 u64 new_tlb_gen; 63 64 /* 65 * Bump the generation count. This also serves as a full barrier 66 * that synchronizes with switch_mm(): callers are required to order 67 * their read of mm_cpumask after their writes to the paging 68 * structures. 69 */ 70 smp_mb__before_atomic(); 71 new_tlb_gen = atomic64_inc_return(&mm->context.tlb_gen); 72 smp_mb__after_atomic(); 73 74 return new_tlb_gen; 75 } 76 77 #ifdef CONFIG_PARAVIRT 78 #include <asm/paravirt.h> 79 #else 80 #define __flush_tlb() __native_flush_tlb() 81 #define __flush_tlb_global() __native_flush_tlb_global() 82 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr) 83 #endif 84 85 static inline bool tlb_defer_switch_to_init_mm(void) 86 { 87 /* 88 * If we have PCID, then switching to init_mm is reasonably 89 * fast. If we don't have PCID, then switching to init_mm is 90 * quite slow, so we try to defer it in the hopes that we can 91 * avoid it entirely. The latter approach runs the risk of 92 * receiving otherwise unnecessary IPIs. 93 * 94 * This choice is just a heuristic. The tlb code can handle this 95 * function returning true or false regardless of whether we have 96 * PCID. 97 */ 98 return !static_cpu_has(X86_FEATURE_PCID); 99 } 100 101 /* 102 * 6 because 6 should be plenty and struct tlb_state will fit in 103 * two cache lines. 104 */ 105 #define TLB_NR_DYN_ASIDS 6 106 107 struct tlb_context { 108 u64 ctx_id; 109 u64 tlb_gen; 110 }; 111 112 struct tlb_state { 113 /* 114 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts 115 * are on. This means that it may not match current->active_mm, 116 * which will contain the previous user mm when we're in lazy TLB 117 * mode even if we've already switched back to swapper_pg_dir. 118 */ 119 struct mm_struct *loaded_mm; 120 u16 loaded_mm_asid; 121 u16 next_asid; 122 123 /* 124 * We can be in one of several states: 125 * 126 * - Actively using an mm. Our CPU's bit will be set in 127 * mm_cpumask(loaded_mm) and is_lazy == false; 128 * 129 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit 130 * will not be set in mm_cpumask(&init_mm) and is_lazy == false. 131 * 132 * - Lazily using a real mm. loaded_mm != &init_mm, our bit 133 * is set in mm_cpumask(loaded_mm), but is_lazy == true. 134 * We're heuristically guessing that the CR3 load we 135 * skipped more than makes up for the overhead added by 136 * lazy mode. 137 */ 138 bool is_lazy; 139 140 /* 141 * Access to this CR4 shadow and to H/W CR4 is protected by 142 * disabling interrupts when modifying either one. 143 */ 144 unsigned long cr4; 145 146 /* 147 * This is a list of all contexts that might exist in the TLB. 148 * There is one per ASID that we use, and the ASID (what the 149 * CPU calls PCID) is the index into ctxts. 150 * 151 * For each context, ctx_id indicates which mm the TLB's user 152 * entries came from. As an invariant, the TLB will never 153 * contain entries that are out-of-date as when that mm reached 154 * the tlb_gen in the list. 155 * 156 * To be clear, this means that it's legal for the TLB code to 157 * flush the TLB without updating tlb_gen. This can happen 158 * (for now, at least) due to paravirt remote flushes. 159 * 160 * NB: context 0 is a bit special, since it's also used by 161 * various bits of init code. This is fine -- code that 162 * isn't aware of PCID will end up harmlessly flushing 163 * context 0. 164 */ 165 struct tlb_context ctxs[TLB_NR_DYN_ASIDS]; 166 }; 167 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); 168 169 /* Initialize cr4 shadow for this CPU. */ 170 static inline void cr4_init_shadow(void) 171 { 172 this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); 173 } 174 175 /* Set in this cpu's CR4. */ 176 static inline void cr4_set_bits(unsigned long mask) 177 { 178 unsigned long cr4; 179 180 cr4 = this_cpu_read(cpu_tlbstate.cr4); 181 if ((cr4 | mask) != cr4) { 182 cr4 |= mask; 183 this_cpu_write(cpu_tlbstate.cr4, cr4); 184 __write_cr4(cr4); 185 } 186 } 187 188 /* Clear in this cpu's CR4. */ 189 static inline void cr4_clear_bits(unsigned long mask) 190 { 191 unsigned long cr4; 192 193 cr4 = this_cpu_read(cpu_tlbstate.cr4); 194 if ((cr4 & ~mask) != cr4) { 195 cr4 &= ~mask; 196 this_cpu_write(cpu_tlbstate.cr4, cr4); 197 __write_cr4(cr4); 198 } 199 } 200 201 static inline void cr4_toggle_bits(unsigned long mask) 202 { 203 unsigned long cr4; 204 205 cr4 = this_cpu_read(cpu_tlbstate.cr4); 206 cr4 ^= mask; 207 this_cpu_write(cpu_tlbstate.cr4, cr4); 208 __write_cr4(cr4); 209 } 210 211 /* Read the CR4 shadow. */ 212 static inline unsigned long cr4_read_shadow(void) 213 { 214 return this_cpu_read(cpu_tlbstate.cr4); 215 } 216 217 /* 218 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 219 * enable and PPro Global page enable), so that any CPU's that boot 220 * up after us can get the correct flags. This should only be used 221 * during boot on the boot cpu. 222 */ 223 extern unsigned long mmu_cr4_features; 224 extern u32 *trampoline_cr4_features; 225 226 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 227 { 228 mmu_cr4_features |= mask; 229 if (trampoline_cr4_features) 230 *trampoline_cr4_features = mmu_cr4_features; 231 cr4_set_bits(mask); 232 } 233 234 extern void initialize_tlbstate_and_flush(void); 235 236 static inline void __native_flush_tlb(void) 237 { 238 /* 239 * If current->mm == NULL then we borrow a mm which may change during a 240 * task switch and therefore we must not be preempted while we write CR3 241 * back: 242 */ 243 preempt_disable(); 244 native_write_cr3(__native_read_cr3()); 245 preempt_enable(); 246 } 247 248 static inline void __native_flush_tlb_global_irq_disabled(void) 249 { 250 unsigned long cr4; 251 252 cr4 = this_cpu_read(cpu_tlbstate.cr4); 253 /* clear PGE */ 254 native_write_cr4(cr4 & ~X86_CR4_PGE); 255 /* write old PGE again and flush TLBs */ 256 native_write_cr4(cr4); 257 } 258 259 static inline void __native_flush_tlb_global(void) 260 { 261 unsigned long flags; 262 263 if (static_cpu_has(X86_FEATURE_INVPCID)) { 264 /* 265 * Using INVPCID is considerably faster than a pair of writes 266 * to CR4 sandwiched inside an IRQ flag save/restore. 267 */ 268 invpcid_flush_all(); 269 return; 270 } 271 272 /* 273 * Read-modify-write to CR4 - protect it from preemption and 274 * from interrupts. (Use the raw variant because this code can 275 * be called from deep inside debugging code.) 276 */ 277 raw_local_irq_save(flags); 278 279 __native_flush_tlb_global_irq_disabled(); 280 281 raw_local_irq_restore(flags); 282 } 283 284 static inline void __native_flush_tlb_single(unsigned long addr) 285 { 286 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 287 } 288 289 static inline void __flush_tlb_all(void) 290 { 291 if (boot_cpu_has(X86_FEATURE_PGE)) 292 __flush_tlb_global(); 293 else 294 __flush_tlb(); 295 296 /* 297 * Note: if we somehow had PCID but not PGE, then this wouldn't work -- 298 * we'd end up flushing kernel translations for the current ASID but 299 * we might fail to flush kernel translations for other cached ASIDs. 300 * 301 * To avoid this issue, we force PCID off if PGE is off. 302 */ 303 } 304 305 static inline void __flush_tlb_one(unsigned long addr) 306 { 307 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 308 __flush_tlb_single(addr); 309 } 310 311 #define TLB_FLUSH_ALL -1UL 312 313 /* 314 * TLB flushing: 315 * 316 * - flush_tlb_all() flushes all processes TLBs 317 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 318 * - flush_tlb_page(vma, vmaddr) flushes one page 319 * - flush_tlb_range(vma, start, end) flushes a range of pages 320 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages 321 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus 322 * 323 * ..but the i386 has somewhat limited tlb flushing capabilities, 324 * and page-granular flushes are available only on i486 and up. 325 */ 326 struct flush_tlb_info { 327 /* 328 * We support several kinds of flushes. 329 * 330 * - Fully flush a single mm. .mm will be set, .end will be 331 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to 332 * which the IPI sender is trying to catch us up. 333 * 334 * - Partially flush a single mm. .mm will be set, .start and 335 * .end will indicate the range, and .new_tlb_gen will be set 336 * such that the changes between generation .new_tlb_gen-1 and 337 * .new_tlb_gen are entirely contained in the indicated range. 338 * 339 * - Fully flush all mms whose tlb_gens have been updated. .mm 340 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen 341 * will be zero. 342 */ 343 struct mm_struct *mm; 344 unsigned long start; 345 unsigned long end; 346 u64 new_tlb_gen; 347 }; 348 349 #define local_flush_tlb() __flush_tlb() 350 351 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL) 352 353 #define flush_tlb_range(vma, start, end) \ 354 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags) 355 356 extern void flush_tlb_all(void); 357 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 358 unsigned long end, unsigned long vmflag); 359 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); 360 361 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a) 362 { 363 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE); 364 } 365 366 void native_flush_tlb_others(const struct cpumask *cpumask, 367 const struct flush_tlb_info *info); 368 369 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch, 370 struct mm_struct *mm) 371 { 372 inc_mm_tlb_gen(mm); 373 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm)); 374 } 375 376 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); 377 378 #ifndef CONFIG_PARAVIRT 379 #define flush_tlb_others(mask, info) \ 380 native_flush_tlb_others(mask, info) 381 #endif 382 383 #endif /* _ASM_X86_TLBFLUSH_H */ 384