1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_TLBFLUSH_H 3 #define _ASM_X86_TLBFLUSH_H 4 5 #include <linux/mm.h> 6 #include <linux/sched.h> 7 8 #include <asm/processor.h> 9 #include <asm/cpufeature.h> 10 #include <asm/special_insns.h> 11 #include <asm/smp.h> 12 #include <asm/invpcid.h> 13 #include <asm/pti.h> 14 #include <asm/processor-flags.h> 15 16 /* 17 * The x86 feature is called PCID (Process Context IDentifier). It is similar 18 * to what is traditionally called ASID on the RISC processors. 19 * 20 * We don't use the traditional ASID implementation, where each process/mm gets 21 * its own ASID and flush/restart when we run out of ASID space. 22 * 23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 24 * that came by on this CPU, allowing cheaper switch_mm between processes on 25 * this CPU. 26 * 27 * We end up with different spaces for different things. To avoid confusion we 28 * use different names for each of them: 29 * 30 * ASID - [0, TLB_NR_DYN_ASIDS-1] 31 * the canonical identifier for an mm 32 * 33 * kPCID - [1, TLB_NR_DYN_ASIDS] 34 * the value we write into the PCID part of CR3; corresponds to the 35 * ASID+1, because PCID 0 is special. 36 * 37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 38 * for KPTI each mm has two address spaces and thus needs two 39 * PCID values, but we can still do with a single ASID denomination 40 * for each mm. Corresponds to kPCID + 2048. 41 * 42 */ 43 44 /* There are 12 bits of space for ASIDS in CR3 */ 45 #define CR3_HW_ASID_BITS 12 46 47 /* 48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 49 * user/kernel switches 50 */ 51 #ifdef CONFIG_PAGE_TABLE_ISOLATION 52 # define PTI_CONSUMED_PCID_BITS 1 53 #else 54 # define PTI_CONSUMED_PCID_BITS 0 55 #endif 56 57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 58 59 /* 60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 61 * for them being zero-based. Another -1 is because PCID 0 is reserved for 62 * use by non-PCID-aware users. 63 */ 64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 65 66 /* 67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache 68 * lines. 69 */ 70 #define TLB_NR_DYN_ASIDS 6 71 72 /* 73 * Given @asid, compute kPCID 74 */ 75 static inline u16 kern_pcid(u16 asid) 76 { 77 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 78 79 #ifdef CONFIG_PAGE_TABLE_ISOLATION 80 /* 81 * Make sure that the dynamic ASID space does not confict with the 82 * bit we are using to switch between user and kernel ASIDs. 83 */ 84 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_SWITCH_BIT)); 85 86 /* 87 * The ASID being passed in here should have respected the 88 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 89 */ 90 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_SWITCH_BIT)); 91 #endif 92 /* 93 * The dynamically-assigned ASIDs that get passed in are small 94 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 95 * so do not bother to clear it. 96 * 97 * If PCID is on, ASID-aware code paths put the ASID+1 into the 98 * PCID bits. This serves two purposes. It prevents a nasty 99 * situation in which PCID-unaware code saves CR3, loads some other 100 * value (with PCID == 0), and then restores CR3, thus corrupting 101 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 102 * that any bugs involving loading a PCID-enabled CR3 with 103 * CR4.PCIDE off will trigger deterministically. 104 */ 105 return asid + 1; 106 } 107 108 /* 109 * Given @asid, compute uPCID 110 */ 111 static inline u16 user_pcid(u16 asid) 112 { 113 u16 ret = kern_pcid(asid); 114 #ifdef CONFIG_PAGE_TABLE_ISOLATION 115 ret |= 1 << X86_CR3_PTI_SWITCH_BIT; 116 #endif 117 return ret; 118 } 119 120 struct pgd_t; 121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 122 { 123 if (static_cpu_has(X86_FEATURE_PCID)) { 124 return __sme_pa(pgd) | kern_pcid(asid); 125 } else { 126 VM_WARN_ON_ONCE(asid != 0); 127 return __sme_pa(pgd); 128 } 129 } 130 131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 132 { 133 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 134 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID)); 135 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 136 } 137 138 #ifdef CONFIG_PARAVIRT 139 #include <asm/paravirt.h> 140 #else 141 #define __flush_tlb() __native_flush_tlb() 142 #define __flush_tlb_global() __native_flush_tlb_global() 143 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr) 144 #endif 145 146 static inline bool tlb_defer_switch_to_init_mm(void) 147 { 148 /* 149 * If we have PCID, then switching to init_mm is reasonably 150 * fast. If we don't have PCID, then switching to init_mm is 151 * quite slow, so we try to defer it in the hopes that we can 152 * avoid it entirely. The latter approach runs the risk of 153 * receiving otherwise unnecessary IPIs. 154 * 155 * This choice is just a heuristic. The tlb code can handle this 156 * function returning true or false regardless of whether we have 157 * PCID. 158 */ 159 return !static_cpu_has(X86_FEATURE_PCID); 160 } 161 162 struct tlb_context { 163 u64 ctx_id; 164 u64 tlb_gen; 165 }; 166 167 struct tlb_state { 168 /* 169 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts 170 * are on. This means that it may not match current->active_mm, 171 * which will contain the previous user mm when we're in lazy TLB 172 * mode even if we've already switched back to swapper_pg_dir. 173 */ 174 struct mm_struct *loaded_mm; 175 u16 loaded_mm_asid; 176 u16 next_asid; 177 178 /* 179 * We can be in one of several states: 180 * 181 * - Actively using an mm. Our CPU's bit will be set in 182 * mm_cpumask(loaded_mm) and is_lazy == false; 183 * 184 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit 185 * will not be set in mm_cpumask(&init_mm) and is_lazy == false. 186 * 187 * - Lazily using a real mm. loaded_mm != &init_mm, our bit 188 * is set in mm_cpumask(loaded_mm), but is_lazy == true. 189 * We're heuristically guessing that the CR3 load we 190 * skipped more than makes up for the overhead added by 191 * lazy mode. 192 */ 193 bool is_lazy; 194 195 /* 196 * If set we changed the page tables in such a way that we 197 * needed an invalidation of all contexts (aka. PCIDs / ASIDs). 198 * This tells us to go invalidate all the non-loaded ctxs[] 199 * on the next context switch. 200 * 201 * The current ctx was kept up-to-date as it ran and does not 202 * need to be invalidated. 203 */ 204 bool invalidate_other; 205 206 /* 207 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate 208 * the corresponding user PCID needs a flush next time we 209 * switch to it; see SWITCH_TO_USER_CR3. 210 */ 211 unsigned short user_pcid_flush_mask; 212 213 /* 214 * Access to this CR4 shadow and to H/W CR4 is protected by 215 * disabling interrupts when modifying either one. 216 */ 217 unsigned long cr4; 218 219 /* 220 * This is a list of all contexts that might exist in the TLB. 221 * There is one per ASID that we use, and the ASID (what the 222 * CPU calls PCID) is the index into ctxts. 223 * 224 * For each context, ctx_id indicates which mm the TLB's user 225 * entries came from. As an invariant, the TLB will never 226 * contain entries that are out-of-date as when that mm reached 227 * the tlb_gen in the list. 228 * 229 * To be clear, this means that it's legal for the TLB code to 230 * flush the TLB without updating tlb_gen. This can happen 231 * (for now, at least) due to paravirt remote flushes. 232 * 233 * NB: context 0 is a bit special, since it's also used by 234 * various bits of init code. This is fine -- code that 235 * isn't aware of PCID will end up harmlessly flushing 236 * context 0. 237 */ 238 struct tlb_context ctxs[TLB_NR_DYN_ASIDS]; 239 }; 240 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); 241 242 /* Initialize cr4 shadow for this CPU. */ 243 static inline void cr4_init_shadow(void) 244 { 245 this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); 246 } 247 248 static inline void __cr4_set(unsigned long cr4) 249 { 250 lockdep_assert_irqs_disabled(); 251 this_cpu_write(cpu_tlbstate.cr4, cr4); 252 __write_cr4(cr4); 253 } 254 255 /* Set in this cpu's CR4. */ 256 static inline void cr4_set_bits(unsigned long mask) 257 { 258 unsigned long cr4, flags; 259 260 local_irq_save(flags); 261 cr4 = this_cpu_read(cpu_tlbstate.cr4); 262 if ((cr4 | mask) != cr4) 263 __cr4_set(cr4 | mask); 264 local_irq_restore(flags); 265 } 266 267 /* Clear in this cpu's CR4. */ 268 static inline void cr4_clear_bits(unsigned long mask) 269 { 270 unsigned long cr4, flags; 271 272 local_irq_save(flags); 273 cr4 = this_cpu_read(cpu_tlbstate.cr4); 274 if ((cr4 & ~mask) != cr4) 275 __cr4_set(cr4 & ~mask); 276 local_irq_restore(flags); 277 } 278 279 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 280 { 281 unsigned long cr4; 282 283 cr4 = this_cpu_read(cpu_tlbstate.cr4); 284 __cr4_set(cr4 ^ mask); 285 } 286 287 /* Read the CR4 shadow. */ 288 static inline unsigned long cr4_read_shadow(void) 289 { 290 return this_cpu_read(cpu_tlbstate.cr4); 291 } 292 293 /* 294 * Mark all other ASIDs as invalid, preserves the current. 295 */ 296 static inline void invalidate_other_asid(void) 297 { 298 this_cpu_write(cpu_tlbstate.invalidate_other, true); 299 } 300 301 /* 302 * Save some of cr4 feature set we're using (e.g. Pentium 4MB 303 * enable and PPro Global page enable), so that any CPU's that boot 304 * up after us can get the correct flags. This should only be used 305 * during boot on the boot cpu. 306 */ 307 extern unsigned long mmu_cr4_features; 308 extern u32 *trampoline_cr4_features; 309 310 static inline void cr4_set_bits_and_update_boot(unsigned long mask) 311 { 312 mmu_cr4_features |= mask; 313 if (trampoline_cr4_features) 314 *trampoline_cr4_features = mmu_cr4_features; 315 cr4_set_bits(mask); 316 } 317 318 extern void initialize_tlbstate_and_flush(void); 319 320 /* 321 * Given an ASID, flush the corresponding user ASID. We can delay this 322 * until the next time we switch to it. 323 * 324 * See SWITCH_TO_USER_CR3. 325 */ 326 static inline void invalidate_user_asid(u16 asid) 327 { 328 /* There is no user ASID if address space separation is off */ 329 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 330 return; 331 332 /* 333 * We only have a single ASID if PCID is off and the CR3 334 * write will have flushed it. 335 */ 336 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 337 return; 338 339 if (!static_cpu_has(X86_FEATURE_PTI)) 340 return; 341 342 __set_bit(kern_pcid(asid), 343 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 344 } 345 346 /* 347 * flush the entire current user mapping 348 */ 349 static inline void __native_flush_tlb(void) 350 { 351 /* 352 * Preemption or interrupts must be disabled to protect the access 353 * to the per CPU variable and to prevent being preempted between 354 * read_cr3() and write_cr3(). 355 */ 356 WARN_ON_ONCE(preemptible()); 357 358 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 359 360 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 361 native_write_cr3(__native_read_cr3()); 362 } 363 364 /* 365 * flush everything 366 */ 367 static inline void __native_flush_tlb_global(void) 368 { 369 unsigned long cr4, flags; 370 371 if (static_cpu_has(X86_FEATURE_INVPCID)) { 372 /* 373 * Using INVPCID is considerably faster than a pair of writes 374 * to CR4 sandwiched inside an IRQ flag save/restore. 375 * 376 * Note, this works with CR4.PCIDE=0 or 1. 377 */ 378 invpcid_flush_all(); 379 return; 380 } 381 382 /* 383 * Read-modify-write to CR4 - protect it from preemption and 384 * from interrupts. (Use the raw variant because this code can 385 * be called from deep inside debugging code.) 386 */ 387 raw_local_irq_save(flags); 388 389 cr4 = this_cpu_read(cpu_tlbstate.cr4); 390 /* toggle PGE */ 391 native_write_cr4(cr4 ^ X86_CR4_PGE); 392 /* write old PGE again and flush TLBs */ 393 native_write_cr4(cr4); 394 395 raw_local_irq_restore(flags); 396 } 397 398 /* 399 * flush one page in the user mapping 400 */ 401 static inline void __native_flush_tlb_single(unsigned long addr) 402 { 403 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 404 405 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 406 407 if (!static_cpu_has(X86_FEATURE_PTI)) 408 return; 409 410 /* 411 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 412 * Just use invalidate_user_asid() in case we are called early. 413 */ 414 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 415 invalidate_user_asid(loaded_mm_asid); 416 else 417 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 418 } 419 420 /* 421 * flush everything 422 */ 423 static inline void __flush_tlb_all(void) 424 { 425 if (boot_cpu_has(X86_FEATURE_PGE)) { 426 __flush_tlb_global(); 427 } else { 428 /* 429 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 430 */ 431 __flush_tlb(); 432 } 433 } 434 435 /* 436 * flush one page in the kernel mapping 437 */ 438 static inline void __flush_tlb_one(unsigned long addr) 439 { 440 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 441 __flush_tlb_single(addr); 442 443 if (!static_cpu_has(X86_FEATURE_PTI)) 444 return; 445 446 /* 447 * __flush_tlb_single() will have cleared the TLB entry for this ASID, 448 * but since kernel space is replicated across all, we must also 449 * invalidate all others. 450 */ 451 invalidate_other_asid(); 452 } 453 454 #define TLB_FLUSH_ALL -1UL 455 456 /* 457 * TLB flushing: 458 * 459 * - flush_tlb_all() flushes all processes TLBs 460 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 461 * - flush_tlb_page(vma, vmaddr) flushes one page 462 * - flush_tlb_range(vma, start, end) flushes a range of pages 463 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages 464 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus 465 * 466 * ..but the i386 has somewhat limited tlb flushing capabilities, 467 * and page-granular flushes are available only on i486 and up. 468 */ 469 struct flush_tlb_info { 470 /* 471 * We support several kinds of flushes. 472 * 473 * - Fully flush a single mm. .mm will be set, .end will be 474 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to 475 * which the IPI sender is trying to catch us up. 476 * 477 * - Partially flush a single mm. .mm will be set, .start and 478 * .end will indicate the range, and .new_tlb_gen will be set 479 * such that the changes between generation .new_tlb_gen-1 and 480 * .new_tlb_gen are entirely contained in the indicated range. 481 * 482 * - Fully flush all mms whose tlb_gens have been updated. .mm 483 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen 484 * will be zero. 485 */ 486 struct mm_struct *mm; 487 unsigned long start; 488 unsigned long end; 489 u64 new_tlb_gen; 490 }; 491 492 #define local_flush_tlb() __flush_tlb() 493 494 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL) 495 496 #define flush_tlb_range(vma, start, end) \ 497 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags) 498 499 extern void flush_tlb_all(void); 500 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 501 unsigned long end, unsigned long vmflag); 502 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); 503 504 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a) 505 { 506 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE); 507 } 508 509 void native_flush_tlb_others(const struct cpumask *cpumask, 510 const struct flush_tlb_info *info); 511 512 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm) 513 { 514 /* 515 * Bump the generation count. This also serves as a full barrier 516 * that synchronizes with switch_mm(): callers are required to order 517 * their read of mm_cpumask after their writes to the paging 518 * structures. 519 */ 520 return atomic64_inc_return(&mm->context.tlb_gen); 521 } 522 523 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch, 524 struct mm_struct *mm) 525 { 526 inc_mm_tlb_gen(mm); 527 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm)); 528 } 529 530 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch); 531 532 #ifndef CONFIG_PARAVIRT 533 #define flush_tlb_others(mask, info) \ 534 native_flush_tlb_others(mask, info) 535 #endif 536 537 #endif /* _ASM_X86_TLBFLUSH_H */ 538