xref: /openbmc/linux/arch/x86/include/asm/timer.h (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 #ifndef _ASM_X86_TIMER_H
2 #define _ASM_X86_TIMER_H
3 #include <linux/init.h>
4 #include <linux/pm.h>
5 #include <linux/percpu.h>
6 #include <linux/interrupt.h>
7 
8 #define TICK_SIZE (tick_nsec / 1000)
9 
10 unsigned long long native_sched_clock(void);
11 extern int recalibrate_cpu_khz(void);
12 
13 extern int no_timer_check;
14 
15 /* Accelerators for sched_clock()
16  * convert from cycles(64bits) => nanoseconds (64bits)
17  *  basic equation:
18  *		ns = cycles / (freq / ns_per_sec)
19  *		ns = cycles * (ns_per_sec / freq)
20  *		ns = cycles * (10^9 / (cpu_khz * 10^3))
21  *		ns = cycles * (10^6 / cpu_khz)
22  *
23  *	Then we use scaling math (suggested by george@mvista.com) to get:
24  *		ns = cycles * (10^6 * SC / cpu_khz) / SC
25  *		ns = cycles * cyc2ns_scale / SC
26  *
27  *	And since SC is a constant power of two, we can convert the div
28  *  into a shift.
29  *
30  *  We can use khz divisor instead of mhz to keep a better precision, since
31  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
32  *  (mathieu.desnoyers@polymtl.ca)
33  *
34  *			-johnstul@us.ibm.com "math is hard, lets go shopping!"
35  */
36 
37 DECLARE_PER_CPU(unsigned long, cyc2ns);
38 DECLARE_PER_CPU(unsigned long long, cyc2ns_offset);
39 
40 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
41 
42 static inline unsigned long long __cycles_2_ns(unsigned long long cyc)
43 {
44 	int cpu = smp_processor_id();
45 	unsigned long long ns = per_cpu(cyc2ns_offset, cpu);
46 	ns += cyc * per_cpu(cyc2ns, cpu) >> CYC2NS_SCALE_FACTOR;
47 	return ns;
48 }
49 
50 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
51 {
52 	unsigned long long ns;
53 	unsigned long flags;
54 
55 	local_irq_save(flags);
56 	ns = __cycles_2_ns(cyc);
57 	local_irq_restore(flags);
58 
59 	return ns;
60 }
61 
62 #endif /* _ASM_X86_TIMER_H */
63