xref: /openbmc/linux/arch/x86/include/asm/timer.h (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 #ifndef _ASM_X86_TIMER_H
2 #define _ASM_X86_TIMER_H
3 #include <linux/init.h>
4 #include <linux/pm.h>
5 #include <linux/percpu.h>
6 
7 #define TICK_SIZE (tick_nsec / 1000)
8 
9 unsigned long long native_sched_clock(void);
10 unsigned long native_calibrate_tsc(void);
11 
12 #ifdef CONFIG_X86_32
13 extern int timer_ack;
14 extern int recalibrate_cpu_khz(void);
15 #endif /* CONFIG_X86_32 */
16 
17 extern int no_timer_check;
18 
19 #ifndef CONFIG_PARAVIRT
20 #define calibrate_tsc() native_calibrate_tsc()
21 #endif
22 
23 /* Accelerators for sched_clock()
24  * convert from cycles(64bits) => nanoseconds (64bits)
25  *  basic equation:
26  *		ns = cycles / (freq / ns_per_sec)
27  *		ns = cycles * (ns_per_sec / freq)
28  *		ns = cycles * (10^9 / (cpu_khz * 10^3))
29  *		ns = cycles * (10^6 / cpu_khz)
30  *
31  *	Then we use scaling math (suggested by george@mvista.com) to get:
32  *		ns = cycles * (10^6 * SC / cpu_khz) / SC
33  *		ns = cycles * cyc2ns_scale / SC
34  *
35  *	And since SC is a constant power of two, we can convert the div
36  *  into a shift.
37  *
38  *  We can use khz divisor instead of mhz to keep a better precision, since
39  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
40  *  (mathieu.desnoyers@polymtl.ca)
41  *
42  *			-johnstul@us.ibm.com "math is hard, lets go shopping!"
43  */
44 
45 DECLARE_PER_CPU(unsigned long, cyc2ns);
46 
47 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
48 
49 static inline unsigned long long __cycles_2_ns(unsigned long long cyc)
50 {
51 	return cyc * per_cpu(cyc2ns, smp_processor_id()) >> CYC2NS_SCALE_FACTOR;
52 }
53 
54 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
55 {
56 	unsigned long long ns;
57 	unsigned long flags;
58 
59 	local_irq_save(flags);
60 	ns = __cycles_2_ns(cyc);
61 	local_irq_restore(flags);
62 
63 	return ns;
64 }
65 
66 #endif /* _ASM_X86_TIMER_H */
67