xref: /openbmc/linux/arch/x86/include/asm/spinlock.h (revision bc08b449)
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3 
4 #include <linux/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10  * Your basic SMP spinlocks, allowing only a single CPU anywhere
11  *
12  * Simple spin lock operations.  There are two variants, one clears IRQ's
13  * on the local processor, one does not.
14  *
15  * These are fair FIFO ticket locks, which support up to 2^16 CPUs.
16  *
17  * (the type definitions are in asm/spinlock_types.h)
18  */
19 
20 #ifdef CONFIG_X86_32
21 # define LOCK_PTR_REG "a"
22 #else
23 # define LOCK_PTR_REG "D"
24 #endif
25 
26 #if defined(CONFIG_X86_32) && \
27 	(defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
28 /*
29  * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
30  * (PPro errata 66, 92)
31  */
32 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
33 #else
34 # define UNLOCK_LOCK_PREFIX
35 #endif
36 
37 static __always_inline int arch_spin_value_unlocked(arch_spinlock_t lock)
38 {
39 	return lock.tickets.head == lock.tickets.tail;
40 }
41 
42 /*
43  * Ticket locks are conceptually two parts, one indicating the current head of
44  * the queue, and the other indicating the current tail. The lock is acquired
45  * by atomically noting the tail and incrementing it by one (thus adding
46  * ourself to the queue and noting our position), then waiting until the head
47  * becomes equal to the the initial value of the tail.
48  *
49  * We use an xadd covering *both* parts of the lock, to increment the tail and
50  * also load the position of the head, which takes care of memory ordering
51  * issues and should be optimal for the uncontended case. Note the tail must be
52  * in the high part, because a wide xadd increment of the low part would carry
53  * up and contaminate the high part.
54  */
55 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
56 {
57 	register struct __raw_tickets inc = { .tail = 1 };
58 
59 	inc = xadd(&lock->tickets, inc);
60 
61 	for (;;) {
62 		if (inc.head == inc.tail)
63 			break;
64 		cpu_relax();
65 		inc.head = ACCESS_ONCE(lock->tickets.head);
66 	}
67 	barrier();		/* make sure nothing creeps before the lock is taken */
68 }
69 
70 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
71 {
72 	arch_spinlock_t old, new;
73 
74 	old.tickets = ACCESS_ONCE(lock->tickets);
75 	if (old.tickets.head != old.tickets.tail)
76 		return 0;
77 
78 	new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
79 
80 	/* cmpxchg is a full barrier, so nothing can move before it */
81 	return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
82 }
83 
84 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
85 {
86 	__add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
87 }
88 
89 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
90 {
91 	struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
92 
93 	return tmp.tail != tmp.head;
94 }
95 
96 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
97 {
98 	struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
99 
100 	return (__ticket_t)(tmp.tail - tmp.head) > 1;
101 }
102 
103 #ifndef CONFIG_PARAVIRT_SPINLOCKS
104 
105 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
106 {
107 	return __ticket_spin_is_locked(lock);
108 }
109 
110 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
111 {
112 	return __ticket_spin_is_contended(lock);
113 }
114 #define arch_spin_is_contended	arch_spin_is_contended
115 
116 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
117 {
118 	__ticket_spin_lock(lock);
119 }
120 
121 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
122 {
123 	return __ticket_spin_trylock(lock);
124 }
125 
126 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
127 {
128 	__ticket_spin_unlock(lock);
129 }
130 
131 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
132 						  unsigned long flags)
133 {
134 	arch_spin_lock(lock);
135 }
136 
137 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
138 
139 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
140 {
141 	while (arch_spin_is_locked(lock))
142 		cpu_relax();
143 }
144 
145 /*
146  * Read-write spinlocks, allowing multiple readers
147  * but only one writer.
148  *
149  * NOTE! it is quite common to have readers in interrupts
150  * but no interrupt writers. For those circumstances we
151  * can "mix" irq-safe locks - any writer needs to get a
152  * irq-safe write-lock, but readers can get non-irqsafe
153  * read-locks.
154  *
155  * On x86, we implement read-write locks as a 32-bit counter
156  * with the high bit (sign) being the "contended" bit.
157  */
158 
159 /**
160  * read_can_lock - would read_trylock() succeed?
161  * @lock: the rwlock in question.
162  */
163 static inline int arch_read_can_lock(arch_rwlock_t *lock)
164 {
165 	return lock->lock > 0;
166 }
167 
168 /**
169  * write_can_lock - would write_trylock() succeed?
170  * @lock: the rwlock in question.
171  */
172 static inline int arch_write_can_lock(arch_rwlock_t *lock)
173 {
174 	return lock->write == WRITE_LOCK_CMP;
175 }
176 
177 static inline void arch_read_lock(arch_rwlock_t *rw)
178 {
179 	asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
180 		     "jns 1f\n"
181 		     "call __read_lock_failed\n\t"
182 		     "1:\n"
183 		     ::LOCK_PTR_REG (rw) : "memory");
184 }
185 
186 static inline void arch_write_lock(arch_rwlock_t *rw)
187 {
188 	asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
189 		     "jz 1f\n"
190 		     "call __write_lock_failed\n\t"
191 		     "1:\n"
192 		     ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
193 		     : "memory");
194 }
195 
196 static inline int arch_read_trylock(arch_rwlock_t *lock)
197 {
198 	READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
199 
200 	if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
201 		return 1;
202 	READ_LOCK_ATOMIC(inc)(count);
203 	return 0;
204 }
205 
206 static inline int arch_write_trylock(arch_rwlock_t *lock)
207 {
208 	atomic_t *count = (atomic_t *)&lock->write;
209 
210 	if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
211 		return 1;
212 	atomic_add(WRITE_LOCK_CMP, count);
213 	return 0;
214 }
215 
216 static inline void arch_read_unlock(arch_rwlock_t *rw)
217 {
218 	asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
219 		     :"+m" (rw->lock) : : "memory");
220 }
221 
222 static inline void arch_write_unlock(arch_rwlock_t *rw)
223 {
224 	asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
225 		     : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
226 }
227 
228 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
229 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
230 
231 #undef READ_LOCK_SIZE
232 #undef READ_LOCK_ATOMIC
233 #undef WRITE_LOCK_ADD
234 #undef WRITE_LOCK_SUB
235 #undef WRITE_LOCK_CMP
236 
237 #define arch_spin_relax(lock)	cpu_relax()
238 #define arch_read_relax(lock)	cpu_relax()
239 #define arch_write_relax(lock)	cpu_relax()
240 
241 #endif /* _ASM_X86_SPINLOCK_H */
242