1 #ifndef _ASM_X86_SPINLOCK_H 2 #define _ASM_X86_SPINLOCK_H 3 4 #include <linux/atomic.h> 5 #include <asm/page.h> 6 #include <asm/processor.h> 7 #include <linux/compiler.h> 8 #include <asm/paravirt.h> 9 /* 10 * Your basic SMP spinlocks, allowing only a single CPU anywhere 11 * 12 * Simple spin lock operations. There are two variants, one clears IRQ's 13 * on the local processor, one does not. 14 * 15 * These are fair FIFO ticket locks, which are currently limited to 256 16 * CPUs. 17 * 18 * (the type definitions are in asm/spinlock_types.h) 19 */ 20 21 #ifdef CONFIG_X86_32 22 # define LOCK_PTR_REG "a" 23 # define REG_PTR_MODE "k" 24 #else 25 # define LOCK_PTR_REG "D" 26 # define REG_PTR_MODE "q" 27 #endif 28 29 #if defined(CONFIG_X86_32) && \ 30 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE)) 31 /* 32 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock 33 * (PPro errata 66, 92) 34 */ 35 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX 36 #else 37 # define UNLOCK_LOCK_PREFIX 38 #endif 39 40 /* 41 * Ticket locks are conceptually two parts, one indicating the current head of 42 * the queue, and the other indicating the current tail. The lock is acquired 43 * by atomically noting the tail and incrementing it by one (thus adding 44 * ourself to the queue and noting our position), then waiting until the head 45 * becomes equal to the the initial value of the tail. 46 * 47 * We use an xadd covering *both* parts of the lock, to increment the tail and 48 * also load the position of the head, which takes care of memory ordering 49 * issues and should be optimal for the uncontended case. Note the tail must be 50 * in the high part, because a wide xadd increment of the low part would carry 51 * up and contaminate the high part. 52 */ 53 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock) 54 { 55 register struct __raw_tickets inc = { .tail = 1 }; 56 57 inc = xadd(&lock->tickets, inc); 58 59 for (;;) { 60 if (inc.head == inc.tail) 61 break; 62 cpu_relax(); 63 inc.head = ACCESS_ONCE(lock->tickets.head); 64 } 65 barrier(); /* make sure nothing creeps before the lock is taken */ 66 } 67 68 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock) 69 { 70 arch_spinlock_t old, new; 71 72 old.tickets = ACCESS_ONCE(lock->tickets); 73 if (old.tickets.head != old.tickets.tail) 74 return 0; 75 76 new.head_tail = old.head_tail + (1 << TICKET_SHIFT); 77 78 /* cmpxchg is a full barrier, so nothing can move before it */ 79 return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail; 80 } 81 82 #if (NR_CPUS < 256) 83 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock) 84 { 85 asm volatile(UNLOCK_LOCK_PREFIX "incb %0" 86 : "+m" (lock->head_tail) 87 : 88 : "memory", "cc"); 89 } 90 #else 91 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock) 92 { 93 asm volatile(UNLOCK_LOCK_PREFIX "incw %0" 94 : "+m" (lock->head_tail) 95 : 96 : "memory", "cc"); 97 } 98 #endif 99 100 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock) 101 { 102 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets); 103 104 return !!(tmp.tail ^ tmp.head); 105 } 106 107 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock) 108 { 109 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets); 110 111 return ((tmp.tail - tmp.head) & TICKET_MASK) > 1; 112 } 113 114 #ifndef CONFIG_PARAVIRT_SPINLOCKS 115 116 static inline int arch_spin_is_locked(arch_spinlock_t *lock) 117 { 118 return __ticket_spin_is_locked(lock); 119 } 120 121 static inline int arch_spin_is_contended(arch_spinlock_t *lock) 122 { 123 return __ticket_spin_is_contended(lock); 124 } 125 #define arch_spin_is_contended arch_spin_is_contended 126 127 static __always_inline void arch_spin_lock(arch_spinlock_t *lock) 128 { 129 __ticket_spin_lock(lock); 130 } 131 132 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock) 133 { 134 return __ticket_spin_trylock(lock); 135 } 136 137 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock) 138 { 139 __ticket_spin_unlock(lock); 140 } 141 142 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock, 143 unsigned long flags) 144 { 145 arch_spin_lock(lock); 146 } 147 148 #endif /* CONFIG_PARAVIRT_SPINLOCKS */ 149 150 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock) 151 { 152 while (arch_spin_is_locked(lock)) 153 cpu_relax(); 154 } 155 156 /* 157 * Read-write spinlocks, allowing multiple readers 158 * but only one writer. 159 * 160 * NOTE! it is quite common to have readers in interrupts 161 * but no interrupt writers. For those circumstances we 162 * can "mix" irq-safe locks - any writer needs to get a 163 * irq-safe write-lock, but readers can get non-irqsafe 164 * read-locks. 165 * 166 * On x86, we implement read-write locks as a 32-bit counter 167 * with the high bit (sign) being the "contended" bit. 168 */ 169 170 /** 171 * read_can_lock - would read_trylock() succeed? 172 * @lock: the rwlock in question. 173 */ 174 static inline int arch_read_can_lock(arch_rwlock_t *lock) 175 { 176 return lock->lock > 0; 177 } 178 179 /** 180 * write_can_lock - would write_trylock() succeed? 181 * @lock: the rwlock in question. 182 */ 183 static inline int arch_write_can_lock(arch_rwlock_t *lock) 184 { 185 return lock->write == WRITE_LOCK_CMP; 186 } 187 188 static inline void arch_read_lock(arch_rwlock_t *rw) 189 { 190 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t" 191 "jns 1f\n" 192 "call __read_lock_failed\n\t" 193 "1:\n" 194 ::LOCK_PTR_REG (rw) : "memory"); 195 } 196 197 static inline void arch_write_lock(arch_rwlock_t *rw) 198 { 199 asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t" 200 "jz 1f\n" 201 "call __write_lock_failed\n\t" 202 "1:\n" 203 ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) 204 : "memory"); 205 } 206 207 static inline int arch_read_trylock(arch_rwlock_t *lock) 208 { 209 READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock; 210 211 if (READ_LOCK_ATOMIC(dec_return)(count) >= 0) 212 return 1; 213 READ_LOCK_ATOMIC(inc)(count); 214 return 0; 215 } 216 217 static inline int arch_write_trylock(arch_rwlock_t *lock) 218 { 219 atomic_t *count = (atomic_t *)&lock->write; 220 221 if (atomic_sub_and_test(WRITE_LOCK_CMP, count)) 222 return 1; 223 atomic_add(WRITE_LOCK_CMP, count); 224 return 0; 225 } 226 227 static inline void arch_read_unlock(arch_rwlock_t *rw) 228 { 229 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0" 230 :"+m" (rw->lock) : : "memory"); 231 } 232 233 static inline void arch_write_unlock(arch_rwlock_t *rw) 234 { 235 asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0" 236 : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory"); 237 } 238 239 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock) 240 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock) 241 242 #undef READ_LOCK_SIZE 243 #undef READ_LOCK_ATOMIC 244 #undef WRITE_LOCK_ADD 245 #undef WRITE_LOCK_SUB 246 #undef WRITE_LOCK_CMP 247 248 #define arch_spin_relax(lock) cpu_relax() 249 #define arch_read_relax(lock) cpu_relax() 250 #define arch_write_relax(lock) cpu_relax() 251 252 /* The {read|write|spin}_lock() on x86 are full memory barriers. */ 253 static inline void smp_mb__after_lock(void) { } 254 #define ARCH_HAS_SMP_MB_AFTER_LOCK 255 256 #endif /* _ASM_X86_SPINLOCK_H */ 257