xref: /openbmc/linux/arch/x86/include/asm/spinlock.h (revision 171f1bc7)
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3 
4 #include <linux/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10  * Your basic SMP spinlocks, allowing only a single CPU anywhere
11  *
12  * Simple spin lock operations.  There are two variants, one clears IRQ's
13  * on the local processor, one does not.
14  *
15  * These are fair FIFO ticket locks, which are currently limited to 256
16  * CPUs.
17  *
18  * (the type definitions are in asm/spinlock_types.h)
19  */
20 
21 #ifdef CONFIG_X86_32
22 # define LOCK_PTR_REG "a"
23 # define REG_PTR_MODE "k"
24 #else
25 # define LOCK_PTR_REG "D"
26 # define REG_PTR_MODE "q"
27 #endif
28 
29 #if defined(CONFIG_X86_32) && \
30 	(defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
31 /*
32  * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
33  * (PPro errata 66, 92)
34  */
35 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
36 #else
37 # define UNLOCK_LOCK_PREFIX
38 #endif
39 
40 /*
41  * Ticket locks are conceptually two parts, one indicating the current head of
42  * the queue, and the other indicating the current tail. The lock is acquired
43  * by atomically noting the tail and incrementing it by one (thus adding
44  * ourself to the queue and noting our position), then waiting until the head
45  * becomes equal to the the initial value of the tail.
46  *
47  * We use an xadd covering *both* parts of the lock, to increment the tail and
48  * also load the position of the head, which takes care of memory ordering
49  * issues and should be optimal for the uncontended case. Note the tail must be
50  * in the high part, because a wide xadd increment of the low part would carry
51  * up and contaminate the high part.
52  */
53 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
54 {
55 	register struct __raw_tickets inc = { .tail = 1 };
56 
57 	inc = xadd(&lock->tickets, inc);
58 
59 	for (;;) {
60 		if (inc.head == inc.tail)
61 			break;
62 		cpu_relax();
63 		inc.head = ACCESS_ONCE(lock->tickets.head);
64 	}
65 	barrier();		/* make sure nothing creeps before the lock is taken */
66 }
67 
68 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
69 {
70 	arch_spinlock_t old, new;
71 
72 	old.tickets = ACCESS_ONCE(lock->tickets);
73 	if (old.tickets.head != old.tickets.tail)
74 		return 0;
75 
76 	new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
77 
78 	/* cmpxchg is a full barrier, so nothing can move before it */
79 	return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
80 }
81 
82 #if (NR_CPUS < 256)
83 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
84 {
85 	asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
86 		     : "+m" (lock->head_tail)
87 		     :
88 		     : "memory", "cc");
89 }
90 #else
91 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
92 {
93 	asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
94 		     : "+m" (lock->head_tail)
95 		     :
96 		     : "memory", "cc");
97 }
98 #endif
99 
100 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
101 {
102 	struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
103 
104 	return !!(tmp.tail ^ tmp.head);
105 }
106 
107 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
108 {
109 	struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
110 
111 	return ((tmp.tail - tmp.head) & TICKET_MASK) > 1;
112 }
113 
114 #ifndef CONFIG_PARAVIRT_SPINLOCKS
115 
116 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
117 {
118 	return __ticket_spin_is_locked(lock);
119 }
120 
121 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
122 {
123 	return __ticket_spin_is_contended(lock);
124 }
125 #define arch_spin_is_contended	arch_spin_is_contended
126 
127 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
128 {
129 	__ticket_spin_lock(lock);
130 }
131 
132 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
133 {
134 	return __ticket_spin_trylock(lock);
135 }
136 
137 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
138 {
139 	__ticket_spin_unlock(lock);
140 }
141 
142 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
143 						  unsigned long flags)
144 {
145 	arch_spin_lock(lock);
146 }
147 
148 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
149 
150 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
151 {
152 	while (arch_spin_is_locked(lock))
153 		cpu_relax();
154 }
155 
156 /*
157  * Read-write spinlocks, allowing multiple readers
158  * but only one writer.
159  *
160  * NOTE! it is quite common to have readers in interrupts
161  * but no interrupt writers. For those circumstances we
162  * can "mix" irq-safe locks - any writer needs to get a
163  * irq-safe write-lock, but readers can get non-irqsafe
164  * read-locks.
165  *
166  * On x86, we implement read-write locks as a 32-bit counter
167  * with the high bit (sign) being the "contended" bit.
168  */
169 
170 /**
171  * read_can_lock - would read_trylock() succeed?
172  * @lock: the rwlock in question.
173  */
174 static inline int arch_read_can_lock(arch_rwlock_t *lock)
175 {
176 	return lock->lock > 0;
177 }
178 
179 /**
180  * write_can_lock - would write_trylock() succeed?
181  * @lock: the rwlock in question.
182  */
183 static inline int arch_write_can_lock(arch_rwlock_t *lock)
184 {
185 	return lock->write == WRITE_LOCK_CMP;
186 }
187 
188 static inline void arch_read_lock(arch_rwlock_t *rw)
189 {
190 	asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
191 		     "jns 1f\n"
192 		     "call __read_lock_failed\n\t"
193 		     "1:\n"
194 		     ::LOCK_PTR_REG (rw) : "memory");
195 }
196 
197 static inline void arch_write_lock(arch_rwlock_t *rw)
198 {
199 	asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
200 		     "jz 1f\n"
201 		     "call __write_lock_failed\n\t"
202 		     "1:\n"
203 		     ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
204 		     : "memory");
205 }
206 
207 static inline int arch_read_trylock(arch_rwlock_t *lock)
208 {
209 	READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
210 
211 	if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
212 		return 1;
213 	READ_LOCK_ATOMIC(inc)(count);
214 	return 0;
215 }
216 
217 static inline int arch_write_trylock(arch_rwlock_t *lock)
218 {
219 	atomic_t *count = (atomic_t *)&lock->write;
220 
221 	if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
222 		return 1;
223 	atomic_add(WRITE_LOCK_CMP, count);
224 	return 0;
225 }
226 
227 static inline void arch_read_unlock(arch_rwlock_t *rw)
228 {
229 	asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
230 		     :"+m" (rw->lock) : : "memory");
231 }
232 
233 static inline void arch_write_unlock(arch_rwlock_t *rw)
234 {
235 	asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
236 		     : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
237 }
238 
239 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
240 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
241 
242 #undef READ_LOCK_SIZE
243 #undef READ_LOCK_ATOMIC
244 #undef WRITE_LOCK_ADD
245 #undef WRITE_LOCK_SUB
246 #undef WRITE_LOCK_CMP
247 
248 #define arch_spin_relax(lock)	cpu_relax()
249 #define arch_read_relax(lock)	cpu_relax()
250 #define arch_write_relax(lock)	cpu_relax()
251 
252 /* The {read|write|spin}_lock() on x86 are full memory barriers. */
253 static inline void smp_mb__after_lock(void) { }
254 #define ARCH_HAS_SMP_MB_AFTER_LOCK
255 
256 #endif /* _ASM_X86_SPINLOCK_H */
257