xref: /openbmc/linux/arch/x86/include/asm/segment.h (revision c67e8ec0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_SEGMENT_H
3 #define _ASM_X86_SEGMENT_H
4 
5 #include <linux/const.h>
6 #include <asm/alternative.h>
7 
8 /*
9  * Constructor for a conventional segment GDT (or LDT) entry.
10  * This is a macro so it can be used in initializers.
11  */
12 #define GDT_ENTRY(flags, base, limit)			\
13 	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
14 	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
15 	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
16 	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
17 	 (((limit) & _AC(0x0000ffff,ULL))))
18 
19 /* Simple and small GDT entries for booting only: */
20 
21 #define GDT_ENTRY_BOOT_CS	2
22 #define GDT_ENTRY_BOOT_DS	3
23 #define GDT_ENTRY_BOOT_TSS	4
24 #define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
25 #define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
26 #define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
27 
28 /*
29  * Bottom two bits of selector give the ring
30  * privilege level
31  */
32 #define SEGMENT_RPL_MASK	0x3
33 
34 /* User mode is privilege level 3: */
35 #define USER_RPL		0x3
36 
37 /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
38 #define SEGMENT_TI_MASK		0x4
39 /* LDT segment has TI set ... */
40 #define SEGMENT_LDT		0x4
41 /* ... GDT has it cleared */
42 #define SEGMENT_GDT		0x0
43 
44 #define GDT_ENTRY_INVALID_SEG	0
45 
46 #ifdef CONFIG_X86_32
47 /*
48  * The layout of the per-CPU GDT under Linux:
49  *
50  *   0 - null								<=== cacheline #1
51  *   1 - reserved
52  *   2 - reserved
53  *   3 - reserved
54  *
55  *   4 - unused								<=== cacheline #2
56  *   5 - unused
57  *
58  *  ------- start of TLS (Thread-Local Storage) segments:
59  *
60  *   6 - TLS segment #1			[ glibc's TLS segment ]
61  *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
62  *   8 - TLS segment #3							<=== cacheline #3
63  *   9 - reserved
64  *  10 - reserved
65  *  11 - reserved
66  *
67  *  ------- start of kernel segments:
68  *
69  *  12 - kernel code segment						<=== cacheline #4
70  *  13 - kernel data segment
71  *  14 - default user CS
72  *  15 - default user DS
73  *  16 - TSS								<=== cacheline #5
74  *  17 - LDT
75  *  18 - PNPBIOS support (16->32 gate)
76  *  19 - PNPBIOS support
77  *  20 - PNPBIOS support						<=== cacheline #6
78  *  21 - PNPBIOS support
79  *  22 - PNPBIOS support
80  *  23 - APM BIOS support
81  *  24 - APM BIOS support						<=== cacheline #7
82  *  25 - APM BIOS support
83  *
84  *  26 - ESPFIX small SS
85  *  27 - per-cpu			[ offset to per-cpu data area ]
86  *  28 - stack_canary-20		[ for stack protector ]		<=== cacheline #8
87  *  29 - unused
88  *  30 - unused
89  *  31 - TSS for double fault handler
90  */
91 #define GDT_ENTRY_TLS_MIN		6
92 #define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
93 
94 #define GDT_ENTRY_KERNEL_CS		12
95 #define GDT_ENTRY_KERNEL_DS		13
96 #define GDT_ENTRY_DEFAULT_USER_CS	14
97 #define GDT_ENTRY_DEFAULT_USER_DS	15
98 #define GDT_ENTRY_TSS			16
99 #define GDT_ENTRY_LDT			17
100 #define GDT_ENTRY_PNPBIOS_CS32		18
101 #define GDT_ENTRY_PNPBIOS_CS16		19
102 #define GDT_ENTRY_PNPBIOS_DS		20
103 #define GDT_ENTRY_PNPBIOS_TS1		21
104 #define GDT_ENTRY_PNPBIOS_TS2		22
105 #define GDT_ENTRY_APMBIOS_BASE		23
106 
107 #define GDT_ENTRY_ESPFIX_SS		26
108 #define GDT_ENTRY_PERCPU		27
109 #define GDT_ENTRY_STACK_CANARY		28
110 
111 #define GDT_ENTRY_DOUBLEFAULT_TSS	31
112 
113 /*
114  * Number of entries in the GDT table:
115  */
116 #define GDT_ENTRIES			32
117 
118 /*
119  * Segment selector values corresponding to the above entries:
120  */
121 
122 #define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
123 #define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
124 #define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
125 #define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
126 #define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
127 
128 /* segment for calling fn: */
129 #define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
130 /* code segment for BIOS: */
131 #define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
132 
133 /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
134 #define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
135 
136 /* data segment for BIOS: */
137 #define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
138 /* transfer data segment: */
139 #define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
140 /* another data segment: */
141 #define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
142 
143 #ifdef CONFIG_SMP
144 # define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
145 #else
146 # define __KERNEL_PERCPU		0
147 #endif
148 
149 #ifdef CONFIG_STACKPROTECTOR
150 # define __KERNEL_STACK_CANARY		(GDT_ENTRY_STACK_CANARY*8)
151 #else
152 # define __KERNEL_STACK_CANARY		0
153 #endif
154 
155 #else /* 64-bit: */
156 
157 #include <asm/cache.h>
158 
159 #define GDT_ENTRY_KERNEL32_CS		1
160 #define GDT_ENTRY_KERNEL_CS		2
161 #define GDT_ENTRY_KERNEL_DS		3
162 
163 /*
164  * We cannot use the same code segment descriptor for user and kernel mode,
165  * not even in long flat mode, because of different DPL.
166  *
167  * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
168  * selectors:
169  *
170  *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
171  *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
172  *
173  * ss = STAR.SYSRET_CS+8 (in either case)
174  *
175  * thus USER_DS should be between 32-bit and 64-bit code selectors:
176  */
177 #define GDT_ENTRY_DEFAULT_USER32_CS	4
178 #define GDT_ENTRY_DEFAULT_USER_DS	5
179 #define GDT_ENTRY_DEFAULT_USER_CS	6
180 
181 /* Needs two entries */
182 #define GDT_ENTRY_TSS			8
183 /* Needs two entries */
184 #define GDT_ENTRY_LDT			10
185 
186 #define GDT_ENTRY_TLS_MIN		12
187 #define GDT_ENTRY_TLS_MAX		14
188 
189 #define GDT_ENTRY_CPUNODE		15
190 
191 /*
192  * Number of entries in the GDT table:
193  */
194 #define GDT_ENTRIES			16
195 
196 /*
197  * Segment selector values corresponding to the above entries:
198  *
199  * Note, selectors also need to have a correct RPL,
200  * expressed with the +3 value for user-space selectors:
201  */
202 #define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
203 #define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
204 #define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
205 #define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
206 #define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
207 #define __USER32_DS			__USER_DS
208 #define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
209 #define __CPUNODE_SEG			(GDT_ENTRY_CPUNODE*8 + 3)
210 
211 #endif
212 
213 #ifndef CONFIG_PARAVIRT_XXL
214 # define get_kernel_rpl()		0
215 #endif
216 
217 #define IDT_ENTRIES			256
218 #define NUM_EXCEPTION_VECTORS		32
219 
220 /* Bitmask of exception vectors which push an error code on the stack: */
221 #define EXCEPTION_ERRCODE_MASK		0x00027d00
222 
223 #define GDT_SIZE			(GDT_ENTRIES*8)
224 #define GDT_ENTRY_TLS_ENTRIES		3
225 #define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
226 
227 #ifdef CONFIG_X86_64
228 
229 /* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
230 #define VDSO_CPUNODE_BITS		12
231 #define VDSO_CPUNODE_MASK		0xfff
232 
233 #ifndef __ASSEMBLY__
234 
235 /* Helper functions to store/load CPU and node numbers */
236 
237 static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
238 {
239 	return (node << VDSO_CPUNODE_BITS) | cpu;
240 }
241 
242 static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
243 {
244 	unsigned int p;
245 
246 	/*
247 	 * Load CPU and node number from the GDT.  LSL is faster than RDTSCP
248 	 * and works on all CPUs.  This is volatile so that it orders
249 	 * correctly with respect to barrier() and to keep GCC from cleverly
250 	 * hoisting it out of the calling function.
251 	 *
252 	 * If RDPID is available, use it.
253 	 */
254 	alternative_io ("lsl %[seg],%[p]",
255 			".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
256 			X86_FEATURE_RDPID,
257 			[p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
258 
259 	if (cpu)
260 		*cpu = (p & VDSO_CPUNODE_MASK);
261 	if (node)
262 		*node = (p >> VDSO_CPUNODE_BITS);
263 }
264 
265 #endif /* !__ASSEMBLY__ */
266 #endif /* CONFIG_X86_64 */
267 
268 #ifdef __KERNEL__
269 
270 /*
271  * early_idt_handler_array is an array of entry points referenced in the
272  * early IDT.  For simplicity, it's a real array with one entry point
273  * every nine bytes.  That leaves room for an optional 'push $0' if the
274  * vector has no error code (two bytes), a 'push $vector_number' (two
275  * bytes), and a jump to the common entry code (up to five bytes).
276  */
277 #define EARLY_IDT_HANDLER_SIZE 9
278 
279 /*
280  * xen_early_idt_handler_array is for Xen pv guests: for each entry in
281  * early_idt_handler_array it contains a prequel in the form of
282  * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
283  * max 8 bytes.
284  */
285 #define XEN_EARLY_IDT_HANDLER_SIZE 8
286 
287 #ifndef __ASSEMBLY__
288 
289 extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
290 extern void early_ignore_irq(void);
291 
292 #if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV)
293 extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
294 #endif
295 
296 /*
297  * Load a segment. Fall back on loading the zero segment if something goes
298  * wrong.  This variant assumes that loading zero fully clears the segment.
299  * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
300  * failure to fully clear the cached descriptor is only observable for
301  * FS and GS.
302  */
303 #define __loadsegment_simple(seg, value)				\
304 do {									\
305 	unsigned short __val = (value);					\
306 									\
307 	asm volatile("						\n"	\
308 		     "1:	movl %k0,%%" #seg "		\n"	\
309 									\
310 		     ".section .fixup,\"ax\"			\n"	\
311 		     "2:	xorl %k0,%k0			\n"	\
312 		     "		jmp 1b				\n"	\
313 		     ".previous					\n"	\
314 									\
315 		     _ASM_EXTABLE(1b, 2b)				\
316 									\
317 		     : "+r" (__val) : : "memory");			\
318 } while (0)
319 
320 #define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
321 #define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
322 #define __loadsegment_es(value) __loadsegment_simple(es, (value))
323 
324 #ifdef CONFIG_X86_32
325 
326 /*
327  * On 32-bit systems, the hidden parts of FS and GS are unobservable if
328  * the selector is NULL, so there's no funny business here.
329  */
330 #define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
331 #define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
332 
333 #else
334 
335 static inline void __loadsegment_fs(unsigned short value)
336 {
337 	asm volatile("						\n"
338 		     "1:	movw %0, %%fs			\n"
339 		     "2:					\n"
340 
341 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
342 
343 		     : : "rm" (value) : "memory");
344 }
345 
346 /* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
347 
348 #endif
349 
350 #define loadsegment(seg, value) __loadsegment_ ## seg (value)
351 
352 /*
353  * Save a segment register away:
354  */
355 #define savesegment(seg, value)				\
356 	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
357 
358 /*
359  * x86-32 user GS accessors:
360  */
361 #ifdef CONFIG_X86_32
362 # ifdef CONFIG_X86_32_LAZY_GS
363 #  define get_user_gs(regs)		(u16)({ unsigned long v; savesegment(gs, v); v; })
364 #  define set_user_gs(regs, v)		loadsegment(gs, (unsigned long)(v))
365 #  define task_user_gs(tsk)		((tsk)->thread.gs)
366 #  define lazy_save_gs(v)		savesegment(gs, (v))
367 #  define lazy_load_gs(v)		loadsegment(gs, (v))
368 # else	/* X86_32_LAZY_GS */
369 #  define get_user_gs(regs)		(u16)((regs)->gs)
370 #  define set_user_gs(regs, v)		do { (regs)->gs = (v); } while (0)
371 #  define task_user_gs(tsk)		(task_pt_regs(tsk)->gs)
372 #  define lazy_save_gs(v)		do { } while (0)
373 #  define lazy_load_gs(v)		do { } while (0)
374 # endif	/* X86_32_LAZY_GS */
375 #endif	/* X86_32 */
376 
377 #endif /* !__ASSEMBLY__ */
378 #endif /* __KERNEL__ */
379 
380 #endif /* _ASM_X86_SEGMENT_H */
381