xref: /openbmc/linux/arch/x86/include/asm/segment.h (revision 11a163f2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_SEGMENT_H
3 #define _ASM_X86_SEGMENT_H
4 
5 #include <linux/const.h>
6 #include <asm/alternative.h>
7 
8 /*
9  * Constructor for a conventional segment GDT (or LDT) entry.
10  * This is a macro so it can be used in initializers.
11  */
12 #define GDT_ENTRY(flags, base, limit)			\
13 	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
14 	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
15 	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
16 	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
17 	 (((limit) & _AC(0x0000ffff,ULL))))
18 
19 /* Simple and small GDT entries for booting only: */
20 
21 #define GDT_ENTRY_BOOT_CS	2
22 #define GDT_ENTRY_BOOT_DS	3
23 #define GDT_ENTRY_BOOT_TSS	4
24 #define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
25 #define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
26 #define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
27 
28 /*
29  * Bottom two bits of selector give the ring
30  * privilege level
31  */
32 #define SEGMENT_RPL_MASK	0x3
33 
34 /*
35  * When running on Xen PV, the actual privilege level of the kernel is 1,
36  * not 0. Testing the Requested Privilege Level in a segment selector to
37  * determine whether the context is user mode or kernel mode with
38  * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level
39  * matches the 0x3 mask.
40  *
41  * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV
42  * kernels because privilege level 2 is never used.
43  */
44 #define USER_SEGMENT_RPL_MASK	0x2
45 
46 /* User mode is privilege level 3: */
47 #define USER_RPL		0x3
48 
49 /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
50 #define SEGMENT_TI_MASK		0x4
51 /* LDT segment has TI set ... */
52 #define SEGMENT_LDT		0x4
53 /* ... GDT has it cleared */
54 #define SEGMENT_GDT		0x0
55 
56 #define GDT_ENTRY_INVALID_SEG	0
57 
58 #ifdef CONFIG_X86_32
59 /*
60  * The layout of the per-CPU GDT under Linux:
61  *
62  *   0 - null								<=== cacheline #1
63  *   1 - reserved
64  *   2 - reserved
65  *   3 - reserved
66  *
67  *   4 - unused								<=== cacheline #2
68  *   5 - unused
69  *
70  *  ------- start of TLS (Thread-Local Storage) segments:
71  *
72  *   6 - TLS segment #1			[ glibc's TLS segment ]
73  *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
74  *   8 - TLS segment #3							<=== cacheline #3
75  *   9 - reserved
76  *  10 - reserved
77  *  11 - reserved
78  *
79  *  ------- start of kernel segments:
80  *
81  *  12 - kernel code segment						<=== cacheline #4
82  *  13 - kernel data segment
83  *  14 - default user CS
84  *  15 - default user DS
85  *  16 - TSS								<=== cacheline #5
86  *  17 - LDT
87  *  18 - PNPBIOS support (16->32 gate)
88  *  19 - PNPBIOS support
89  *  20 - PNPBIOS support						<=== cacheline #6
90  *  21 - PNPBIOS support
91  *  22 - PNPBIOS support
92  *  23 - APM BIOS support
93  *  24 - APM BIOS support						<=== cacheline #7
94  *  25 - APM BIOS support
95  *
96  *  26 - ESPFIX small SS
97  *  27 - per-cpu			[ offset to per-cpu data area ]
98  *  28 - stack_canary-20		[ for stack protector ]		<=== cacheline #8
99  *  29 - unused
100  *  30 - unused
101  *  31 - TSS for double fault handler
102  */
103 #define GDT_ENTRY_TLS_MIN		6
104 #define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
105 
106 #define GDT_ENTRY_KERNEL_CS		12
107 #define GDT_ENTRY_KERNEL_DS		13
108 #define GDT_ENTRY_DEFAULT_USER_CS	14
109 #define GDT_ENTRY_DEFAULT_USER_DS	15
110 #define GDT_ENTRY_TSS			16
111 #define GDT_ENTRY_LDT			17
112 #define GDT_ENTRY_PNPBIOS_CS32		18
113 #define GDT_ENTRY_PNPBIOS_CS16		19
114 #define GDT_ENTRY_PNPBIOS_DS		20
115 #define GDT_ENTRY_PNPBIOS_TS1		21
116 #define GDT_ENTRY_PNPBIOS_TS2		22
117 #define GDT_ENTRY_APMBIOS_BASE		23
118 
119 #define GDT_ENTRY_ESPFIX_SS		26
120 #define GDT_ENTRY_PERCPU		27
121 #define GDT_ENTRY_STACK_CANARY		28
122 
123 #define GDT_ENTRY_DOUBLEFAULT_TSS	31
124 
125 /*
126  * Number of entries in the GDT table:
127  */
128 #define GDT_ENTRIES			32
129 
130 /*
131  * Segment selector values corresponding to the above entries:
132  */
133 
134 #define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
135 #define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
136 #define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
137 #define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
138 #define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
139 
140 /* segment for calling fn: */
141 #define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
142 /* code segment for BIOS: */
143 #define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
144 
145 /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
146 #define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
147 
148 /* data segment for BIOS: */
149 #define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
150 /* transfer data segment: */
151 #define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
152 /* another data segment: */
153 #define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
154 
155 #ifdef CONFIG_SMP
156 # define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
157 #else
158 # define __KERNEL_PERCPU		0
159 #endif
160 
161 #ifdef CONFIG_STACKPROTECTOR
162 # define __KERNEL_STACK_CANARY		(GDT_ENTRY_STACK_CANARY*8)
163 #else
164 # define __KERNEL_STACK_CANARY		0
165 #endif
166 
167 #else /* 64-bit: */
168 
169 #include <asm/cache.h>
170 
171 #define GDT_ENTRY_KERNEL32_CS		1
172 #define GDT_ENTRY_KERNEL_CS		2
173 #define GDT_ENTRY_KERNEL_DS		3
174 
175 /*
176  * We cannot use the same code segment descriptor for user and kernel mode,
177  * not even in long flat mode, because of different DPL.
178  *
179  * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
180  * selectors:
181  *
182  *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
183  *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
184  *
185  * ss = STAR.SYSRET_CS+8 (in either case)
186  *
187  * thus USER_DS should be between 32-bit and 64-bit code selectors:
188  */
189 #define GDT_ENTRY_DEFAULT_USER32_CS	4
190 #define GDT_ENTRY_DEFAULT_USER_DS	5
191 #define GDT_ENTRY_DEFAULT_USER_CS	6
192 
193 /* Needs two entries */
194 #define GDT_ENTRY_TSS			8
195 /* Needs two entries */
196 #define GDT_ENTRY_LDT			10
197 
198 #define GDT_ENTRY_TLS_MIN		12
199 #define GDT_ENTRY_TLS_MAX		14
200 
201 #define GDT_ENTRY_CPUNODE		15
202 
203 /*
204  * Number of entries in the GDT table:
205  */
206 #define GDT_ENTRIES			16
207 
208 /*
209  * Segment selector values corresponding to the above entries:
210  *
211  * Note, selectors also need to have a correct RPL,
212  * expressed with the +3 value for user-space selectors:
213  */
214 #define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
215 #define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
216 #define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
217 #define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
218 #define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
219 #define __USER32_DS			__USER_DS
220 #define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
221 #define __CPUNODE_SEG			(GDT_ENTRY_CPUNODE*8 + 3)
222 
223 #endif
224 
225 #define IDT_ENTRIES			256
226 #define NUM_EXCEPTION_VECTORS		32
227 
228 /* Bitmask of exception vectors which push an error code on the stack: */
229 #define EXCEPTION_ERRCODE_MASK		0x20027d00
230 
231 #define GDT_SIZE			(GDT_ENTRIES*8)
232 #define GDT_ENTRY_TLS_ENTRIES		3
233 #define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
234 
235 #ifdef CONFIG_X86_64
236 
237 /* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
238 #define VDSO_CPUNODE_BITS		12
239 #define VDSO_CPUNODE_MASK		0xfff
240 
241 #ifndef __ASSEMBLY__
242 
243 /* Helper functions to store/load CPU and node numbers */
244 
245 static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
246 {
247 	return (node << VDSO_CPUNODE_BITS) | cpu;
248 }
249 
250 static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
251 {
252 	unsigned int p;
253 
254 	/*
255 	 * Load CPU and node number from the GDT.  LSL is faster than RDTSCP
256 	 * and works on all CPUs.  This is volatile so that it orders
257 	 * correctly with respect to barrier() and to keep GCC from cleverly
258 	 * hoisting it out of the calling function.
259 	 *
260 	 * If RDPID is available, use it.
261 	 */
262 	alternative_io ("lsl %[seg],%[p]",
263 			".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
264 			X86_FEATURE_RDPID,
265 			[p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
266 
267 	if (cpu)
268 		*cpu = (p & VDSO_CPUNODE_MASK);
269 	if (node)
270 		*node = (p >> VDSO_CPUNODE_BITS);
271 }
272 
273 #endif /* !__ASSEMBLY__ */
274 #endif /* CONFIG_X86_64 */
275 
276 #ifdef __KERNEL__
277 
278 /*
279  * early_idt_handler_array is an array of entry points referenced in the
280  * early IDT.  For simplicity, it's a real array with one entry point
281  * every nine bytes.  That leaves room for an optional 'push $0' if the
282  * vector has no error code (two bytes), a 'push $vector_number' (two
283  * bytes), and a jump to the common entry code (up to five bytes).
284  */
285 #define EARLY_IDT_HANDLER_SIZE 9
286 
287 /*
288  * xen_early_idt_handler_array is for Xen pv guests: for each entry in
289  * early_idt_handler_array it contains a prequel in the form of
290  * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
291  * max 8 bytes.
292  */
293 #define XEN_EARLY_IDT_HANDLER_SIZE 8
294 
295 #ifndef __ASSEMBLY__
296 
297 extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
298 extern void early_ignore_irq(void);
299 
300 #ifdef CONFIG_XEN_PV
301 extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
302 #endif
303 
304 /*
305  * Load a segment. Fall back on loading the zero segment if something goes
306  * wrong.  This variant assumes that loading zero fully clears the segment.
307  * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
308  * failure to fully clear the cached descriptor is only observable for
309  * FS and GS.
310  */
311 #define __loadsegment_simple(seg, value)				\
312 do {									\
313 	unsigned short __val = (value);					\
314 									\
315 	asm volatile("						\n"	\
316 		     "1:	movl %k0,%%" #seg "		\n"	\
317 									\
318 		     ".section .fixup,\"ax\"			\n"	\
319 		     "2:	xorl %k0,%k0			\n"	\
320 		     "		jmp 1b				\n"	\
321 		     ".previous					\n"	\
322 									\
323 		     _ASM_EXTABLE(1b, 2b)				\
324 									\
325 		     : "+r" (__val) : : "memory");			\
326 } while (0)
327 
328 #define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
329 #define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
330 #define __loadsegment_es(value) __loadsegment_simple(es, (value))
331 
332 #ifdef CONFIG_X86_32
333 
334 /*
335  * On 32-bit systems, the hidden parts of FS and GS are unobservable if
336  * the selector is NULL, so there's no funny business here.
337  */
338 #define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
339 #define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
340 
341 #else
342 
343 static inline void __loadsegment_fs(unsigned short value)
344 {
345 	asm volatile("						\n"
346 		     "1:	movw %0, %%fs			\n"
347 		     "2:					\n"
348 
349 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
350 
351 		     : : "rm" (value) : "memory");
352 }
353 
354 /* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
355 
356 #endif
357 
358 #define loadsegment(seg, value) __loadsegment_ ## seg (value)
359 
360 /*
361  * Save a segment register away:
362  */
363 #define savesegment(seg, value)				\
364 	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
365 
366 /*
367  * x86-32 user GS accessors:
368  */
369 #ifdef CONFIG_X86_32
370 # ifdef CONFIG_X86_32_LAZY_GS
371 #  define get_user_gs(regs)		(u16)({ unsigned long v; savesegment(gs, v); v; })
372 #  define set_user_gs(regs, v)		loadsegment(gs, (unsigned long)(v))
373 #  define task_user_gs(tsk)		((tsk)->thread.gs)
374 #  define lazy_save_gs(v)		savesegment(gs, (v))
375 #  define lazy_load_gs(v)		loadsegment(gs, (v))
376 # else	/* X86_32_LAZY_GS */
377 #  define get_user_gs(regs)		(u16)((regs)->gs)
378 #  define set_user_gs(regs, v)		do { (regs)->gs = (v); } while (0)
379 #  define task_user_gs(tsk)		(task_pt_regs(tsk)->gs)
380 #  define lazy_save_gs(v)		do { } while (0)
381 #  define lazy_load_gs(v)		do { } while (0)
382 # endif	/* X86_32_LAZY_GS */
383 #endif	/* X86_32 */
384 
385 #endif /* !__ASSEMBLY__ */
386 #endif /* __KERNEL__ */
387 
388 #endif /* _ASM_X86_SEGMENT_H */
389