1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PROCESSOR_H 3 #define _ASM_X86_PROCESSOR_H 4 5 #include <asm/processor-flags.h> 6 7 /* Forward declaration, a strange C thing */ 8 struct task_struct; 9 struct mm_struct; 10 struct vm86; 11 12 #include <asm/math_emu.h> 13 #include <asm/segment.h> 14 #include <asm/types.h> 15 #include <uapi/asm/sigcontext.h> 16 #include <asm/current.h> 17 #include <asm/cpufeatures.h> 18 #include <asm/page.h> 19 #include <asm/pgtable_types.h> 20 #include <asm/percpu.h> 21 #include <asm/msr.h> 22 #include <asm/desc_defs.h> 23 #include <asm/nops.h> 24 #include <asm/special_insns.h> 25 #include <asm/fpu/types.h> 26 #include <asm/unwind_hints.h> 27 28 #include <linux/personality.h> 29 #include <linux/cache.h> 30 #include <linux/threads.h> 31 #include <linux/math64.h> 32 #include <linux/err.h> 33 #include <linux/irqflags.h> 34 #include <linux/mem_encrypt.h> 35 36 /* 37 * We handle most unaligned accesses in hardware. On the other hand 38 * unaligned DMA can be quite expensive on some Nehalem processors. 39 * 40 * Based on this we disable the IP header alignment in network drivers. 41 */ 42 #define NET_IP_ALIGN 0 43 44 #define HBP_NUM 4 45 46 /* 47 * These alignment constraints are for performance in the vSMP case, 48 * but in the task_struct case we must also meet hardware imposed 49 * alignment requirements of the FPU state: 50 */ 51 #ifdef CONFIG_X86_VSMP 52 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 53 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 54 #else 55 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 56 # define ARCH_MIN_MMSTRUCT_ALIGN 0 57 #endif 58 59 enum tlb_infos { 60 ENTRIES, 61 NR_INFO 62 }; 63 64 extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 65 extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 66 extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 67 extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 68 extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 69 extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 70 extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 71 72 /* 73 * CPU type and hardware bug flags. Kept separately for each CPU. 74 * Members of this structure are referenced in head_32.S, so think twice 75 * before touching them. [mj] 76 */ 77 78 struct cpuinfo_x86 { 79 __u8 x86; /* CPU family */ 80 __u8 x86_vendor; /* CPU vendor */ 81 __u8 x86_model; 82 __u8 x86_stepping; 83 #ifdef CONFIG_X86_64 84 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 85 int x86_tlbsize; 86 #endif 87 __u8 x86_virt_bits; 88 __u8 x86_phys_bits; 89 /* CPUID returned core id bits: */ 90 __u8 x86_coreid_bits; 91 __u8 cu_id; 92 /* Max extended CPUID function supported: */ 93 __u32 extended_cpuid_level; 94 /* Maximum supported CPUID level, -1=no CPUID: */ 95 int cpuid_level; 96 __u32 x86_capability[NCAPINTS + NBUGINTS]; 97 char x86_vendor_id[16]; 98 char x86_model_id[64]; 99 /* in KB - valid for CPUS which support this call: */ 100 unsigned int x86_cache_size; 101 int x86_cache_alignment; /* In bytes */ 102 /* Cache QoS architectural values: */ 103 int x86_cache_max_rmid; /* max index */ 104 int x86_cache_occ_scale; /* scale to bytes */ 105 int x86_power; 106 unsigned long loops_per_jiffy; 107 /* cpuid returned max cores value: */ 108 u16 x86_max_cores; 109 u16 apicid; 110 u16 initial_apicid; 111 u16 x86_clflush_size; 112 /* number of cores as seen by the OS: */ 113 u16 booted_cores; 114 /* Physical processor id: */ 115 u16 phys_proc_id; 116 /* Logical processor id: */ 117 u16 logical_proc_id; 118 /* Core id: */ 119 u16 cpu_core_id; 120 u16 cpu_die_id; 121 u16 logical_die_id; 122 /* Index into per_cpu list: */ 123 u16 cpu_index; 124 u32 microcode; 125 /* Address space bits used by the cache internally */ 126 u8 x86_cache_bits; 127 unsigned initialized : 1; 128 } __randomize_layout; 129 130 struct cpuid_regs { 131 u32 eax, ebx, ecx, edx; 132 }; 133 134 enum cpuid_regs_idx { 135 CPUID_EAX = 0, 136 CPUID_EBX, 137 CPUID_ECX, 138 CPUID_EDX, 139 }; 140 141 #define X86_VENDOR_INTEL 0 142 #define X86_VENDOR_CYRIX 1 143 #define X86_VENDOR_AMD 2 144 #define X86_VENDOR_UMC 3 145 #define X86_VENDOR_CENTAUR 5 146 #define X86_VENDOR_TRANSMETA 7 147 #define X86_VENDOR_NSC 8 148 #define X86_VENDOR_HYGON 9 149 #define X86_VENDOR_ZHAOXIN 10 150 #define X86_VENDOR_NUM 11 151 152 #define X86_VENDOR_UNKNOWN 0xff 153 154 /* 155 * capabilities of CPUs 156 */ 157 extern struct cpuinfo_x86 boot_cpu_data; 158 extern struct cpuinfo_x86 new_cpu_data; 159 160 extern struct x86_hw_tss doublefault_tss; 161 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 162 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 163 164 #ifdef CONFIG_SMP 165 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 166 #define cpu_data(cpu) per_cpu(cpu_info, cpu) 167 #else 168 #define cpu_info boot_cpu_data 169 #define cpu_data(cpu) boot_cpu_data 170 #endif 171 172 extern const struct seq_operations cpuinfo_op; 173 174 #define cache_line_size() (boot_cpu_data.x86_cache_alignment) 175 176 extern void cpu_detect(struct cpuinfo_x86 *c); 177 178 static inline unsigned long long l1tf_pfn_limit(void) 179 { 180 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 181 } 182 183 extern void early_cpu_init(void); 184 extern void identify_boot_cpu(void); 185 extern void identify_secondary_cpu(struct cpuinfo_x86 *); 186 extern void print_cpu_info(struct cpuinfo_x86 *); 187 void print_cpu_msr(struct cpuinfo_x86 *); 188 189 #ifdef CONFIG_X86_32 190 extern int have_cpuid_p(void); 191 #else 192 static inline int have_cpuid_p(void) 193 { 194 return 1; 195 } 196 #endif 197 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 198 unsigned int *ecx, unsigned int *edx) 199 { 200 /* ecx is often an input as well as an output. */ 201 asm volatile("cpuid" 202 : "=a" (*eax), 203 "=b" (*ebx), 204 "=c" (*ecx), 205 "=d" (*edx) 206 : "0" (*eax), "2" (*ecx) 207 : "memory"); 208 } 209 210 #define native_cpuid_reg(reg) \ 211 static inline unsigned int native_cpuid_##reg(unsigned int op) \ 212 { \ 213 unsigned int eax = op, ebx, ecx = 0, edx; \ 214 \ 215 native_cpuid(&eax, &ebx, &ecx, &edx); \ 216 \ 217 return reg; \ 218 } 219 220 /* 221 * Native CPUID functions returning a single datum. 222 */ 223 native_cpuid_reg(eax) 224 native_cpuid_reg(ebx) 225 native_cpuid_reg(ecx) 226 native_cpuid_reg(edx) 227 228 /* 229 * Friendlier CR3 helpers. 230 */ 231 static inline unsigned long read_cr3_pa(void) 232 { 233 return __read_cr3() & CR3_ADDR_MASK; 234 } 235 236 static inline unsigned long native_read_cr3_pa(void) 237 { 238 return __native_read_cr3() & CR3_ADDR_MASK; 239 } 240 241 static inline void load_cr3(pgd_t *pgdir) 242 { 243 write_cr3(__sme_pa(pgdir)); 244 } 245 246 /* 247 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 248 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 249 * unrelated to the task-switch mechanism: 250 */ 251 #ifdef CONFIG_X86_32 252 /* This is the TSS defined by the hardware. */ 253 struct x86_hw_tss { 254 unsigned short back_link, __blh; 255 unsigned long sp0; 256 unsigned short ss0, __ss0h; 257 unsigned long sp1; 258 259 /* 260 * We don't use ring 1, so ss1 is a convenient scratch space in 261 * the same cacheline as sp0. We use ss1 to cache the value in 262 * MSR_IA32_SYSENTER_CS. When we context switch 263 * MSR_IA32_SYSENTER_CS, we first check if the new value being 264 * written matches ss1, and, if it's not, then we wrmsr the new 265 * value and update ss1. 266 * 267 * The only reason we context switch MSR_IA32_SYSENTER_CS is 268 * that we set it to zero in vm86 tasks to avoid corrupting the 269 * stack if we were to go through the sysenter path from vm86 270 * mode. 271 */ 272 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 273 274 unsigned short __ss1h; 275 unsigned long sp2; 276 unsigned short ss2, __ss2h; 277 unsigned long __cr3; 278 unsigned long ip; 279 unsigned long flags; 280 unsigned long ax; 281 unsigned long cx; 282 unsigned long dx; 283 unsigned long bx; 284 unsigned long sp; 285 unsigned long bp; 286 unsigned long si; 287 unsigned long di; 288 unsigned short es, __esh; 289 unsigned short cs, __csh; 290 unsigned short ss, __ssh; 291 unsigned short ds, __dsh; 292 unsigned short fs, __fsh; 293 unsigned short gs, __gsh; 294 unsigned short ldt, __ldth; 295 unsigned short trace; 296 unsigned short io_bitmap_base; 297 298 } __attribute__((packed)); 299 #else 300 struct x86_hw_tss { 301 u32 reserved1; 302 u64 sp0; 303 304 /* 305 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 306 * Linux does not use ring 1, so sp1 is not otherwise needed. 307 */ 308 u64 sp1; 309 310 /* 311 * Since Linux does not use ring 2, the 'sp2' slot is unused by 312 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 313 * the user RSP value. 314 */ 315 u64 sp2; 316 317 u64 reserved2; 318 u64 ist[7]; 319 u32 reserved3; 320 u32 reserved4; 321 u16 reserved5; 322 u16 io_bitmap_base; 323 324 } __attribute__((packed)); 325 #endif 326 327 /* 328 * IO-bitmap sizes: 329 */ 330 #define IO_BITMAP_BITS 65536 331 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 332 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 333 #define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss)) 334 #define INVALID_IO_BITMAP_OFFSET 0x8000 335 336 struct entry_stack { 337 unsigned long words[64]; 338 }; 339 340 struct entry_stack_page { 341 struct entry_stack stack; 342 } __aligned(PAGE_SIZE); 343 344 struct tss_struct { 345 /* 346 * The fixed hardware portion. This must not cross a page boundary 347 * at risk of violating the SDM's advice and potentially triggering 348 * errata. 349 */ 350 struct x86_hw_tss x86_tss; 351 352 /* 353 * The extra 1 is there because the CPU will access an 354 * additional byte beyond the end of the IO permission 355 * bitmap. The extra byte must be all 1 bits, and must 356 * be within the limit. 357 */ 358 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 359 } __aligned(PAGE_SIZE); 360 361 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 362 363 /* 364 * sizeof(unsigned long) coming from an extra "long" at the end 365 * of the iobitmap. 366 * 367 * -1? seg base+limit should be pointing to the address of the 368 * last valid byte 369 */ 370 #define __KERNEL_TSS_LIMIT \ 371 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 372 373 /* Per CPU interrupt stacks */ 374 struct irq_stack { 375 char stack[IRQ_STACK_SIZE]; 376 } __aligned(IRQ_STACK_SIZE); 377 378 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); 379 380 #ifdef CONFIG_X86_32 381 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 382 #else 383 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 384 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 385 #endif 386 387 #ifdef CONFIG_X86_64 388 struct fixed_percpu_data { 389 /* 390 * GCC hardcodes the stack canary as %gs:40. Since the 391 * irq_stack is the object at %gs:0, we reserve the bottom 392 * 48 bytes of the irq stack for the canary. 393 */ 394 char gs_base[40]; 395 unsigned long stack_canary; 396 }; 397 398 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; 399 DECLARE_INIT_PER_CPU(fixed_percpu_data); 400 401 static inline unsigned long cpu_kernelmode_gs_base(int cpu) 402 { 403 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); 404 } 405 406 DECLARE_PER_CPU(unsigned int, irq_count); 407 extern asmlinkage void ignore_sysret(void); 408 409 #if IS_ENABLED(CONFIG_KVM) 410 /* Save actual FS/GS selectors and bases to current->thread */ 411 void save_fsgs_for_kvm(void); 412 #endif 413 #else /* X86_64 */ 414 #ifdef CONFIG_STACKPROTECTOR 415 /* 416 * Make sure stack canary segment base is cached-aligned: 417 * "For Intel Atom processors, avoid non zero segment base address 418 * that is not aligned to cache line boundary at all cost." 419 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 420 */ 421 struct stack_canary { 422 char __pad[20]; /* canary at %gs:20 */ 423 unsigned long canary; 424 }; 425 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 426 #endif 427 /* Per CPU softirq stack pointer */ 428 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); 429 #endif /* X86_64 */ 430 431 extern unsigned int fpu_kernel_xstate_size; 432 extern unsigned int fpu_user_xstate_size; 433 434 struct perf_event; 435 436 typedef struct { 437 unsigned long seg; 438 } mm_segment_t; 439 440 struct thread_struct { 441 /* Cached TLS descriptors: */ 442 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 443 #ifdef CONFIG_X86_32 444 unsigned long sp0; 445 #endif 446 unsigned long sp; 447 #ifdef CONFIG_X86_32 448 unsigned long sysenter_cs; 449 #else 450 unsigned short es; 451 unsigned short ds; 452 unsigned short fsindex; 453 unsigned short gsindex; 454 #endif 455 456 #ifdef CONFIG_X86_64 457 unsigned long fsbase; 458 unsigned long gsbase; 459 #else 460 /* 461 * XXX: this could presumably be unsigned short. Alternatively, 462 * 32-bit kernels could be taught to use fsindex instead. 463 */ 464 unsigned long fs; 465 unsigned long gs; 466 #endif 467 468 /* Save middle states of ptrace breakpoints */ 469 struct perf_event *ptrace_bps[HBP_NUM]; 470 /* Debug status used for traps, single steps, etc... */ 471 unsigned long debugreg6; 472 /* Keep track of the exact dr7 value set by the user */ 473 unsigned long ptrace_dr7; 474 /* Fault info: */ 475 unsigned long cr2; 476 unsigned long trap_nr; 477 unsigned long error_code; 478 #ifdef CONFIG_VM86 479 /* Virtual 86 mode info */ 480 struct vm86 *vm86; 481 #endif 482 /* IO permissions: */ 483 unsigned long *io_bitmap_ptr; 484 unsigned long iopl; 485 /* Max allowed port in the bitmap, in bytes: */ 486 unsigned io_bitmap_max; 487 488 mm_segment_t addr_limit; 489 490 unsigned int sig_on_uaccess_err:1; 491 unsigned int uaccess_err:1; /* uaccess failed */ 492 493 /* Floating point and extended processor state */ 494 struct fpu fpu; 495 /* 496 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 497 * the end. 498 */ 499 }; 500 501 /* Whitelist the FPU state from the task_struct for hardened usercopy. */ 502 static inline void arch_thread_struct_whitelist(unsigned long *offset, 503 unsigned long *size) 504 { 505 *offset = offsetof(struct thread_struct, fpu.state); 506 *size = fpu_kernel_xstate_size; 507 } 508 509 /* 510 * Thread-synchronous status. 511 * 512 * This is different from the flags in that nobody else 513 * ever touches our thread-synchronous status, so we don't 514 * have to worry about atomic accesses. 515 */ 516 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 517 518 /* 519 * Set IOPL bits in EFLAGS from given mask 520 */ 521 static inline void native_set_iopl_mask(unsigned mask) 522 { 523 #ifdef CONFIG_X86_32 524 unsigned int reg; 525 526 asm volatile ("pushfl;" 527 "popl %0;" 528 "andl %1, %0;" 529 "orl %2, %0;" 530 "pushl %0;" 531 "popfl" 532 : "=&r" (reg) 533 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 534 #endif 535 } 536 537 static inline void 538 native_load_sp0(unsigned long sp0) 539 { 540 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 541 } 542 543 static inline void native_swapgs(void) 544 { 545 #ifdef CONFIG_X86_64 546 asm volatile("swapgs" ::: "memory"); 547 #endif 548 } 549 550 static inline unsigned long current_top_of_stack(void) 551 { 552 /* 553 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 554 * and around vm86 mode and sp0 on x86_64 is special because of the 555 * entry trampoline. 556 */ 557 return this_cpu_read_stable(cpu_current_top_of_stack); 558 } 559 560 static inline bool on_thread_stack(void) 561 { 562 return (unsigned long)(current_top_of_stack() - 563 current_stack_pointer) < THREAD_SIZE; 564 } 565 566 #ifdef CONFIG_PARAVIRT_XXL 567 #include <asm/paravirt.h> 568 #else 569 #define __cpuid native_cpuid 570 571 static inline void load_sp0(unsigned long sp0) 572 { 573 native_load_sp0(sp0); 574 } 575 576 #define set_iopl_mask native_set_iopl_mask 577 #endif /* CONFIG_PARAVIRT_XXL */ 578 579 /* Free all resources held by a thread. */ 580 extern void release_thread(struct task_struct *); 581 582 unsigned long get_wchan(struct task_struct *p); 583 584 /* 585 * Generic CPUID function 586 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 587 * resulting in stale register contents being returned. 588 */ 589 static inline void cpuid(unsigned int op, 590 unsigned int *eax, unsigned int *ebx, 591 unsigned int *ecx, unsigned int *edx) 592 { 593 *eax = op; 594 *ecx = 0; 595 __cpuid(eax, ebx, ecx, edx); 596 } 597 598 /* Some CPUID calls want 'count' to be placed in ecx */ 599 static inline void cpuid_count(unsigned int op, int count, 600 unsigned int *eax, unsigned int *ebx, 601 unsigned int *ecx, unsigned int *edx) 602 { 603 *eax = op; 604 *ecx = count; 605 __cpuid(eax, ebx, ecx, edx); 606 } 607 608 /* 609 * CPUID functions returning a single datum 610 */ 611 static inline unsigned int cpuid_eax(unsigned int op) 612 { 613 unsigned int eax, ebx, ecx, edx; 614 615 cpuid(op, &eax, &ebx, &ecx, &edx); 616 617 return eax; 618 } 619 620 static inline unsigned int cpuid_ebx(unsigned int op) 621 { 622 unsigned int eax, ebx, ecx, edx; 623 624 cpuid(op, &eax, &ebx, &ecx, &edx); 625 626 return ebx; 627 } 628 629 static inline unsigned int cpuid_ecx(unsigned int op) 630 { 631 unsigned int eax, ebx, ecx, edx; 632 633 cpuid(op, &eax, &ebx, &ecx, &edx); 634 635 return ecx; 636 } 637 638 static inline unsigned int cpuid_edx(unsigned int op) 639 { 640 unsigned int eax, ebx, ecx, edx; 641 642 cpuid(op, &eax, &ebx, &ecx, &edx); 643 644 return edx; 645 } 646 647 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 648 static __always_inline void rep_nop(void) 649 { 650 asm volatile("rep; nop" ::: "memory"); 651 } 652 653 static __always_inline void cpu_relax(void) 654 { 655 rep_nop(); 656 } 657 658 /* 659 * This function forces the icache and prefetched instruction stream to 660 * catch up with reality in two very specific cases: 661 * 662 * a) Text was modified using one virtual address and is about to be executed 663 * from the same physical page at a different virtual address. 664 * 665 * b) Text was modified on a different CPU, may subsequently be 666 * executed on this CPU, and you want to make sure the new version 667 * gets executed. This generally means you're calling this in a IPI. 668 * 669 * If you're calling this for a different reason, you're probably doing 670 * it wrong. 671 */ 672 static inline void sync_core(void) 673 { 674 /* 675 * There are quite a few ways to do this. IRET-to-self is nice 676 * because it works on every CPU, at any CPL (so it's compatible 677 * with paravirtualization), and it never exits to a hypervisor. 678 * The only down sides are that it's a bit slow (it seems to be 679 * a bit more than 2x slower than the fastest options) and that 680 * it unmasks NMIs. The "push %cs" is needed because, in 681 * paravirtual environments, __KERNEL_CS may not be a valid CS 682 * value when we do IRET directly. 683 * 684 * In case NMI unmasking or performance ever becomes a problem, 685 * the next best option appears to be MOV-to-CR2 and an 686 * unconditional jump. That sequence also works on all CPUs, 687 * but it will fault at CPL3 (i.e. Xen PV). 688 * 689 * CPUID is the conventional way, but it's nasty: it doesn't 690 * exist on some 486-like CPUs, and it usually exits to a 691 * hypervisor. 692 * 693 * Like all of Linux's memory ordering operations, this is a 694 * compiler barrier as well. 695 */ 696 #ifdef CONFIG_X86_32 697 asm volatile ( 698 "pushfl\n\t" 699 "pushl %%cs\n\t" 700 "pushl $1f\n\t" 701 "iret\n\t" 702 "1:" 703 : ASM_CALL_CONSTRAINT : : "memory"); 704 #else 705 unsigned int tmp; 706 707 asm volatile ( 708 UNWIND_HINT_SAVE 709 "mov %%ss, %0\n\t" 710 "pushq %q0\n\t" 711 "pushq %%rsp\n\t" 712 "addq $8, (%%rsp)\n\t" 713 "pushfq\n\t" 714 "mov %%cs, %0\n\t" 715 "pushq %q0\n\t" 716 "pushq $1f\n\t" 717 "iretq\n\t" 718 UNWIND_HINT_RESTORE 719 "1:" 720 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 721 #endif 722 } 723 724 extern void select_idle_routine(const struct cpuinfo_x86 *c); 725 extern void amd_e400_c1e_apic_setup(void); 726 727 extern unsigned long boot_option_idle_override; 728 729 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 730 IDLE_POLL}; 731 732 extern void enable_sep_cpu(void); 733 extern int sysenter_setup(void); 734 735 736 /* Defined in head.S */ 737 extern struct desc_ptr early_gdt_descr; 738 739 extern void switch_to_new_gdt(int); 740 extern void load_direct_gdt(int); 741 extern void load_fixmap_gdt(int); 742 extern void load_percpu_segment(int); 743 extern void cpu_init(void); 744 extern void cr4_init(void); 745 746 static inline unsigned long get_debugctlmsr(void) 747 { 748 unsigned long debugctlmsr = 0; 749 750 #ifndef CONFIG_X86_DEBUGCTLMSR 751 if (boot_cpu_data.x86 < 6) 752 return 0; 753 #endif 754 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 755 756 return debugctlmsr; 757 } 758 759 static inline void update_debugctlmsr(unsigned long debugctlmsr) 760 { 761 #ifndef CONFIG_X86_DEBUGCTLMSR 762 if (boot_cpu_data.x86 < 6) 763 return; 764 #endif 765 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 766 } 767 768 extern void set_task_blockstep(struct task_struct *task, bool on); 769 770 /* Boot loader type from the setup header: */ 771 extern int bootloader_type; 772 extern int bootloader_version; 773 774 extern char ignore_fpu_irq; 775 776 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 777 #define ARCH_HAS_PREFETCHW 778 #define ARCH_HAS_SPINLOCK_PREFETCH 779 780 #ifdef CONFIG_X86_32 781 # define BASE_PREFETCH "" 782 # define ARCH_HAS_PREFETCH 783 #else 784 # define BASE_PREFETCH "prefetcht0 %P1" 785 #endif 786 787 /* 788 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 789 * 790 * It's not worth to care about 3dnow prefetches for the K6 791 * because they are microcoded there and very slow. 792 */ 793 static inline void prefetch(const void *x) 794 { 795 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 796 X86_FEATURE_XMM, 797 "m" (*(const char *)x)); 798 } 799 800 /* 801 * 3dnow prefetch to get an exclusive cache line. 802 * Useful for spinlocks to avoid one state transition in the 803 * cache coherency protocol: 804 */ 805 static inline void prefetchw(const void *x) 806 { 807 alternative_input(BASE_PREFETCH, "prefetchw %P1", 808 X86_FEATURE_3DNOWPREFETCH, 809 "m" (*(const char *)x)); 810 } 811 812 static inline void spin_lock_prefetch(const void *x) 813 { 814 prefetchw(x); 815 } 816 817 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 818 TOP_OF_KERNEL_STACK_PADDING) 819 820 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 821 822 #define task_pt_regs(task) \ 823 ({ \ 824 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 825 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 826 ((struct pt_regs *)__ptr) - 1; \ 827 }) 828 829 #ifdef CONFIG_X86_32 830 /* 831 * User space process size: 3GB (default). 832 */ 833 #define IA32_PAGE_OFFSET PAGE_OFFSET 834 #define TASK_SIZE PAGE_OFFSET 835 #define TASK_SIZE_LOW TASK_SIZE 836 #define TASK_SIZE_MAX TASK_SIZE 837 #define DEFAULT_MAP_WINDOW TASK_SIZE 838 #define STACK_TOP TASK_SIZE 839 #define STACK_TOP_MAX STACK_TOP 840 841 #define INIT_THREAD { \ 842 .sp0 = TOP_OF_INIT_STACK, \ 843 .sysenter_cs = __KERNEL_CS, \ 844 .io_bitmap_ptr = NULL, \ 845 .addr_limit = KERNEL_DS, \ 846 } 847 848 #define KSTK_ESP(task) (task_pt_regs(task)->sp) 849 850 #else 851 /* 852 * User space process size. This is the first address outside the user range. 853 * There are a few constraints that determine this: 854 * 855 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 856 * address, then that syscall will enter the kernel with a 857 * non-canonical return address, and SYSRET will explode dangerously. 858 * We avoid this particular problem by preventing anything executable 859 * from being mapped at the maximum canonical address. 860 * 861 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 862 * CPUs malfunction if they execute code from the highest canonical page. 863 * They'll speculate right off the end of the canonical space, and 864 * bad things happen. This is worked around in the same way as the 865 * Intel problem. 866 * 867 * With page table isolation enabled, we map the LDT in ... [stay tuned] 868 */ 869 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 870 871 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 872 873 /* This decides where the kernel will search for a free chunk of vm 874 * space during mmap's. 875 */ 876 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 877 0xc0000000 : 0xFFFFe000) 878 879 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 880 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 881 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 882 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 883 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 884 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 885 886 #define STACK_TOP TASK_SIZE_LOW 887 #define STACK_TOP_MAX TASK_SIZE_MAX 888 889 #define INIT_THREAD { \ 890 .addr_limit = KERNEL_DS, \ 891 } 892 893 extern unsigned long KSTK_ESP(struct task_struct *task); 894 895 #endif /* CONFIG_X86_64 */ 896 897 extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 898 unsigned long new_sp); 899 900 /* 901 * This decides where the kernel will search for a free chunk of vm 902 * space during mmap's. 903 */ 904 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 905 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 906 907 #define KSTK_EIP(task) (task_pt_regs(task)->ip) 908 909 /* Get/set a process' ability to use the timestamp counter instruction */ 910 #define GET_TSC_CTL(adr) get_tsc_mode((adr)) 911 #define SET_TSC_CTL(val) set_tsc_mode((val)) 912 913 extern int get_tsc_mode(unsigned long adr); 914 extern int set_tsc_mode(unsigned int val); 915 916 DECLARE_PER_CPU(u64, msr_misc_features_shadow); 917 918 /* Register/unregister a process' MPX related resource */ 919 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 920 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 921 922 #ifdef CONFIG_X86_INTEL_MPX 923 extern int mpx_enable_management(void); 924 extern int mpx_disable_management(void); 925 #else 926 static inline int mpx_enable_management(void) 927 { 928 return -EINVAL; 929 } 930 static inline int mpx_disable_management(void) 931 { 932 return -EINVAL; 933 } 934 #endif /* CONFIG_X86_INTEL_MPX */ 935 936 #ifdef CONFIG_CPU_SUP_AMD 937 extern u16 amd_get_nb_id(int cpu); 938 extern u32 amd_get_nodes_per_socket(void); 939 #else 940 static inline u16 amd_get_nb_id(int cpu) { return 0; } 941 static inline u32 amd_get_nodes_per_socket(void) { return 0; } 942 #endif 943 944 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 945 { 946 uint32_t base, eax, signature[3]; 947 948 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 949 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 950 951 if (!memcmp(sig, signature, 12) && 952 (leaves == 0 || ((eax - base) >= leaves))) 953 return base; 954 } 955 956 return 0; 957 } 958 959 extern unsigned long arch_align_stack(unsigned long sp); 960 void free_init_pages(const char *what, unsigned long begin, unsigned long end); 961 extern void free_kernel_image_pages(void *begin, void *end); 962 963 void default_idle(void); 964 #ifdef CONFIG_XEN 965 bool xen_set_default_idle(void); 966 #else 967 #define xen_set_default_idle 0 968 #endif 969 970 void stop_this_cpu(void *dummy); 971 void df_debug(struct pt_regs *regs, long error_code); 972 void microcode_check(void); 973 974 enum l1tf_mitigations { 975 L1TF_MITIGATION_OFF, 976 L1TF_MITIGATION_FLUSH_NOWARN, 977 L1TF_MITIGATION_FLUSH, 978 L1TF_MITIGATION_FLUSH_NOSMT, 979 L1TF_MITIGATION_FULL, 980 L1TF_MITIGATION_FULL_FORCE 981 }; 982 983 extern enum l1tf_mitigations l1tf_mitigation; 984 985 enum mds_mitigations { 986 MDS_MITIGATION_OFF, 987 MDS_MITIGATION_FULL, 988 MDS_MITIGATION_VMWERV, 989 }; 990 991 enum taa_mitigations { 992 TAA_MITIGATION_OFF, 993 TAA_MITIGATION_UCODE_NEEDED, 994 TAA_MITIGATION_VERW, 995 TAA_MITIGATION_TSX_DISABLED, 996 }; 997 998 #endif /* _ASM_X86_PROCESSOR_H */ 999