xref: /openbmc/linux/arch/x86/include/asm/processor.h (revision f125e2d4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12 
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/page.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
22 #include <asm/msr.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 
30 #include <linux/personality.h>
31 #include <linux/cache.h>
32 #include <linux/threads.h>
33 #include <linux/math64.h>
34 #include <linux/err.h>
35 #include <linux/irqflags.h>
36 #include <linux/mem_encrypt.h>
37 
38 /*
39  * We handle most unaligned accesses in hardware.  On the other hand
40  * unaligned DMA can be quite expensive on some Nehalem processors.
41  *
42  * Based on this we disable the IP header alignment in network drivers.
43  */
44 #define NET_IP_ALIGN	0
45 
46 #define HBP_NUM 4
47 
48 /*
49  * These alignment constraints are for performance in the vSMP case,
50  * but in the task_struct case we must also meet hardware imposed
51  * alignment requirements of the FPU state:
52  */
53 #ifdef CONFIG_X86_VSMP
54 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
55 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
56 #else
57 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
58 # define ARCH_MIN_MMSTRUCT_ALIGN	0
59 #endif
60 
61 enum tlb_infos {
62 	ENTRIES,
63 	NR_INFO
64 };
65 
66 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
67 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
68 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
69 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
70 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
71 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
72 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
73 
74 /*
75  *  CPU type and hardware bug flags. Kept separately for each CPU.
76  *  Members of this structure are referenced in head_32.S, so think twice
77  *  before touching them. [mj]
78  */
79 
80 struct cpuinfo_x86 {
81 	__u8			x86;		/* CPU family */
82 	__u8			x86_vendor;	/* CPU vendor */
83 	__u8			x86_model;
84 	__u8			x86_stepping;
85 #ifdef CONFIG_X86_64
86 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
87 	int			x86_tlbsize;
88 #endif
89 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
90 	__u32			vmx_capability[NVMXINTS];
91 #endif
92 	__u8			x86_virt_bits;
93 	__u8			x86_phys_bits;
94 	/* CPUID returned core id bits: */
95 	__u8			x86_coreid_bits;
96 	__u8			cu_id;
97 	/* Max extended CPUID function supported: */
98 	__u32			extended_cpuid_level;
99 	/* Maximum supported CPUID level, -1=no CPUID: */
100 	int			cpuid_level;
101 	/*
102 	 * Align to size of unsigned long because the x86_capability array
103 	 * is passed to bitops which require the alignment. Use unnamed
104 	 * union to enforce the array is aligned to size of unsigned long.
105 	 */
106 	union {
107 		__u32		x86_capability[NCAPINTS + NBUGINTS];
108 		unsigned long	x86_capability_alignment;
109 	};
110 	char			x86_vendor_id[16];
111 	char			x86_model_id[64];
112 	/* in KB - valid for CPUS which support this call: */
113 	unsigned int		x86_cache_size;
114 	int			x86_cache_alignment;	/* In bytes */
115 	/* Cache QoS architectural values: */
116 	int			x86_cache_max_rmid;	/* max index */
117 	int			x86_cache_occ_scale;	/* scale to bytes */
118 	int			x86_power;
119 	unsigned long		loops_per_jiffy;
120 	/* cpuid returned max cores value: */
121 	u16			x86_max_cores;
122 	u16			apicid;
123 	u16			initial_apicid;
124 	u16			x86_clflush_size;
125 	/* number of cores as seen by the OS: */
126 	u16			booted_cores;
127 	/* Physical processor id: */
128 	u16			phys_proc_id;
129 	/* Logical processor id: */
130 	u16			logical_proc_id;
131 	/* Core id: */
132 	u16			cpu_core_id;
133 	u16			cpu_die_id;
134 	u16			logical_die_id;
135 	/* Index into per_cpu list: */
136 	u16			cpu_index;
137 	u32			microcode;
138 	/* Address space bits used by the cache internally */
139 	u8			x86_cache_bits;
140 	unsigned		initialized : 1;
141 } __randomize_layout;
142 
143 struct cpuid_regs {
144 	u32 eax, ebx, ecx, edx;
145 };
146 
147 enum cpuid_regs_idx {
148 	CPUID_EAX = 0,
149 	CPUID_EBX,
150 	CPUID_ECX,
151 	CPUID_EDX,
152 };
153 
154 #define X86_VENDOR_INTEL	0
155 #define X86_VENDOR_CYRIX	1
156 #define X86_VENDOR_AMD		2
157 #define X86_VENDOR_UMC		3
158 #define X86_VENDOR_CENTAUR	5
159 #define X86_VENDOR_TRANSMETA	7
160 #define X86_VENDOR_NSC		8
161 #define X86_VENDOR_HYGON	9
162 #define X86_VENDOR_ZHAOXIN	10
163 #define X86_VENDOR_NUM		11
164 
165 #define X86_VENDOR_UNKNOWN	0xff
166 
167 /*
168  * capabilities of CPUs
169  */
170 extern struct cpuinfo_x86	boot_cpu_data;
171 extern struct cpuinfo_x86	new_cpu_data;
172 
173 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
174 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
175 
176 #ifdef CONFIG_SMP
177 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
178 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
179 #else
180 #define cpu_info		boot_cpu_data
181 #define cpu_data(cpu)		boot_cpu_data
182 #endif
183 
184 extern const struct seq_operations cpuinfo_op;
185 
186 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
187 
188 extern void cpu_detect(struct cpuinfo_x86 *c);
189 
190 static inline unsigned long long l1tf_pfn_limit(void)
191 {
192 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
193 }
194 
195 extern void early_cpu_init(void);
196 extern void identify_boot_cpu(void);
197 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
198 extern void print_cpu_info(struct cpuinfo_x86 *);
199 void print_cpu_msr(struct cpuinfo_x86 *);
200 
201 #ifdef CONFIG_X86_32
202 extern int have_cpuid_p(void);
203 #else
204 static inline int have_cpuid_p(void)
205 {
206 	return 1;
207 }
208 #endif
209 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
210 				unsigned int *ecx, unsigned int *edx)
211 {
212 	/* ecx is often an input as well as an output. */
213 	asm volatile("cpuid"
214 	    : "=a" (*eax),
215 	      "=b" (*ebx),
216 	      "=c" (*ecx),
217 	      "=d" (*edx)
218 	    : "0" (*eax), "2" (*ecx)
219 	    : "memory");
220 }
221 
222 #define native_cpuid_reg(reg)					\
223 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
224 {								\
225 	unsigned int eax = op, ebx, ecx = 0, edx;		\
226 								\
227 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
228 								\
229 	return reg;						\
230 }
231 
232 /*
233  * Native CPUID functions returning a single datum.
234  */
235 native_cpuid_reg(eax)
236 native_cpuid_reg(ebx)
237 native_cpuid_reg(ecx)
238 native_cpuid_reg(edx)
239 
240 /*
241  * Friendlier CR3 helpers.
242  */
243 static inline unsigned long read_cr3_pa(void)
244 {
245 	return __read_cr3() & CR3_ADDR_MASK;
246 }
247 
248 static inline unsigned long native_read_cr3_pa(void)
249 {
250 	return __native_read_cr3() & CR3_ADDR_MASK;
251 }
252 
253 static inline void load_cr3(pgd_t *pgdir)
254 {
255 	write_cr3(__sme_pa(pgdir));
256 }
257 
258 /*
259  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
260  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
261  * unrelated to the task-switch mechanism:
262  */
263 #ifdef CONFIG_X86_32
264 /* This is the TSS defined by the hardware. */
265 struct x86_hw_tss {
266 	unsigned short		back_link, __blh;
267 	unsigned long		sp0;
268 	unsigned short		ss0, __ss0h;
269 	unsigned long		sp1;
270 
271 	/*
272 	 * We don't use ring 1, so ss1 is a convenient scratch space in
273 	 * the same cacheline as sp0.  We use ss1 to cache the value in
274 	 * MSR_IA32_SYSENTER_CS.  When we context switch
275 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
276 	 * written matches ss1, and, if it's not, then we wrmsr the new
277 	 * value and update ss1.
278 	 *
279 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
280 	 * that we set it to zero in vm86 tasks to avoid corrupting the
281 	 * stack if we were to go through the sysenter path from vm86
282 	 * mode.
283 	 */
284 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
285 
286 	unsigned short		__ss1h;
287 	unsigned long		sp2;
288 	unsigned short		ss2, __ss2h;
289 	unsigned long		__cr3;
290 	unsigned long		ip;
291 	unsigned long		flags;
292 	unsigned long		ax;
293 	unsigned long		cx;
294 	unsigned long		dx;
295 	unsigned long		bx;
296 	unsigned long		sp;
297 	unsigned long		bp;
298 	unsigned long		si;
299 	unsigned long		di;
300 	unsigned short		es, __esh;
301 	unsigned short		cs, __csh;
302 	unsigned short		ss, __ssh;
303 	unsigned short		ds, __dsh;
304 	unsigned short		fs, __fsh;
305 	unsigned short		gs, __gsh;
306 	unsigned short		ldt, __ldth;
307 	unsigned short		trace;
308 	unsigned short		io_bitmap_base;
309 
310 } __attribute__((packed));
311 #else
312 struct x86_hw_tss {
313 	u32			reserved1;
314 	u64			sp0;
315 
316 	/*
317 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
318 	 * Linux does not use ring 1, so sp1 is not otherwise needed.
319 	 */
320 	u64			sp1;
321 
322 	/*
323 	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
324 	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
325 	 * the user RSP value.
326 	 */
327 	u64			sp2;
328 
329 	u64			reserved2;
330 	u64			ist[7];
331 	u32			reserved3;
332 	u32			reserved4;
333 	u16			reserved5;
334 	u16			io_bitmap_base;
335 
336 } __attribute__((packed));
337 #endif
338 
339 /*
340  * IO-bitmap sizes:
341  */
342 #define IO_BITMAP_BITS			65536
343 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS / BITS_PER_BYTE)
344 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES / sizeof(long))
345 
346 #define IO_BITMAP_OFFSET_VALID_MAP				\
347 	(offsetof(struct tss_struct, io_bitmap.bitmap) -	\
348 	 offsetof(struct tss_struct, x86_tss))
349 
350 #define IO_BITMAP_OFFSET_VALID_ALL				\
351 	(offsetof(struct tss_struct, io_bitmap.mapall) -	\
352 	 offsetof(struct tss_struct, x86_tss))
353 
354 #ifdef CONFIG_X86_IOPL_IOPERM
355 /*
356  * sizeof(unsigned long) coming from an extra "long" at the end of the
357  * iobitmap. The limit is inclusive, i.e. the last valid byte.
358  */
359 # define __KERNEL_TSS_LIMIT	\
360 	(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
361 	 sizeof(unsigned long) - 1)
362 #else
363 # define __KERNEL_TSS_LIMIT	\
364 	(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
365 #endif
366 
367 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
368 #define IO_BITMAP_OFFSET_INVALID	(__KERNEL_TSS_LIMIT + 1)
369 
370 struct entry_stack {
371 	unsigned long		words[64];
372 };
373 
374 struct entry_stack_page {
375 	struct entry_stack stack;
376 } __aligned(PAGE_SIZE);
377 
378 /*
379  * All IO bitmap related data stored in the TSS:
380  */
381 struct x86_io_bitmap {
382 	/* The sequence number of the last active bitmap. */
383 	u64			prev_sequence;
384 
385 	/*
386 	 * Store the dirty size of the last io bitmap offender. The next
387 	 * one will have to do the cleanup as the switch out to a non io
388 	 * bitmap user will just set x86_tss.io_bitmap_base to a value
389 	 * outside of the TSS limit. So for sane tasks there is no need to
390 	 * actually touch the io_bitmap at all.
391 	 */
392 	unsigned int		prev_max;
393 
394 	/*
395 	 * The extra 1 is there because the CPU will access an
396 	 * additional byte beyond the end of the IO permission
397 	 * bitmap. The extra byte must be all 1 bits, and must
398 	 * be within the limit.
399 	 */
400 	unsigned long		bitmap[IO_BITMAP_LONGS + 1];
401 
402 	/*
403 	 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
404 	 * except the additional byte at the end.
405 	 */
406 	unsigned long		mapall[IO_BITMAP_LONGS + 1];
407 };
408 
409 struct tss_struct {
410 	/*
411 	 * The fixed hardware portion.  This must not cross a page boundary
412 	 * at risk of violating the SDM's advice and potentially triggering
413 	 * errata.
414 	 */
415 	struct x86_hw_tss	x86_tss;
416 
417 	struct x86_io_bitmap	io_bitmap;
418 } __aligned(PAGE_SIZE);
419 
420 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
421 
422 /* Per CPU interrupt stacks */
423 struct irq_stack {
424 	char		stack[IRQ_STACK_SIZE];
425 } __aligned(IRQ_STACK_SIZE);
426 
427 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
428 
429 #ifdef CONFIG_X86_32
430 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
431 #else
432 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
433 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
434 #endif
435 
436 #ifdef CONFIG_X86_64
437 struct fixed_percpu_data {
438 	/*
439 	 * GCC hardcodes the stack canary as %gs:40.  Since the
440 	 * irq_stack is the object at %gs:0, we reserve the bottom
441 	 * 48 bytes of the irq stack for the canary.
442 	 */
443 	char		gs_base[40];
444 	unsigned long	stack_canary;
445 };
446 
447 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
448 DECLARE_INIT_PER_CPU(fixed_percpu_data);
449 
450 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
451 {
452 	return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
453 }
454 
455 DECLARE_PER_CPU(unsigned int, irq_count);
456 extern asmlinkage void ignore_sysret(void);
457 
458 #if IS_ENABLED(CONFIG_KVM)
459 /* Save actual FS/GS selectors and bases to current->thread */
460 void save_fsgs_for_kvm(void);
461 #endif
462 #else	/* X86_64 */
463 #ifdef CONFIG_STACKPROTECTOR
464 /*
465  * Make sure stack canary segment base is cached-aligned:
466  *   "For Intel Atom processors, avoid non zero segment base address
467  *    that is not aligned to cache line boundary at all cost."
468  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
469  */
470 struct stack_canary {
471 	char __pad[20];		/* canary at %gs:20 */
472 	unsigned long canary;
473 };
474 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
475 #endif
476 /* Per CPU softirq stack pointer */
477 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
478 #endif	/* X86_64 */
479 
480 extern unsigned int fpu_kernel_xstate_size;
481 extern unsigned int fpu_user_xstate_size;
482 
483 struct perf_event;
484 
485 typedef struct {
486 	unsigned long		seg;
487 } mm_segment_t;
488 
489 struct thread_struct {
490 	/* Cached TLS descriptors: */
491 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
492 #ifdef CONFIG_X86_32
493 	unsigned long		sp0;
494 #endif
495 	unsigned long		sp;
496 #ifdef CONFIG_X86_32
497 	unsigned long		sysenter_cs;
498 #else
499 	unsigned short		es;
500 	unsigned short		ds;
501 	unsigned short		fsindex;
502 	unsigned short		gsindex;
503 #endif
504 
505 #ifdef CONFIG_X86_64
506 	unsigned long		fsbase;
507 	unsigned long		gsbase;
508 #else
509 	/*
510 	 * XXX: this could presumably be unsigned short.  Alternatively,
511 	 * 32-bit kernels could be taught to use fsindex instead.
512 	 */
513 	unsigned long fs;
514 	unsigned long gs;
515 #endif
516 
517 	/* Save middle states of ptrace breakpoints */
518 	struct perf_event	*ptrace_bps[HBP_NUM];
519 	/* Debug status used for traps, single steps, etc... */
520 	unsigned long           debugreg6;
521 	/* Keep track of the exact dr7 value set by the user */
522 	unsigned long           ptrace_dr7;
523 	/* Fault info: */
524 	unsigned long		cr2;
525 	unsigned long		trap_nr;
526 	unsigned long		error_code;
527 #ifdef CONFIG_VM86
528 	/* Virtual 86 mode info */
529 	struct vm86		*vm86;
530 #endif
531 	/* IO permissions: */
532 	struct io_bitmap	*io_bitmap;
533 
534 	/*
535 	 * IOPL. Priviledge level dependent I/O permission which is
536 	 * emulated via the I/O bitmap to prevent user space from disabling
537 	 * interrupts.
538 	 */
539 	unsigned long		iopl_emul;
540 
541 	mm_segment_t		addr_limit;
542 
543 	unsigned int		sig_on_uaccess_err:1;
544 	unsigned int		uaccess_err:1;	/* uaccess failed */
545 
546 	/* Floating point and extended processor state */
547 	struct fpu		fpu;
548 	/*
549 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
550 	 * the end.
551 	 */
552 };
553 
554 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
555 static inline void arch_thread_struct_whitelist(unsigned long *offset,
556 						unsigned long *size)
557 {
558 	*offset = offsetof(struct thread_struct, fpu.state);
559 	*size = fpu_kernel_xstate_size;
560 }
561 
562 /*
563  * Thread-synchronous status.
564  *
565  * This is different from the flags in that nobody else
566  * ever touches our thread-synchronous status, so we don't
567  * have to worry about atomic accesses.
568  */
569 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
570 
571 static inline void
572 native_load_sp0(unsigned long sp0)
573 {
574 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
575 }
576 
577 static inline void native_swapgs(void)
578 {
579 #ifdef CONFIG_X86_64
580 	asm volatile("swapgs" ::: "memory");
581 #endif
582 }
583 
584 static inline unsigned long current_top_of_stack(void)
585 {
586 	/*
587 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
588 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
589 	 *  entry trampoline.
590 	 */
591 	return this_cpu_read_stable(cpu_current_top_of_stack);
592 }
593 
594 static inline bool on_thread_stack(void)
595 {
596 	return (unsigned long)(current_top_of_stack() -
597 			       current_stack_pointer) < THREAD_SIZE;
598 }
599 
600 #ifdef CONFIG_PARAVIRT_XXL
601 #include <asm/paravirt.h>
602 #else
603 #define __cpuid			native_cpuid
604 
605 static inline void load_sp0(unsigned long sp0)
606 {
607 	native_load_sp0(sp0);
608 }
609 
610 #endif /* CONFIG_PARAVIRT_XXL */
611 
612 /* Free all resources held by a thread. */
613 extern void release_thread(struct task_struct *);
614 
615 unsigned long get_wchan(struct task_struct *p);
616 
617 /*
618  * Generic CPUID function
619  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
620  * resulting in stale register contents being returned.
621  */
622 static inline void cpuid(unsigned int op,
623 			 unsigned int *eax, unsigned int *ebx,
624 			 unsigned int *ecx, unsigned int *edx)
625 {
626 	*eax = op;
627 	*ecx = 0;
628 	__cpuid(eax, ebx, ecx, edx);
629 }
630 
631 /* Some CPUID calls want 'count' to be placed in ecx */
632 static inline void cpuid_count(unsigned int op, int count,
633 			       unsigned int *eax, unsigned int *ebx,
634 			       unsigned int *ecx, unsigned int *edx)
635 {
636 	*eax = op;
637 	*ecx = count;
638 	__cpuid(eax, ebx, ecx, edx);
639 }
640 
641 /*
642  * CPUID functions returning a single datum
643  */
644 static inline unsigned int cpuid_eax(unsigned int op)
645 {
646 	unsigned int eax, ebx, ecx, edx;
647 
648 	cpuid(op, &eax, &ebx, &ecx, &edx);
649 
650 	return eax;
651 }
652 
653 static inline unsigned int cpuid_ebx(unsigned int op)
654 {
655 	unsigned int eax, ebx, ecx, edx;
656 
657 	cpuid(op, &eax, &ebx, &ecx, &edx);
658 
659 	return ebx;
660 }
661 
662 static inline unsigned int cpuid_ecx(unsigned int op)
663 {
664 	unsigned int eax, ebx, ecx, edx;
665 
666 	cpuid(op, &eax, &ebx, &ecx, &edx);
667 
668 	return ecx;
669 }
670 
671 static inline unsigned int cpuid_edx(unsigned int op)
672 {
673 	unsigned int eax, ebx, ecx, edx;
674 
675 	cpuid(op, &eax, &ebx, &ecx, &edx);
676 
677 	return edx;
678 }
679 
680 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
681 static __always_inline void rep_nop(void)
682 {
683 	asm volatile("rep; nop" ::: "memory");
684 }
685 
686 static __always_inline void cpu_relax(void)
687 {
688 	rep_nop();
689 }
690 
691 /*
692  * This function forces the icache and prefetched instruction stream to
693  * catch up with reality in two very specific cases:
694  *
695  *  a) Text was modified using one virtual address and is about to be executed
696  *     from the same physical page at a different virtual address.
697  *
698  *  b) Text was modified on a different CPU, may subsequently be
699  *     executed on this CPU, and you want to make sure the new version
700  *     gets executed.  This generally means you're calling this in a IPI.
701  *
702  * If you're calling this for a different reason, you're probably doing
703  * it wrong.
704  */
705 static inline void sync_core(void)
706 {
707 	/*
708 	 * There are quite a few ways to do this.  IRET-to-self is nice
709 	 * because it works on every CPU, at any CPL (so it's compatible
710 	 * with paravirtualization), and it never exits to a hypervisor.
711 	 * The only down sides are that it's a bit slow (it seems to be
712 	 * a bit more than 2x slower than the fastest options) and that
713 	 * it unmasks NMIs.  The "push %cs" is needed because, in
714 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
715 	 * value when we do IRET directly.
716 	 *
717 	 * In case NMI unmasking or performance ever becomes a problem,
718 	 * the next best option appears to be MOV-to-CR2 and an
719 	 * unconditional jump.  That sequence also works on all CPUs,
720 	 * but it will fault at CPL3 (i.e. Xen PV).
721 	 *
722 	 * CPUID is the conventional way, but it's nasty: it doesn't
723 	 * exist on some 486-like CPUs, and it usually exits to a
724 	 * hypervisor.
725 	 *
726 	 * Like all of Linux's memory ordering operations, this is a
727 	 * compiler barrier as well.
728 	 */
729 #ifdef CONFIG_X86_32
730 	asm volatile (
731 		"pushfl\n\t"
732 		"pushl %%cs\n\t"
733 		"pushl $1f\n\t"
734 		"iret\n\t"
735 		"1:"
736 		: ASM_CALL_CONSTRAINT : : "memory");
737 #else
738 	unsigned int tmp;
739 
740 	asm volatile (
741 		UNWIND_HINT_SAVE
742 		"mov %%ss, %0\n\t"
743 		"pushq %q0\n\t"
744 		"pushq %%rsp\n\t"
745 		"addq $8, (%%rsp)\n\t"
746 		"pushfq\n\t"
747 		"mov %%cs, %0\n\t"
748 		"pushq %q0\n\t"
749 		"pushq $1f\n\t"
750 		"iretq\n\t"
751 		UNWIND_HINT_RESTORE
752 		"1:"
753 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
754 #endif
755 }
756 
757 extern void select_idle_routine(const struct cpuinfo_x86 *c);
758 extern void amd_e400_c1e_apic_setup(void);
759 
760 extern unsigned long		boot_option_idle_override;
761 
762 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
763 			 IDLE_POLL};
764 
765 extern void enable_sep_cpu(void);
766 extern int sysenter_setup(void);
767 
768 
769 /* Defined in head.S */
770 extern struct desc_ptr		early_gdt_descr;
771 
772 extern void switch_to_new_gdt(int);
773 extern void load_direct_gdt(int);
774 extern void load_fixmap_gdt(int);
775 extern void load_percpu_segment(int);
776 extern void cpu_init(void);
777 extern void cr4_init(void);
778 
779 static inline unsigned long get_debugctlmsr(void)
780 {
781 	unsigned long debugctlmsr = 0;
782 
783 #ifndef CONFIG_X86_DEBUGCTLMSR
784 	if (boot_cpu_data.x86 < 6)
785 		return 0;
786 #endif
787 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
788 
789 	return debugctlmsr;
790 }
791 
792 static inline void update_debugctlmsr(unsigned long debugctlmsr)
793 {
794 #ifndef CONFIG_X86_DEBUGCTLMSR
795 	if (boot_cpu_data.x86 < 6)
796 		return;
797 #endif
798 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
799 }
800 
801 extern void set_task_blockstep(struct task_struct *task, bool on);
802 
803 /* Boot loader type from the setup header: */
804 extern int			bootloader_type;
805 extern int			bootloader_version;
806 
807 extern char			ignore_fpu_irq;
808 
809 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
810 #define ARCH_HAS_PREFETCHW
811 #define ARCH_HAS_SPINLOCK_PREFETCH
812 
813 #ifdef CONFIG_X86_32
814 # define BASE_PREFETCH		""
815 # define ARCH_HAS_PREFETCH
816 #else
817 # define BASE_PREFETCH		"prefetcht0 %P1"
818 #endif
819 
820 /*
821  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
822  *
823  * It's not worth to care about 3dnow prefetches for the K6
824  * because they are microcoded there and very slow.
825  */
826 static inline void prefetch(const void *x)
827 {
828 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
829 			  X86_FEATURE_XMM,
830 			  "m" (*(const char *)x));
831 }
832 
833 /*
834  * 3dnow prefetch to get an exclusive cache line.
835  * Useful for spinlocks to avoid one state transition in the
836  * cache coherency protocol:
837  */
838 static inline void prefetchw(const void *x)
839 {
840 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
841 			  X86_FEATURE_3DNOWPREFETCH,
842 			  "m" (*(const char *)x));
843 }
844 
845 static inline void spin_lock_prefetch(const void *x)
846 {
847 	prefetchw(x);
848 }
849 
850 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
851 			   TOP_OF_KERNEL_STACK_PADDING)
852 
853 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
854 
855 #define task_pt_regs(task) \
856 ({									\
857 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
858 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
859 	((struct pt_regs *)__ptr) - 1;					\
860 })
861 
862 #ifdef CONFIG_X86_32
863 /*
864  * User space process size: 3GB (default).
865  */
866 #define IA32_PAGE_OFFSET	PAGE_OFFSET
867 #define TASK_SIZE		PAGE_OFFSET
868 #define TASK_SIZE_LOW		TASK_SIZE
869 #define TASK_SIZE_MAX		TASK_SIZE
870 #define DEFAULT_MAP_WINDOW	TASK_SIZE
871 #define STACK_TOP		TASK_SIZE
872 #define STACK_TOP_MAX		STACK_TOP
873 
874 #define INIT_THREAD  {							  \
875 	.sp0			= TOP_OF_INIT_STACK,			  \
876 	.sysenter_cs		= __KERNEL_CS,				  \
877 	.addr_limit		= KERNEL_DS,				  \
878 }
879 
880 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
881 
882 #else
883 /*
884  * User space process size.  This is the first address outside the user range.
885  * There are a few constraints that determine this:
886  *
887  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
888  * address, then that syscall will enter the kernel with a
889  * non-canonical return address, and SYSRET will explode dangerously.
890  * We avoid this particular problem by preventing anything executable
891  * from being mapped at the maximum canonical address.
892  *
893  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
894  * CPUs malfunction if they execute code from the highest canonical page.
895  * They'll speculate right off the end of the canonical space, and
896  * bad things happen.  This is worked around in the same way as the
897  * Intel problem.
898  *
899  * With page table isolation enabled, we map the LDT in ... [stay tuned]
900  */
901 #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
902 
903 #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
904 
905 /* This decides where the kernel will search for a free chunk of vm
906  * space during mmap's.
907  */
908 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
909 					0xc0000000 : 0xFFFFe000)
910 
911 #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
912 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
913 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
914 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
915 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
916 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
917 
918 #define STACK_TOP		TASK_SIZE_LOW
919 #define STACK_TOP_MAX		TASK_SIZE_MAX
920 
921 #define INIT_THREAD  {						\
922 	.addr_limit		= KERNEL_DS,			\
923 }
924 
925 extern unsigned long KSTK_ESP(struct task_struct *task);
926 
927 #endif /* CONFIG_X86_64 */
928 
929 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
930 					       unsigned long new_sp);
931 
932 /*
933  * This decides where the kernel will search for a free chunk of vm
934  * space during mmap's.
935  */
936 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
937 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
938 
939 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
940 
941 /* Get/set a process' ability to use the timestamp counter instruction */
942 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
943 #define SET_TSC_CTL(val)	set_tsc_mode((val))
944 
945 extern int get_tsc_mode(unsigned long adr);
946 extern int set_tsc_mode(unsigned int val);
947 
948 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
949 
950 #ifdef CONFIG_CPU_SUP_AMD
951 extern u16 amd_get_nb_id(int cpu);
952 extern u32 amd_get_nodes_per_socket(void);
953 #else
954 static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
955 static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
956 #endif
957 
958 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
959 {
960 	uint32_t base, eax, signature[3];
961 
962 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
963 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
964 
965 		if (!memcmp(sig, signature, 12) &&
966 		    (leaves == 0 || ((eax - base) >= leaves)))
967 			return base;
968 	}
969 
970 	return 0;
971 }
972 
973 extern unsigned long arch_align_stack(unsigned long sp);
974 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
975 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
976 
977 void default_idle(void);
978 #ifdef	CONFIG_XEN
979 bool xen_set_default_idle(void);
980 #else
981 #define xen_set_default_idle 0
982 #endif
983 
984 void stop_this_cpu(void *dummy);
985 void microcode_check(void);
986 
987 enum l1tf_mitigations {
988 	L1TF_MITIGATION_OFF,
989 	L1TF_MITIGATION_FLUSH_NOWARN,
990 	L1TF_MITIGATION_FLUSH,
991 	L1TF_MITIGATION_FLUSH_NOSMT,
992 	L1TF_MITIGATION_FULL,
993 	L1TF_MITIGATION_FULL_FORCE
994 };
995 
996 extern enum l1tf_mitigations l1tf_mitigation;
997 
998 enum mds_mitigations {
999 	MDS_MITIGATION_OFF,
1000 	MDS_MITIGATION_FULL,
1001 	MDS_MITIGATION_VMWERV,
1002 };
1003 
1004 #endif /* _ASM_X86_PROCESSOR_H */
1005