1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PROCESSOR_H 3 #define _ASM_X86_PROCESSOR_H 4 5 #include <asm/processor-flags.h> 6 7 /* Forward declaration, a strange C thing */ 8 struct task_struct; 9 struct mm_struct; 10 struct io_bitmap; 11 struct vm86; 12 13 #include <asm/math_emu.h> 14 #include <asm/segment.h> 15 #include <asm/types.h> 16 #include <uapi/asm/sigcontext.h> 17 #include <asm/current.h> 18 #include <asm/cpufeatures.h> 19 #include <asm/page.h> 20 #include <asm/pgtable_types.h> 21 #include <asm/percpu.h> 22 #include <asm/msr.h> 23 #include <asm/desc_defs.h> 24 #include <asm/nops.h> 25 #include <asm/special_insns.h> 26 #include <asm/fpu/types.h> 27 #include <asm/unwind_hints.h> 28 #include <asm/vmxfeatures.h> 29 30 #include <linux/personality.h> 31 #include <linux/cache.h> 32 #include <linux/threads.h> 33 #include <linux/math64.h> 34 #include <linux/err.h> 35 #include <linux/irqflags.h> 36 #include <linux/mem_encrypt.h> 37 38 /* 39 * We handle most unaligned accesses in hardware. On the other hand 40 * unaligned DMA can be quite expensive on some Nehalem processors. 41 * 42 * Based on this we disable the IP header alignment in network drivers. 43 */ 44 #define NET_IP_ALIGN 0 45 46 #define HBP_NUM 4 47 48 /* 49 * These alignment constraints are for performance in the vSMP case, 50 * but in the task_struct case we must also meet hardware imposed 51 * alignment requirements of the FPU state: 52 */ 53 #ifdef CONFIG_X86_VSMP 54 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 55 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 56 #else 57 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 58 # define ARCH_MIN_MMSTRUCT_ALIGN 0 59 #endif 60 61 enum tlb_infos { 62 ENTRIES, 63 NR_INFO 64 }; 65 66 extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 67 extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 68 extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 69 extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 70 extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 71 extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 72 extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 73 74 /* 75 * CPU type and hardware bug flags. Kept separately for each CPU. 76 * Members of this structure are referenced in head_32.S, so think twice 77 * before touching them. [mj] 78 */ 79 80 struct cpuinfo_x86 { 81 __u8 x86; /* CPU family */ 82 __u8 x86_vendor; /* CPU vendor */ 83 __u8 x86_model; 84 __u8 x86_stepping; 85 #ifdef CONFIG_X86_64 86 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 87 int x86_tlbsize; 88 #endif 89 #ifdef CONFIG_X86_VMX_FEATURE_NAMES 90 __u32 vmx_capability[NVMXINTS]; 91 #endif 92 __u8 x86_virt_bits; 93 __u8 x86_phys_bits; 94 /* CPUID returned core id bits: */ 95 __u8 x86_coreid_bits; 96 __u8 cu_id; 97 /* Max extended CPUID function supported: */ 98 __u32 extended_cpuid_level; 99 /* Maximum supported CPUID level, -1=no CPUID: */ 100 int cpuid_level; 101 /* 102 * Align to size of unsigned long because the x86_capability array 103 * is passed to bitops which require the alignment. Use unnamed 104 * union to enforce the array is aligned to size of unsigned long. 105 */ 106 union { 107 __u32 x86_capability[NCAPINTS + NBUGINTS]; 108 unsigned long x86_capability_alignment; 109 }; 110 char x86_vendor_id[16]; 111 char x86_model_id[64]; 112 /* in KB - valid for CPUS which support this call: */ 113 unsigned int x86_cache_size; 114 int x86_cache_alignment; /* In bytes */ 115 /* Cache QoS architectural values: */ 116 int x86_cache_max_rmid; /* max index */ 117 int x86_cache_occ_scale; /* scale to bytes */ 118 int x86_power; 119 unsigned long loops_per_jiffy; 120 /* cpuid returned max cores value: */ 121 u16 x86_max_cores; 122 u16 apicid; 123 u16 initial_apicid; 124 u16 x86_clflush_size; 125 /* number of cores as seen by the OS: */ 126 u16 booted_cores; 127 /* Physical processor id: */ 128 u16 phys_proc_id; 129 /* Logical processor id: */ 130 u16 logical_proc_id; 131 /* Core id: */ 132 u16 cpu_core_id; 133 u16 cpu_die_id; 134 u16 logical_die_id; 135 /* Index into per_cpu list: */ 136 u16 cpu_index; 137 u32 microcode; 138 /* Address space bits used by the cache internally */ 139 u8 x86_cache_bits; 140 unsigned initialized : 1; 141 } __randomize_layout; 142 143 struct cpuid_regs { 144 u32 eax, ebx, ecx, edx; 145 }; 146 147 enum cpuid_regs_idx { 148 CPUID_EAX = 0, 149 CPUID_EBX, 150 CPUID_ECX, 151 CPUID_EDX, 152 }; 153 154 #define X86_VENDOR_INTEL 0 155 #define X86_VENDOR_CYRIX 1 156 #define X86_VENDOR_AMD 2 157 #define X86_VENDOR_UMC 3 158 #define X86_VENDOR_CENTAUR 5 159 #define X86_VENDOR_TRANSMETA 7 160 #define X86_VENDOR_NSC 8 161 #define X86_VENDOR_HYGON 9 162 #define X86_VENDOR_ZHAOXIN 10 163 #define X86_VENDOR_NUM 11 164 165 #define X86_VENDOR_UNKNOWN 0xff 166 167 /* 168 * capabilities of CPUs 169 */ 170 extern struct cpuinfo_x86 boot_cpu_data; 171 extern struct cpuinfo_x86 new_cpu_data; 172 173 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 174 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 175 176 #ifdef CONFIG_SMP 177 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 178 #define cpu_data(cpu) per_cpu(cpu_info, cpu) 179 #else 180 #define cpu_info boot_cpu_data 181 #define cpu_data(cpu) boot_cpu_data 182 #endif 183 184 extern const struct seq_operations cpuinfo_op; 185 186 #define cache_line_size() (boot_cpu_data.x86_cache_alignment) 187 188 extern void cpu_detect(struct cpuinfo_x86 *c); 189 190 static inline unsigned long long l1tf_pfn_limit(void) 191 { 192 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 193 } 194 195 extern void early_cpu_init(void); 196 extern void identify_boot_cpu(void); 197 extern void identify_secondary_cpu(struct cpuinfo_x86 *); 198 extern void print_cpu_info(struct cpuinfo_x86 *); 199 void print_cpu_msr(struct cpuinfo_x86 *); 200 201 #ifdef CONFIG_X86_32 202 extern int have_cpuid_p(void); 203 #else 204 static inline int have_cpuid_p(void) 205 { 206 return 1; 207 } 208 #endif 209 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 210 unsigned int *ecx, unsigned int *edx) 211 { 212 /* ecx is often an input as well as an output. */ 213 asm volatile("cpuid" 214 : "=a" (*eax), 215 "=b" (*ebx), 216 "=c" (*ecx), 217 "=d" (*edx) 218 : "0" (*eax), "2" (*ecx) 219 : "memory"); 220 } 221 222 #define native_cpuid_reg(reg) \ 223 static inline unsigned int native_cpuid_##reg(unsigned int op) \ 224 { \ 225 unsigned int eax = op, ebx, ecx = 0, edx; \ 226 \ 227 native_cpuid(&eax, &ebx, &ecx, &edx); \ 228 \ 229 return reg; \ 230 } 231 232 /* 233 * Native CPUID functions returning a single datum. 234 */ 235 native_cpuid_reg(eax) 236 native_cpuid_reg(ebx) 237 native_cpuid_reg(ecx) 238 native_cpuid_reg(edx) 239 240 /* 241 * Friendlier CR3 helpers. 242 */ 243 static inline unsigned long read_cr3_pa(void) 244 { 245 return __read_cr3() & CR3_ADDR_MASK; 246 } 247 248 static inline unsigned long native_read_cr3_pa(void) 249 { 250 return __native_read_cr3() & CR3_ADDR_MASK; 251 } 252 253 static inline void load_cr3(pgd_t *pgdir) 254 { 255 write_cr3(__sme_pa(pgdir)); 256 } 257 258 /* 259 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 260 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 261 * unrelated to the task-switch mechanism: 262 */ 263 #ifdef CONFIG_X86_32 264 /* This is the TSS defined by the hardware. */ 265 struct x86_hw_tss { 266 unsigned short back_link, __blh; 267 unsigned long sp0; 268 unsigned short ss0, __ss0h; 269 unsigned long sp1; 270 271 /* 272 * We don't use ring 1, so ss1 is a convenient scratch space in 273 * the same cacheline as sp0. We use ss1 to cache the value in 274 * MSR_IA32_SYSENTER_CS. When we context switch 275 * MSR_IA32_SYSENTER_CS, we first check if the new value being 276 * written matches ss1, and, if it's not, then we wrmsr the new 277 * value and update ss1. 278 * 279 * The only reason we context switch MSR_IA32_SYSENTER_CS is 280 * that we set it to zero in vm86 tasks to avoid corrupting the 281 * stack if we were to go through the sysenter path from vm86 282 * mode. 283 */ 284 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 285 286 unsigned short __ss1h; 287 unsigned long sp2; 288 unsigned short ss2, __ss2h; 289 unsigned long __cr3; 290 unsigned long ip; 291 unsigned long flags; 292 unsigned long ax; 293 unsigned long cx; 294 unsigned long dx; 295 unsigned long bx; 296 unsigned long sp; 297 unsigned long bp; 298 unsigned long si; 299 unsigned long di; 300 unsigned short es, __esh; 301 unsigned short cs, __csh; 302 unsigned short ss, __ssh; 303 unsigned short ds, __dsh; 304 unsigned short fs, __fsh; 305 unsigned short gs, __gsh; 306 unsigned short ldt, __ldth; 307 unsigned short trace; 308 unsigned short io_bitmap_base; 309 310 } __attribute__((packed)); 311 #else 312 struct x86_hw_tss { 313 u32 reserved1; 314 u64 sp0; 315 316 /* 317 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 318 * Linux does not use ring 1, so sp1 is not otherwise needed. 319 */ 320 u64 sp1; 321 322 /* 323 * Since Linux does not use ring 2, the 'sp2' slot is unused by 324 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 325 * the user RSP value. 326 */ 327 u64 sp2; 328 329 u64 reserved2; 330 u64 ist[7]; 331 u32 reserved3; 332 u32 reserved4; 333 u16 reserved5; 334 u16 io_bitmap_base; 335 336 } __attribute__((packed)); 337 #endif 338 339 /* 340 * IO-bitmap sizes: 341 */ 342 #define IO_BITMAP_BITS 65536 343 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) 344 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) 345 346 #define IO_BITMAP_OFFSET_VALID_MAP \ 347 (offsetof(struct tss_struct, io_bitmap.bitmap) - \ 348 offsetof(struct tss_struct, x86_tss)) 349 350 #define IO_BITMAP_OFFSET_VALID_ALL \ 351 (offsetof(struct tss_struct, io_bitmap.mapall) - \ 352 offsetof(struct tss_struct, x86_tss)) 353 354 #ifdef CONFIG_X86_IOPL_IOPERM 355 /* 356 * sizeof(unsigned long) coming from an extra "long" at the end of the 357 * iobitmap. The limit is inclusive, i.e. the last valid byte. 358 */ 359 # define __KERNEL_TSS_LIMIT \ 360 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ 361 sizeof(unsigned long) - 1) 362 #else 363 # define __KERNEL_TSS_LIMIT \ 364 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) 365 #endif 366 367 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ 368 #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) 369 370 struct entry_stack { 371 unsigned long words[64]; 372 }; 373 374 struct entry_stack_page { 375 struct entry_stack stack; 376 } __aligned(PAGE_SIZE); 377 378 /* 379 * All IO bitmap related data stored in the TSS: 380 */ 381 struct x86_io_bitmap { 382 /* The sequence number of the last active bitmap. */ 383 u64 prev_sequence; 384 385 /* 386 * Store the dirty size of the last io bitmap offender. The next 387 * one will have to do the cleanup as the switch out to a non io 388 * bitmap user will just set x86_tss.io_bitmap_base to a value 389 * outside of the TSS limit. So for sane tasks there is no need to 390 * actually touch the io_bitmap at all. 391 */ 392 unsigned int prev_max; 393 394 /* 395 * The extra 1 is there because the CPU will access an 396 * additional byte beyond the end of the IO permission 397 * bitmap. The extra byte must be all 1 bits, and must 398 * be within the limit. 399 */ 400 unsigned long bitmap[IO_BITMAP_LONGS + 1]; 401 402 /* 403 * Special I/O bitmap to emulate IOPL(3). All bytes zero, 404 * except the additional byte at the end. 405 */ 406 unsigned long mapall[IO_BITMAP_LONGS + 1]; 407 }; 408 409 struct tss_struct { 410 /* 411 * The fixed hardware portion. This must not cross a page boundary 412 * at risk of violating the SDM's advice and potentially triggering 413 * errata. 414 */ 415 struct x86_hw_tss x86_tss; 416 417 struct x86_io_bitmap io_bitmap; 418 } __aligned(PAGE_SIZE); 419 420 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 421 422 /* Per CPU interrupt stacks */ 423 struct irq_stack { 424 char stack[IRQ_STACK_SIZE]; 425 } __aligned(IRQ_STACK_SIZE); 426 427 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); 428 429 #ifdef CONFIG_X86_32 430 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 431 #else 432 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 433 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 434 #endif 435 436 #ifdef CONFIG_X86_64 437 struct fixed_percpu_data { 438 /* 439 * GCC hardcodes the stack canary as %gs:40. Since the 440 * irq_stack is the object at %gs:0, we reserve the bottom 441 * 48 bytes of the irq stack for the canary. 442 */ 443 char gs_base[40]; 444 unsigned long stack_canary; 445 }; 446 447 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; 448 DECLARE_INIT_PER_CPU(fixed_percpu_data); 449 450 static inline unsigned long cpu_kernelmode_gs_base(int cpu) 451 { 452 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); 453 } 454 455 DECLARE_PER_CPU(unsigned int, irq_count); 456 extern asmlinkage void ignore_sysret(void); 457 458 #if IS_ENABLED(CONFIG_KVM) 459 /* Save actual FS/GS selectors and bases to current->thread */ 460 void save_fsgs_for_kvm(void); 461 #endif 462 #else /* X86_64 */ 463 #ifdef CONFIG_STACKPROTECTOR 464 /* 465 * Make sure stack canary segment base is cached-aligned: 466 * "For Intel Atom processors, avoid non zero segment base address 467 * that is not aligned to cache line boundary at all cost." 468 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 469 */ 470 struct stack_canary { 471 char __pad[20]; /* canary at %gs:20 */ 472 unsigned long canary; 473 }; 474 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 475 #endif 476 /* Per CPU softirq stack pointer */ 477 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); 478 #endif /* X86_64 */ 479 480 extern unsigned int fpu_kernel_xstate_size; 481 extern unsigned int fpu_user_xstate_size; 482 483 struct perf_event; 484 485 typedef struct { 486 unsigned long seg; 487 } mm_segment_t; 488 489 struct thread_struct { 490 /* Cached TLS descriptors: */ 491 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 492 #ifdef CONFIG_X86_32 493 unsigned long sp0; 494 #endif 495 unsigned long sp; 496 #ifdef CONFIG_X86_32 497 unsigned long sysenter_cs; 498 #else 499 unsigned short es; 500 unsigned short ds; 501 unsigned short fsindex; 502 unsigned short gsindex; 503 #endif 504 505 #ifdef CONFIG_X86_64 506 unsigned long fsbase; 507 unsigned long gsbase; 508 #else 509 /* 510 * XXX: this could presumably be unsigned short. Alternatively, 511 * 32-bit kernels could be taught to use fsindex instead. 512 */ 513 unsigned long fs; 514 unsigned long gs; 515 #endif 516 517 /* Save middle states of ptrace breakpoints */ 518 struct perf_event *ptrace_bps[HBP_NUM]; 519 /* Debug status used for traps, single steps, etc... */ 520 unsigned long debugreg6; 521 /* Keep track of the exact dr7 value set by the user */ 522 unsigned long ptrace_dr7; 523 /* Fault info: */ 524 unsigned long cr2; 525 unsigned long trap_nr; 526 unsigned long error_code; 527 #ifdef CONFIG_VM86 528 /* Virtual 86 mode info */ 529 struct vm86 *vm86; 530 #endif 531 /* IO permissions: */ 532 struct io_bitmap *io_bitmap; 533 534 /* 535 * IOPL. Priviledge level dependent I/O permission which is 536 * emulated via the I/O bitmap to prevent user space from disabling 537 * interrupts. 538 */ 539 unsigned long iopl_emul; 540 541 mm_segment_t addr_limit; 542 543 unsigned int sig_on_uaccess_err:1; 544 unsigned int uaccess_err:1; /* uaccess failed */ 545 546 /* Floating point and extended processor state */ 547 struct fpu fpu; 548 /* 549 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 550 * the end. 551 */ 552 }; 553 554 /* Whitelist the FPU state from the task_struct for hardened usercopy. */ 555 static inline void arch_thread_struct_whitelist(unsigned long *offset, 556 unsigned long *size) 557 { 558 *offset = offsetof(struct thread_struct, fpu.state); 559 *size = fpu_kernel_xstate_size; 560 } 561 562 /* 563 * Thread-synchronous status. 564 * 565 * This is different from the flags in that nobody else 566 * ever touches our thread-synchronous status, so we don't 567 * have to worry about atomic accesses. 568 */ 569 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 570 571 static inline void 572 native_load_sp0(unsigned long sp0) 573 { 574 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 575 } 576 577 static inline void native_swapgs(void) 578 { 579 #ifdef CONFIG_X86_64 580 asm volatile("swapgs" ::: "memory"); 581 #endif 582 } 583 584 static inline unsigned long current_top_of_stack(void) 585 { 586 /* 587 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 588 * and around vm86 mode and sp0 on x86_64 is special because of the 589 * entry trampoline. 590 */ 591 return this_cpu_read_stable(cpu_current_top_of_stack); 592 } 593 594 static inline bool on_thread_stack(void) 595 { 596 return (unsigned long)(current_top_of_stack() - 597 current_stack_pointer) < THREAD_SIZE; 598 } 599 600 #ifdef CONFIG_PARAVIRT_XXL 601 #include <asm/paravirt.h> 602 #else 603 #define __cpuid native_cpuid 604 605 static inline void load_sp0(unsigned long sp0) 606 { 607 native_load_sp0(sp0); 608 } 609 610 #endif /* CONFIG_PARAVIRT_XXL */ 611 612 /* Free all resources held by a thread. */ 613 extern void release_thread(struct task_struct *); 614 615 unsigned long get_wchan(struct task_struct *p); 616 617 /* 618 * Generic CPUID function 619 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 620 * resulting in stale register contents being returned. 621 */ 622 static inline void cpuid(unsigned int op, 623 unsigned int *eax, unsigned int *ebx, 624 unsigned int *ecx, unsigned int *edx) 625 { 626 *eax = op; 627 *ecx = 0; 628 __cpuid(eax, ebx, ecx, edx); 629 } 630 631 /* Some CPUID calls want 'count' to be placed in ecx */ 632 static inline void cpuid_count(unsigned int op, int count, 633 unsigned int *eax, unsigned int *ebx, 634 unsigned int *ecx, unsigned int *edx) 635 { 636 *eax = op; 637 *ecx = count; 638 __cpuid(eax, ebx, ecx, edx); 639 } 640 641 /* 642 * CPUID functions returning a single datum 643 */ 644 static inline unsigned int cpuid_eax(unsigned int op) 645 { 646 unsigned int eax, ebx, ecx, edx; 647 648 cpuid(op, &eax, &ebx, &ecx, &edx); 649 650 return eax; 651 } 652 653 static inline unsigned int cpuid_ebx(unsigned int op) 654 { 655 unsigned int eax, ebx, ecx, edx; 656 657 cpuid(op, &eax, &ebx, &ecx, &edx); 658 659 return ebx; 660 } 661 662 static inline unsigned int cpuid_ecx(unsigned int op) 663 { 664 unsigned int eax, ebx, ecx, edx; 665 666 cpuid(op, &eax, &ebx, &ecx, &edx); 667 668 return ecx; 669 } 670 671 static inline unsigned int cpuid_edx(unsigned int op) 672 { 673 unsigned int eax, ebx, ecx, edx; 674 675 cpuid(op, &eax, &ebx, &ecx, &edx); 676 677 return edx; 678 } 679 680 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 681 static __always_inline void rep_nop(void) 682 { 683 asm volatile("rep; nop" ::: "memory"); 684 } 685 686 static __always_inline void cpu_relax(void) 687 { 688 rep_nop(); 689 } 690 691 /* 692 * This function forces the icache and prefetched instruction stream to 693 * catch up with reality in two very specific cases: 694 * 695 * a) Text was modified using one virtual address and is about to be executed 696 * from the same physical page at a different virtual address. 697 * 698 * b) Text was modified on a different CPU, may subsequently be 699 * executed on this CPU, and you want to make sure the new version 700 * gets executed. This generally means you're calling this in a IPI. 701 * 702 * If you're calling this for a different reason, you're probably doing 703 * it wrong. 704 */ 705 static inline void sync_core(void) 706 { 707 /* 708 * There are quite a few ways to do this. IRET-to-self is nice 709 * because it works on every CPU, at any CPL (so it's compatible 710 * with paravirtualization), and it never exits to a hypervisor. 711 * The only down sides are that it's a bit slow (it seems to be 712 * a bit more than 2x slower than the fastest options) and that 713 * it unmasks NMIs. The "push %cs" is needed because, in 714 * paravirtual environments, __KERNEL_CS may not be a valid CS 715 * value when we do IRET directly. 716 * 717 * In case NMI unmasking or performance ever becomes a problem, 718 * the next best option appears to be MOV-to-CR2 and an 719 * unconditional jump. That sequence also works on all CPUs, 720 * but it will fault at CPL3 (i.e. Xen PV). 721 * 722 * CPUID is the conventional way, but it's nasty: it doesn't 723 * exist on some 486-like CPUs, and it usually exits to a 724 * hypervisor. 725 * 726 * Like all of Linux's memory ordering operations, this is a 727 * compiler barrier as well. 728 */ 729 #ifdef CONFIG_X86_32 730 asm volatile ( 731 "pushfl\n\t" 732 "pushl %%cs\n\t" 733 "pushl $1f\n\t" 734 "iret\n\t" 735 "1:" 736 : ASM_CALL_CONSTRAINT : : "memory"); 737 #else 738 unsigned int tmp; 739 740 asm volatile ( 741 UNWIND_HINT_SAVE 742 "mov %%ss, %0\n\t" 743 "pushq %q0\n\t" 744 "pushq %%rsp\n\t" 745 "addq $8, (%%rsp)\n\t" 746 "pushfq\n\t" 747 "mov %%cs, %0\n\t" 748 "pushq %q0\n\t" 749 "pushq $1f\n\t" 750 "iretq\n\t" 751 UNWIND_HINT_RESTORE 752 "1:" 753 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 754 #endif 755 } 756 757 extern void select_idle_routine(const struct cpuinfo_x86 *c); 758 extern void amd_e400_c1e_apic_setup(void); 759 760 extern unsigned long boot_option_idle_override; 761 762 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 763 IDLE_POLL}; 764 765 extern void enable_sep_cpu(void); 766 extern int sysenter_setup(void); 767 768 769 /* Defined in head.S */ 770 extern struct desc_ptr early_gdt_descr; 771 772 extern void switch_to_new_gdt(int); 773 extern void load_direct_gdt(int); 774 extern void load_fixmap_gdt(int); 775 extern void load_percpu_segment(int); 776 extern void cpu_init(void); 777 extern void cr4_init(void); 778 779 static inline unsigned long get_debugctlmsr(void) 780 { 781 unsigned long debugctlmsr = 0; 782 783 #ifndef CONFIG_X86_DEBUGCTLMSR 784 if (boot_cpu_data.x86 < 6) 785 return 0; 786 #endif 787 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 788 789 return debugctlmsr; 790 } 791 792 static inline void update_debugctlmsr(unsigned long debugctlmsr) 793 { 794 #ifndef CONFIG_X86_DEBUGCTLMSR 795 if (boot_cpu_data.x86 < 6) 796 return; 797 #endif 798 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 799 } 800 801 extern void set_task_blockstep(struct task_struct *task, bool on); 802 803 /* Boot loader type from the setup header: */ 804 extern int bootloader_type; 805 extern int bootloader_version; 806 807 extern char ignore_fpu_irq; 808 809 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 810 #define ARCH_HAS_PREFETCHW 811 #define ARCH_HAS_SPINLOCK_PREFETCH 812 813 #ifdef CONFIG_X86_32 814 # define BASE_PREFETCH "" 815 # define ARCH_HAS_PREFETCH 816 #else 817 # define BASE_PREFETCH "prefetcht0 %P1" 818 #endif 819 820 /* 821 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 822 * 823 * It's not worth to care about 3dnow prefetches for the K6 824 * because they are microcoded there and very slow. 825 */ 826 static inline void prefetch(const void *x) 827 { 828 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 829 X86_FEATURE_XMM, 830 "m" (*(const char *)x)); 831 } 832 833 /* 834 * 3dnow prefetch to get an exclusive cache line. 835 * Useful for spinlocks to avoid one state transition in the 836 * cache coherency protocol: 837 */ 838 static inline void prefetchw(const void *x) 839 { 840 alternative_input(BASE_PREFETCH, "prefetchw %P1", 841 X86_FEATURE_3DNOWPREFETCH, 842 "m" (*(const char *)x)); 843 } 844 845 static inline void spin_lock_prefetch(const void *x) 846 { 847 prefetchw(x); 848 } 849 850 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 851 TOP_OF_KERNEL_STACK_PADDING) 852 853 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 854 855 #define task_pt_regs(task) \ 856 ({ \ 857 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 858 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 859 ((struct pt_regs *)__ptr) - 1; \ 860 }) 861 862 #ifdef CONFIG_X86_32 863 /* 864 * User space process size: 3GB (default). 865 */ 866 #define IA32_PAGE_OFFSET PAGE_OFFSET 867 #define TASK_SIZE PAGE_OFFSET 868 #define TASK_SIZE_LOW TASK_SIZE 869 #define TASK_SIZE_MAX TASK_SIZE 870 #define DEFAULT_MAP_WINDOW TASK_SIZE 871 #define STACK_TOP TASK_SIZE 872 #define STACK_TOP_MAX STACK_TOP 873 874 #define INIT_THREAD { \ 875 .sp0 = TOP_OF_INIT_STACK, \ 876 .sysenter_cs = __KERNEL_CS, \ 877 .addr_limit = KERNEL_DS, \ 878 } 879 880 #define KSTK_ESP(task) (task_pt_regs(task)->sp) 881 882 #else 883 /* 884 * User space process size. This is the first address outside the user range. 885 * There are a few constraints that determine this: 886 * 887 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 888 * address, then that syscall will enter the kernel with a 889 * non-canonical return address, and SYSRET will explode dangerously. 890 * We avoid this particular problem by preventing anything executable 891 * from being mapped at the maximum canonical address. 892 * 893 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 894 * CPUs malfunction if they execute code from the highest canonical page. 895 * They'll speculate right off the end of the canonical space, and 896 * bad things happen. This is worked around in the same way as the 897 * Intel problem. 898 * 899 * With page table isolation enabled, we map the LDT in ... [stay tuned] 900 */ 901 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 902 903 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 904 905 /* This decides where the kernel will search for a free chunk of vm 906 * space during mmap's. 907 */ 908 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 909 0xc0000000 : 0xFFFFe000) 910 911 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 912 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 913 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 914 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 915 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 916 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 917 918 #define STACK_TOP TASK_SIZE_LOW 919 #define STACK_TOP_MAX TASK_SIZE_MAX 920 921 #define INIT_THREAD { \ 922 .addr_limit = KERNEL_DS, \ 923 } 924 925 extern unsigned long KSTK_ESP(struct task_struct *task); 926 927 #endif /* CONFIG_X86_64 */ 928 929 extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 930 unsigned long new_sp); 931 932 /* 933 * This decides where the kernel will search for a free chunk of vm 934 * space during mmap's. 935 */ 936 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 937 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 938 939 #define KSTK_EIP(task) (task_pt_regs(task)->ip) 940 941 /* Get/set a process' ability to use the timestamp counter instruction */ 942 #define GET_TSC_CTL(adr) get_tsc_mode((adr)) 943 #define SET_TSC_CTL(val) set_tsc_mode((val)) 944 945 extern int get_tsc_mode(unsigned long adr); 946 extern int set_tsc_mode(unsigned int val); 947 948 DECLARE_PER_CPU(u64, msr_misc_features_shadow); 949 950 #ifdef CONFIG_CPU_SUP_AMD 951 extern u16 amd_get_nb_id(int cpu); 952 extern u32 amd_get_nodes_per_socket(void); 953 #else 954 static inline u16 amd_get_nb_id(int cpu) { return 0; } 955 static inline u32 amd_get_nodes_per_socket(void) { return 0; } 956 #endif 957 958 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 959 { 960 uint32_t base, eax, signature[3]; 961 962 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 963 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 964 965 if (!memcmp(sig, signature, 12) && 966 (leaves == 0 || ((eax - base) >= leaves))) 967 return base; 968 } 969 970 return 0; 971 } 972 973 extern unsigned long arch_align_stack(unsigned long sp); 974 void free_init_pages(const char *what, unsigned long begin, unsigned long end); 975 extern void free_kernel_image_pages(const char *what, void *begin, void *end); 976 977 void default_idle(void); 978 #ifdef CONFIG_XEN 979 bool xen_set_default_idle(void); 980 #else 981 #define xen_set_default_idle 0 982 #endif 983 984 void stop_this_cpu(void *dummy); 985 void microcode_check(void); 986 987 enum l1tf_mitigations { 988 L1TF_MITIGATION_OFF, 989 L1TF_MITIGATION_FLUSH_NOWARN, 990 L1TF_MITIGATION_FLUSH, 991 L1TF_MITIGATION_FLUSH_NOSMT, 992 L1TF_MITIGATION_FULL, 993 L1TF_MITIGATION_FULL_FORCE 994 }; 995 996 extern enum l1tf_mitigations l1tf_mitigation; 997 998 enum mds_mitigations { 999 MDS_MITIGATION_OFF, 1000 MDS_MITIGATION_FULL, 1001 MDS_MITIGATION_VMWERV, 1002 }; 1003 1004 #endif /* _ASM_X86_PROCESSOR_H */ 1005