xref: /openbmc/linux/arch/x86/include/asm/processor.h (revision e0de91a9)
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3 
4 #include <asm/processor-flags.h>
5 
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10 
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25 
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32 
33 /*
34  * We handle most unaligned accesses in hardware.  On the other hand
35  * unaligned DMA can be quite expensive on some Nehalem processors.
36  *
37  * Based on this we disable the IP header alignment in network drivers.
38  */
39 #define NET_IP_ALIGN	0
40 
41 #define HBP_NUM 4
42 /*
43  * Default implementation of macro that returns current
44  * instruction pointer ("program counter").
45  */
46 static inline void *current_text_addr(void)
47 {
48 	void *pc;
49 
50 	asm volatile("mov $1f, %0; 1:":"=r" (pc));
51 
52 	return pc;
53 }
54 
55 /*
56  * These alignment constraints are for performance in the vSMP case,
57  * but in the task_struct case we must also meet hardware imposed
58  * alignment requirements of the FPU state:
59  */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN	0
66 #endif
67 
68 enum tlb_infos {
69 	ENTRIES,
70 	NR_INFO
71 };
72 
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80 
81 /*
82  *  CPU type and hardware bug flags. Kept separately for each CPU.
83  *  Members of this structure are referenced in head_32.S, so think twice
84  *  before touching them. [mj]
85  */
86 
87 struct cpuinfo_x86 {
88 	__u8			x86;		/* CPU family */
89 	__u8			x86_vendor;	/* CPU vendor */
90 	__u8			x86_model;
91 	__u8			x86_mask;
92 #ifdef CONFIG_X86_64
93 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
94 	int			x86_tlbsize;
95 #endif
96 	__u8			x86_virt_bits;
97 	__u8			x86_phys_bits;
98 	/* CPUID returned core id bits: */
99 	__u8			x86_coreid_bits;
100 	__u8			cu_id;
101 	/* Max extended CPUID function supported: */
102 	__u32			extended_cpuid_level;
103 	/* Maximum supported CPUID level, -1=no CPUID: */
104 	int			cpuid_level;
105 	__u32			x86_capability[NCAPINTS + NBUGINTS];
106 	char			x86_vendor_id[16];
107 	char			x86_model_id[64];
108 	/* in KB - valid for CPUS which support this call: */
109 	int			x86_cache_size;
110 	int			x86_cache_alignment;	/* In bytes */
111 	/* Cache QoS architectural values: */
112 	int			x86_cache_max_rmid;	/* max index */
113 	int			x86_cache_occ_scale;	/* scale to bytes */
114 	int			x86_power;
115 	unsigned long		loops_per_jiffy;
116 	/* cpuid returned max cores value: */
117 	u16			 x86_max_cores;
118 	u16			apicid;
119 	u16			initial_apicid;
120 	u16			x86_clflush_size;
121 	/* number of cores as seen by the OS: */
122 	u16			booted_cores;
123 	/* Physical processor id: */
124 	u16			phys_proc_id;
125 	/* Logical processor id: */
126 	u16			logical_proc_id;
127 	/* Core id: */
128 	u16			cpu_core_id;
129 	/* Index into per_cpu list: */
130 	u16			cpu_index;
131 	u32			microcode;
132 };
133 
134 struct cpuid_regs {
135 	u32 eax, ebx, ecx, edx;
136 };
137 
138 enum cpuid_regs_idx {
139 	CPUID_EAX = 0,
140 	CPUID_EBX,
141 	CPUID_ECX,
142 	CPUID_EDX,
143 };
144 
145 #define X86_VENDOR_INTEL	0
146 #define X86_VENDOR_CYRIX	1
147 #define X86_VENDOR_AMD		2
148 #define X86_VENDOR_UMC		3
149 #define X86_VENDOR_CENTAUR	5
150 #define X86_VENDOR_TRANSMETA	7
151 #define X86_VENDOR_NSC		8
152 #define X86_VENDOR_NUM		9
153 
154 #define X86_VENDOR_UNKNOWN	0xff
155 
156 /*
157  * capabilities of CPUs
158  */
159 extern struct cpuinfo_x86	boot_cpu_data;
160 extern struct cpuinfo_x86	new_cpu_data;
161 
162 extern struct tss_struct	doublefault_tss;
163 extern __u32			cpu_caps_cleared[NCAPINTS];
164 extern __u32			cpu_caps_set[NCAPINTS];
165 
166 #ifdef CONFIG_SMP
167 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
168 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
169 #else
170 #define cpu_info		boot_cpu_data
171 #define cpu_data(cpu)		boot_cpu_data
172 #endif
173 
174 extern const struct seq_operations cpuinfo_op;
175 
176 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
177 
178 extern void cpu_detect(struct cpuinfo_x86 *c);
179 
180 extern void early_cpu_init(void);
181 extern void identify_boot_cpu(void);
182 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183 extern void print_cpu_info(struct cpuinfo_x86 *);
184 void print_cpu_msr(struct cpuinfo_x86 *);
185 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
186 extern u32 get_scattered_cpuid_leaf(unsigned int level,
187 				    unsigned int sub_leaf,
188 				    enum cpuid_regs_idx reg);
189 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
190 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
191 
192 extern void detect_extended_topology(struct cpuinfo_x86 *c);
193 extern void detect_ht(struct cpuinfo_x86 *c);
194 
195 #ifdef CONFIG_X86_32
196 extern int have_cpuid_p(void);
197 #else
198 static inline int have_cpuid_p(void)
199 {
200 	return 1;
201 }
202 #endif
203 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
204 				unsigned int *ecx, unsigned int *edx)
205 {
206 	/* ecx is often an input as well as an output. */
207 	asm volatile("cpuid"
208 	    : "=a" (*eax),
209 	      "=b" (*ebx),
210 	      "=c" (*ecx),
211 	      "=d" (*edx)
212 	    : "0" (*eax), "2" (*ecx)
213 	    : "memory");
214 }
215 
216 #define native_cpuid_reg(reg)					\
217 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
218 {								\
219 	unsigned int eax = op, ebx, ecx = 0, edx;		\
220 								\
221 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
222 								\
223 	return reg;						\
224 }
225 
226 /*
227  * Native CPUID functions returning a single datum.
228  */
229 native_cpuid_reg(eax)
230 native_cpuid_reg(ebx)
231 native_cpuid_reg(ecx)
232 native_cpuid_reg(edx)
233 
234 static inline void load_cr3(pgd_t *pgdir)
235 {
236 	write_cr3(__pa(pgdir));
237 }
238 
239 #ifdef CONFIG_X86_32
240 /* This is the TSS defined by the hardware. */
241 struct x86_hw_tss {
242 	unsigned short		back_link, __blh;
243 	unsigned long		sp0;
244 	unsigned short		ss0, __ss0h;
245 	unsigned long		sp1;
246 
247 	/*
248 	 * We don't use ring 1, so ss1 is a convenient scratch space in
249 	 * the same cacheline as sp0.  We use ss1 to cache the value in
250 	 * MSR_IA32_SYSENTER_CS.  When we context switch
251 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
252 	 * written matches ss1, and, if it's not, then we wrmsr the new
253 	 * value and update ss1.
254 	 *
255 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
256 	 * that we set it to zero in vm86 tasks to avoid corrupting the
257 	 * stack if we were to go through the sysenter path from vm86
258 	 * mode.
259 	 */
260 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
261 
262 	unsigned short		__ss1h;
263 	unsigned long		sp2;
264 	unsigned short		ss2, __ss2h;
265 	unsigned long		__cr3;
266 	unsigned long		ip;
267 	unsigned long		flags;
268 	unsigned long		ax;
269 	unsigned long		cx;
270 	unsigned long		dx;
271 	unsigned long		bx;
272 	unsigned long		sp;
273 	unsigned long		bp;
274 	unsigned long		si;
275 	unsigned long		di;
276 	unsigned short		es, __esh;
277 	unsigned short		cs, __csh;
278 	unsigned short		ss, __ssh;
279 	unsigned short		ds, __dsh;
280 	unsigned short		fs, __fsh;
281 	unsigned short		gs, __gsh;
282 	unsigned short		ldt, __ldth;
283 	unsigned short		trace;
284 	unsigned short		io_bitmap_base;
285 
286 } __attribute__((packed));
287 #else
288 struct x86_hw_tss {
289 	u32			reserved1;
290 	u64			sp0;
291 	u64			sp1;
292 	u64			sp2;
293 	u64			reserved2;
294 	u64			ist[7];
295 	u32			reserved3;
296 	u32			reserved4;
297 	u16			reserved5;
298 	u16			io_bitmap_base;
299 
300 } __attribute__((packed));
301 #endif
302 
303 /*
304  * IO-bitmap sizes:
305  */
306 #define IO_BITMAP_BITS			65536
307 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
308 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
309 #define IO_BITMAP_OFFSET		offsetof(struct tss_struct, io_bitmap)
310 #define INVALID_IO_BITMAP_OFFSET	0x8000
311 
312 struct tss_struct {
313 	/*
314 	 * The hardware state:
315 	 */
316 	struct x86_hw_tss	x86_tss;
317 
318 	/*
319 	 * The extra 1 is there because the CPU will access an
320 	 * additional byte beyond the end of the IO permission
321 	 * bitmap. The extra byte must be all 1 bits, and must
322 	 * be within the limit.
323 	 */
324 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
325 
326 #ifdef CONFIG_X86_32
327 	/*
328 	 * Space for the temporary SYSENTER stack.
329 	 */
330 	unsigned long		SYSENTER_stack_canary;
331 	unsigned long		SYSENTER_stack[64];
332 #endif
333 
334 } ____cacheline_aligned;
335 
336 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
337 
338 /*
339  * sizeof(unsigned long) coming from an extra "long" at the end
340  * of the iobitmap.
341  *
342  * -1? seg base+limit should be pointing to the address of the
343  * last valid byte
344  */
345 #define __KERNEL_TSS_LIMIT	\
346 	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
347 
348 #ifdef CONFIG_X86_32
349 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
350 #endif
351 
352 /*
353  * Save the original ist values for checking stack pointers during debugging
354  */
355 struct orig_ist {
356 	unsigned long		ist[7];
357 };
358 
359 #ifdef CONFIG_X86_64
360 DECLARE_PER_CPU(struct orig_ist, orig_ist);
361 
362 union irq_stack_union {
363 	char irq_stack[IRQ_STACK_SIZE];
364 	/*
365 	 * GCC hardcodes the stack canary as %gs:40.  Since the
366 	 * irq_stack is the object at %gs:0, we reserve the bottom
367 	 * 48 bytes of the irq stack for the canary.
368 	 */
369 	struct {
370 		char gs_base[40];
371 		unsigned long stack_canary;
372 	};
373 };
374 
375 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
376 DECLARE_INIT_PER_CPU(irq_stack_union);
377 
378 DECLARE_PER_CPU(char *, irq_stack_ptr);
379 DECLARE_PER_CPU(unsigned int, irq_count);
380 extern asmlinkage void ignore_sysret(void);
381 #else	/* X86_64 */
382 #ifdef CONFIG_CC_STACKPROTECTOR
383 /*
384  * Make sure stack canary segment base is cached-aligned:
385  *   "For Intel Atom processors, avoid non zero segment base address
386  *    that is not aligned to cache line boundary at all cost."
387  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
388  */
389 struct stack_canary {
390 	char __pad[20];		/* canary at %gs:20 */
391 	unsigned long canary;
392 };
393 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
394 #endif
395 /*
396  * per-CPU IRQ handling stacks
397  */
398 struct irq_stack {
399 	u32                     stack[THREAD_SIZE/sizeof(u32)];
400 } __aligned(THREAD_SIZE);
401 
402 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
403 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
404 #endif	/* X86_64 */
405 
406 extern unsigned int fpu_kernel_xstate_size;
407 extern unsigned int fpu_user_xstate_size;
408 
409 struct perf_event;
410 
411 typedef struct {
412 	unsigned long		seg;
413 } mm_segment_t;
414 
415 struct thread_struct {
416 	/* Cached TLS descriptors: */
417 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
418 	unsigned long		sp0;
419 	unsigned long		sp;
420 #ifdef CONFIG_X86_32
421 	unsigned long		sysenter_cs;
422 #else
423 	unsigned short		es;
424 	unsigned short		ds;
425 	unsigned short		fsindex;
426 	unsigned short		gsindex;
427 #endif
428 
429 	u32			status;		/* thread synchronous flags */
430 
431 #ifdef CONFIG_X86_64
432 	unsigned long		fsbase;
433 	unsigned long		gsbase;
434 #else
435 	/*
436 	 * XXX: this could presumably be unsigned short.  Alternatively,
437 	 * 32-bit kernels could be taught to use fsindex instead.
438 	 */
439 	unsigned long fs;
440 	unsigned long gs;
441 #endif
442 
443 	/* Save middle states of ptrace breakpoints */
444 	struct perf_event	*ptrace_bps[HBP_NUM];
445 	/* Debug status used for traps, single steps, etc... */
446 	unsigned long           debugreg6;
447 	/* Keep track of the exact dr7 value set by the user */
448 	unsigned long           ptrace_dr7;
449 	/* Fault info: */
450 	unsigned long		cr2;
451 	unsigned long		trap_nr;
452 	unsigned long		error_code;
453 #ifdef CONFIG_VM86
454 	/* Virtual 86 mode info */
455 	struct vm86		*vm86;
456 #endif
457 	/* IO permissions: */
458 	unsigned long		*io_bitmap_ptr;
459 	unsigned long		iopl;
460 	/* Max allowed port in the bitmap, in bytes: */
461 	unsigned		io_bitmap_max;
462 
463 	mm_segment_t		addr_limit;
464 
465 	unsigned int		sig_on_uaccess_err:1;
466 	unsigned int		uaccess_err:1;	/* uaccess failed */
467 
468 	/* Floating point and extended processor state */
469 	struct fpu		fpu;
470 	/*
471 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
472 	 * the end.
473 	 */
474 };
475 
476 /*
477  * Thread-synchronous status.
478  *
479  * This is different from the flags in that nobody else
480  * ever touches our thread-synchronous status, so we don't
481  * have to worry about atomic accesses.
482  */
483 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
484 
485 /*
486  * Set IOPL bits in EFLAGS from given mask
487  */
488 static inline void native_set_iopl_mask(unsigned mask)
489 {
490 #ifdef CONFIG_X86_32
491 	unsigned int reg;
492 
493 	asm volatile ("pushfl;"
494 		      "popl %0;"
495 		      "andl %1, %0;"
496 		      "orl %2, %0;"
497 		      "pushl %0;"
498 		      "popfl"
499 		      : "=&r" (reg)
500 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
501 #endif
502 }
503 
504 static inline void
505 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
506 {
507 	tss->x86_tss.sp0 = thread->sp0;
508 #ifdef CONFIG_X86_32
509 	/* Only happens when SEP is enabled, no need to test "SEP"arately: */
510 	if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
511 		tss->x86_tss.ss1 = thread->sysenter_cs;
512 		wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
513 	}
514 #endif
515 }
516 
517 static inline void native_swapgs(void)
518 {
519 #ifdef CONFIG_X86_64
520 	asm volatile("swapgs" ::: "memory");
521 #endif
522 }
523 
524 static inline unsigned long current_top_of_stack(void)
525 {
526 #ifdef CONFIG_X86_64
527 	return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
528 #else
529 	/* sp0 on x86_32 is special in and around vm86 mode. */
530 	return this_cpu_read_stable(cpu_current_top_of_stack);
531 #endif
532 }
533 
534 #ifdef CONFIG_PARAVIRT
535 #include <asm/paravirt.h>
536 #else
537 #define __cpuid			native_cpuid
538 
539 static inline void load_sp0(struct tss_struct *tss,
540 			    struct thread_struct *thread)
541 {
542 	native_load_sp0(tss, thread);
543 }
544 
545 #define set_iopl_mask native_set_iopl_mask
546 #endif /* CONFIG_PARAVIRT */
547 
548 /* Free all resources held by a thread. */
549 extern void release_thread(struct task_struct *);
550 
551 unsigned long get_wchan(struct task_struct *p);
552 
553 /*
554  * Generic CPUID function
555  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
556  * resulting in stale register contents being returned.
557  */
558 static inline void cpuid(unsigned int op,
559 			 unsigned int *eax, unsigned int *ebx,
560 			 unsigned int *ecx, unsigned int *edx)
561 {
562 	*eax = op;
563 	*ecx = 0;
564 	__cpuid(eax, ebx, ecx, edx);
565 }
566 
567 /* Some CPUID calls want 'count' to be placed in ecx */
568 static inline void cpuid_count(unsigned int op, int count,
569 			       unsigned int *eax, unsigned int *ebx,
570 			       unsigned int *ecx, unsigned int *edx)
571 {
572 	*eax = op;
573 	*ecx = count;
574 	__cpuid(eax, ebx, ecx, edx);
575 }
576 
577 /*
578  * CPUID functions returning a single datum
579  */
580 static inline unsigned int cpuid_eax(unsigned int op)
581 {
582 	unsigned int eax, ebx, ecx, edx;
583 
584 	cpuid(op, &eax, &ebx, &ecx, &edx);
585 
586 	return eax;
587 }
588 
589 static inline unsigned int cpuid_ebx(unsigned int op)
590 {
591 	unsigned int eax, ebx, ecx, edx;
592 
593 	cpuid(op, &eax, &ebx, &ecx, &edx);
594 
595 	return ebx;
596 }
597 
598 static inline unsigned int cpuid_ecx(unsigned int op)
599 {
600 	unsigned int eax, ebx, ecx, edx;
601 
602 	cpuid(op, &eax, &ebx, &ecx, &edx);
603 
604 	return ecx;
605 }
606 
607 static inline unsigned int cpuid_edx(unsigned int op)
608 {
609 	unsigned int eax, ebx, ecx, edx;
610 
611 	cpuid(op, &eax, &ebx, &ecx, &edx);
612 
613 	return edx;
614 }
615 
616 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
617 static __always_inline void rep_nop(void)
618 {
619 	asm volatile("rep; nop" ::: "memory");
620 }
621 
622 static __always_inline void cpu_relax(void)
623 {
624 	rep_nop();
625 }
626 
627 /*
628  * This function forces the icache and prefetched instruction stream to
629  * catch up with reality in two very specific cases:
630  *
631  *  a) Text was modified using one virtual address and is about to be executed
632  *     from the same physical page at a different virtual address.
633  *
634  *  b) Text was modified on a different CPU, may subsequently be
635  *     executed on this CPU, and you want to make sure the new version
636  *     gets executed.  This generally means you're calling this in a IPI.
637  *
638  * If you're calling this for a different reason, you're probably doing
639  * it wrong.
640  */
641 static inline void sync_core(void)
642 {
643 	/*
644 	 * There are quite a few ways to do this.  IRET-to-self is nice
645 	 * because it works on every CPU, at any CPL (so it's compatible
646 	 * with paravirtualization), and it never exits to a hypervisor.
647 	 * The only down sides are that it's a bit slow (it seems to be
648 	 * a bit more than 2x slower than the fastest options) and that
649 	 * it unmasks NMIs.  The "push %cs" is needed because, in
650 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
651 	 * value when we do IRET directly.
652 	 *
653 	 * In case NMI unmasking or performance ever becomes a problem,
654 	 * the next best option appears to be MOV-to-CR2 and an
655 	 * unconditional jump.  That sequence also works on all CPUs,
656 	 * but it will fault at CPL3 (i.e. Xen PV and lguest).
657 	 *
658 	 * CPUID is the conventional way, but it's nasty: it doesn't
659 	 * exist on some 486-like CPUs, and it usually exits to a
660 	 * hypervisor.
661 	 *
662 	 * Like all of Linux's memory ordering operations, this is a
663 	 * compiler barrier as well.
664 	 */
665 	register void *__sp asm(_ASM_SP);
666 
667 #ifdef CONFIG_X86_32
668 	asm volatile (
669 		"pushfl\n\t"
670 		"pushl %%cs\n\t"
671 		"pushl $1f\n\t"
672 		"iret\n\t"
673 		"1:"
674 		: "+r" (__sp) : : "memory");
675 #else
676 	unsigned int tmp;
677 
678 	asm volatile (
679 		"mov %%ss, %0\n\t"
680 		"pushq %q0\n\t"
681 		"pushq %%rsp\n\t"
682 		"addq $8, (%%rsp)\n\t"
683 		"pushfq\n\t"
684 		"mov %%cs, %0\n\t"
685 		"pushq %q0\n\t"
686 		"pushq $1f\n\t"
687 		"iretq\n\t"
688 		"1:"
689 		: "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
690 #endif
691 }
692 
693 extern void select_idle_routine(const struct cpuinfo_x86 *c);
694 extern void amd_e400_c1e_apic_setup(void);
695 
696 extern unsigned long		boot_option_idle_override;
697 
698 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
699 			 IDLE_POLL};
700 
701 extern void enable_sep_cpu(void);
702 extern int sysenter_setup(void);
703 
704 extern void early_trap_init(void);
705 void early_trap_pf_init(void);
706 
707 /* Defined in head.S */
708 extern struct desc_ptr		early_gdt_descr;
709 
710 extern void cpu_set_gdt(int);
711 extern void switch_to_new_gdt(int);
712 extern void load_direct_gdt(int);
713 extern void load_fixmap_gdt(int);
714 extern void load_percpu_segment(int);
715 extern void cpu_init(void);
716 
717 static inline unsigned long get_debugctlmsr(void)
718 {
719 	unsigned long debugctlmsr = 0;
720 
721 #ifndef CONFIG_X86_DEBUGCTLMSR
722 	if (boot_cpu_data.x86 < 6)
723 		return 0;
724 #endif
725 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
726 
727 	return debugctlmsr;
728 }
729 
730 static inline void update_debugctlmsr(unsigned long debugctlmsr)
731 {
732 #ifndef CONFIG_X86_DEBUGCTLMSR
733 	if (boot_cpu_data.x86 < 6)
734 		return;
735 #endif
736 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
737 }
738 
739 extern void set_task_blockstep(struct task_struct *task, bool on);
740 
741 /* Boot loader type from the setup header: */
742 extern int			bootloader_type;
743 extern int			bootloader_version;
744 
745 extern char			ignore_fpu_irq;
746 
747 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
748 #define ARCH_HAS_PREFETCHW
749 #define ARCH_HAS_SPINLOCK_PREFETCH
750 
751 #ifdef CONFIG_X86_32
752 # define BASE_PREFETCH		""
753 # define ARCH_HAS_PREFETCH
754 #else
755 # define BASE_PREFETCH		"prefetcht0 %P1"
756 #endif
757 
758 /*
759  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
760  *
761  * It's not worth to care about 3dnow prefetches for the K6
762  * because they are microcoded there and very slow.
763  */
764 static inline void prefetch(const void *x)
765 {
766 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
767 			  X86_FEATURE_XMM,
768 			  "m" (*(const char *)x));
769 }
770 
771 /*
772  * 3dnow prefetch to get an exclusive cache line.
773  * Useful for spinlocks to avoid one state transition in the
774  * cache coherency protocol:
775  */
776 static inline void prefetchw(const void *x)
777 {
778 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
779 			  X86_FEATURE_3DNOWPREFETCH,
780 			  "m" (*(const char *)x));
781 }
782 
783 static inline void spin_lock_prefetch(const void *x)
784 {
785 	prefetchw(x);
786 }
787 
788 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
789 			   TOP_OF_KERNEL_STACK_PADDING)
790 
791 #ifdef CONFIG_X86_32
792 /*
793  * User space process size: 3GB (default).
794  */
795 #define IA32_PAGE_OFFSET	PAGE_OFFSET
796 #define TASK_SIZE		PAGE_OFFSET
797 #define TASK_SIZE_MAX		TASK_SIZE
798 #define STACK_TOP		TASK_SIZE
799 #define STACK_TOP_MAX		STACK_TOP
800 
801 #define INIT_THREAD  {							  \
802 	.sp0			= TOP_OF_INIT_STACK,			  \
803 	.sysenter_cs		= __KERNEL_CS,				  \
804 	.io_bitmap_ptr		= NULL,					  \
805 	.addr_limit		= KERNEL_DS,				  \
806 }
807 
808 /*
809  * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
810  * This is necessary to guarantee that the entire "struct pt_regs"
811  * is accessible even if the CPU haven't stored the SS/ESP registers
812  * on the stack (interrupt gate does not save these registers
813  * when switching to the same priv ring).
814  * Therefore beware: accessing the ss/esp fields of the
815  * "struct pt_regs" is possible, but they may contain the
816  * completely wrong values.
817  */
818 #define task_pt_regs(task) \
819 ({									\
820 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
821 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
822 	((struct pt_regs *)__ptr) - 1;					\
823 })
824 
825 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
826 
827 #else
828 /*
829  * User space process size. 47bits minus one guard page.  The guard
830  * page is necessary on Intel CPUs: if a SYSCALL instruction is at
831  * the highest possible canonical userspace address, then that
832  * syscall will enter the kernel with a non-canonical return
833  * address, and SYSRET will explode dangerously.  We avoid this
834  * particular problem by preventing anything from being mapped
835  * at the maximum canonical address.
836  */
837 #define TASK_SIZE_MAX	((1UL << 47) - PAGE_SIZE)
838 
839 /* This decides where the kernel will search for a free chunk of vm
840  * space during mmap's.
841  */
842 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
843 					0xc0000000 : 0xFFFFe000)
844 
845 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
846 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
847 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
848 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
849 
850 #define STACK_TOP		TASK_SIZE
851 #define STACK_TOP_MAX		TASK_SIZE_MAX
852 
853 #define INIT_THREAD  {						\
854 	.sp0			= TOP_OF_INIT_STACK,		\
855 	.addr_limit		= KERNEL_DS,			\
856 }
857 
858 #define task_pt_regs(tsk)	((struct pt_regs *)(tsk)->thread.sp0 - 1)
859 extern unsigned long KSTK_ESP(struct task_struct *task);
860 
861 #endif /* CONFIG_X86_64 */
862 
863 extern unsigned long thread_saved_pc(struct task_struct *tsk);
864 
865 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
866 					       unsigned long new_sp);
867 
868 /*
869  * This decides where the kernel will search for a free chunk of vm
870  * space during mmap's.
871  */
872 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
873 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE)
874 
875 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
876 
877 /* Get/set a process' ability to use the timestamp counter instruction */
878 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
879 #define SET_TSC_CTL(val)	set_tsc_mode((val))
880 
881 extern int get_tsc_mode(unsigned long adr);
882 extern int set_tsc_mode(unsigned int val);
883 
884 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
885 
886 /* Register/unregister a process' MPX related resource */
887 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
888 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
889 
890 #ifdef CONFIG_X86_INTEL_MPX
891 extern int mpx_enable_management(void);
892 extern int mpx_disable_management(void);
893 #else
894 static inline int mpx_enable_management(void)
895 {
896 	return -EINVAL;
897 }
898 static inline int mpx_disable_management(void)
899 {
900 	return -EINVAL;
901 }
902 #endif /* CONFIG_X86_INTEL_MPX */
903 
904 extern u16 amd_get_nb_id(int cpu);
905 extern u32 amd_get_nodes_per_socket(void);
906 
907 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
908 {
909 	uint32_t base, eax, signature[3];
910 
911 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
912 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
913 
914 		if (!memcmp(sig, signature, 12) &&
915 		    (leaves == 0 || ((eax - base) >= leaves)))
916 			return base;
917 	}
918 
919 	return 0;
920 }
921 
922 extern unsigned long arch_align_stack(unsigned long sp);
923 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
924 
925 void default_idle(void);
926 #ifdef	CONFIG_XEN
927 bool xen_set_default_idle(void);
928 #else
929 #define xen_set_default_idle 0
930 #endif
931 
932 void stop_this_cpu(void *dummy);
933 void df_debug(struct pt_regs *regs, long error_code);
934 #endif /* _ASM_X86_PROCESSOR_H */
935