xref: /openbmc/linux/arch/x86/include/asm/processor.h (revision d3273dea)
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3 
4 #include <asm/processor-flags.h>
5 
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10 
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25 
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32 
33 /*
34  * We handle most unaligned accesses in hardware.  On the other hand
35  * unaligned DMA can be quite expensive on some Nehalem processors.
36  *
37  * Based on this we disable the IP header alignment in network drivers.
38  */
39 #define NET_IP_ALIGN	0
40 
41 #define HBP_NUM 4
42 /*
43  * Default implementation of macro that returns current
44  * instruction pointer ("program counter").
45  */
46 static inline void *current_text_addr(void)
47 {
48 	void *pc;
49 
50 	asm volatile("mov $1f, %0; 1:":"=r" (pc));
51 
52 	return pc;
53 }
54 
55 /*
56  * These alignment constraints are for performance in the vSMP case,
57  * but in the task_struct case we must also meet hardware imposed
58  * alignment requirements of the FPU state:
59  */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN	0
66 #endif
67 
68 enum tlb_infos {
69 	ENTRIES,
70 	NR_INFO
71 };
72 
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80 
81 /*
82  *  CPU type and hardware bug flags. Kept separately for each CPU.
83  *  Members of this structure are referenced in head.S, so think twice
84  *  before touching them. [mj]
85  */
86 
87 struct cpuinfo_x86 {
88 	__u8			x86;		/* CPU family */
89 	__u8			x86_vendor;	/* CPU vendor */
90 	__u8			x86_model;
91 	__u8			x86_mask;
92 #ifdef CONFIG_X86_32
93 	char			wp_works_ok;	/* It doesn't on 386's */
94 
95 	/* Problems on some 486Dx4's and old 386's: */
96 	char			rfu;
97 	char			pad0;
98 	char			pad1;
99 #else
100 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
101 	int			x86_tlbsize;
102 #endif
103 	__u8			x86_virt_bits;
104 	__u8			x86_phys_bits;
105 	/* CPUID returned core id bits: */
106 	__u8			x86_coreid_bits;
107 	/* Max extended CPUID function supported: */
108 	__u32			extended_cpuid_level;
109 	/* Maximum supported CPUID level, -1=no CPUID: */
110 	int			cpuid_level;
111 	__u32			x86_capability[NCAPINTS + NBUGINTS];
112 	char			x86_vendor_id[16];
113 	char			x86_model_id[64];
114 	/* in KB - valid for CPUS which support this call: */
115 	int			x86_cache_size;
116 	int			x86_cache_alignment;	/* In bytes */
117 	/* Cache QoS architectural values: */
118 	int			x86_cache_max_rmid;	/* max index */
119 	int			x86_cache_occ_scale;	/* scale to bytes */
120 	int			x86_power;
121 	unsigned long		loops_per_jiffy;
122 	/* cpuid returned max cores value: */
123 	u16			 x86_max_cores;
124 	u16			apicid;
125 	u16			initial_apicid;
126 	u16			x86_clflush_size;
127 	/* number of cores as seen by the OS: */
128 	u16			booted_cores;
129 	/* Physical processor id: */
130 	u16			phys_proc_id;
131 	/* Logical processor id: */
132 	u16			logical_proc_id;
133 	/* Core id: */
134 	u16			cpu_core_id;
135 	/* Index into per_cpu list: */
136 	u16			cpu_index;
137 	u32			microcode;
138 };
139 
140 struct cpuid_regs {
141 	u32 eax, ebx, ecx, edx;
142 };
143 
144 enum cpuid_regs_idx {
145 	CPUID_EAX = 0,
146 	CPUID_EBX,
147 	CPUID_ECX,
148 	CPUID_EDX,
149 };
150 
151 #define X86_VENDOR_INTEL	0
152 #define X86_VENDOR_CYRIX	1
153 #define X86_VENDOR_AMD		2
154 #define X86_VENDOR_UMC		3
155 #define X86_VENDOR_CENTAUR	5
156 #define X86_VENDOR_TRANSMETA	7
157 #define X86_VENDOR_NSC		8
158 #define X86_VENDOR_NUM		9
159 
160 #define X86_VENDOR_UNKNOWN	0xff
161 
162 /*
163  * capabilities of CPUs
164  */
165 extern struct cpuinfo_x86	boot_cpu_data;
166 extern struct cpuinfo_x86	new_cpu_data;
167 
168 extern struct tss_struct	doublefault_tss;
169 extern __u32			cpu_caps_cleared[NCAPINTS];
170 extern __u32			cpu_caps_set[NCAPINTS];
171 
172 #ifdef CONFIG_SMP
173 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
174 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
175 #else
176 #define cpu_info		boot_cpu_data
177 #define cpu_data(cpu)		boot_cpu_data
178 #endif
179 
180 extern const struct seq_operations cpuinfo_op;
181 
182 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
183 
184 extern void cpu_detect(struct cpuinfo_x86 *c);
185 
186 extern void early_cpu_init(void);
187 extern void identify_boot_cpu(void);
188 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
189 extern void print_cpu_info(struct cpuinfo_x86 *);
190 void print_cpu_msr(struct cpuinfo_x86 *);
191 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
192 extern u32 get_scattered_cpuid_leaf(unsigned int level,
193 				    unsigned int sub_leaf,
194 				    enum cpuid_regs_idx reg);
195 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
196 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
197 
198 extern void detect_extended_topology(struct cpuinfo_x86 *c);
199 extern void detect_ht(struct cpuinfo_x86 *c);
200 
201 #ifdef CONFIG_X86_32
202 extern int have_cpuid_p(void);
203 #else
204 static inline int have_cpuid_p(void)
205 {
206 	return 1;
207 }
208 #endif
209 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
210 				unsigned int *ecx, unsigned int *edx)
211 {
212 	/* ecx is often an input as well as an output. */
213 	asm volatile("cpuid"
214 	    : "=a" (*eax),
215 	      "=b" (*ebx),
216 	      "=c" (*ecx),
217 	      "=d" (*edx)
218 	    : "0" (*eax), "2" (*ecx)
219 	    : "memory");
220 }
221 
222 #define native_cpuid_reg(reg)					\
223 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
224 {								\
225 	unsigned int eax = op, ebx, ecx = 0, edx;		\
226 								\
227 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
228 								\
229 	return reg;						\
230 }
231 
232 /*
233  * Native CPUID functions returning a single datum.
234  */
235 native_cpuid_reg(eax)
236 native_cpuid_reg(ebx)
237 native_cpuid_reg(ecx)
238 native_cpuid_reg(edx)
239 
240 static inline void load_cr3(pgd_t *pgdir)
241 {
242 	write_cr3(__pa(pgdir));
243 }
244 
245 #ifdef CONFIG_X86_32
246 /* This is the TSS defined by the hardware. */
247 struct x86_hw_tss {
248 	unsigned short		back_link, __blh;
249 	unsigned long		sp0;
250 	unsigned short		ss0, __ss0h;
251 	unsigned long		sp1;
252 
253 	/*
254 	 * We don't use ring 1, so ss1 is a convenient scratch space in
255 	 * the same cacheline as sp0.  We use ss1 to cache the value in
256 	 * MSR_IA32_SYSENTER_CS.  When we context switch
257 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
258 	 * written matches ss1, and, if it's not, then we wrmsr the new
259 	 * value and update ss1.
260 	 *
261 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
262 	 * that we set it to zero in vm86 tasks to avoid corrupting the
263 	 * stack if we were to go through the sysenter path from vm86
264 	 * mode.
265 	 */
266 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
267 
268 	unsigned short		__ss1h;
269 	unsigned long		sp2;
270 	unsigned short		ss2, __ss2h;
271 	unsigned long		__cr3;
272 	unsigned long		ip;
273 	unsigned long		flags;
274 	unsigned long		ax;
275 	unsigned long		cx;
276 	unsigned long		dx;
277 	unsigned long		bx;
278 	unsigned long		sp;
279 	unsigned long		bp;
280 	unsigned long		si;
281 	unsigned long		di;
282 	unsigned short		es, __esh;
283 	unsigned short		cs, __csh;
284 	unsigned short		ss, __ssh;
285 	unsigned short		ds, __dsh;
286 	unsigned short		fs, __fsh;
287 	unsigned short		gs, __gsh;
288 	unsigned short		ldt, __ldth;
289 	unsigned short		trace;
290 	unsigned short		io_bitmap_base;
291 
292 } __attribute__((packed));
293 #else
294 struct x86_hw_tss {
295 	u32			reserved1;
296 	u64			sp0;
297 	u64			sp1;
298 	u64			sp2;
299 	u64			reserved2;
300 	u64			ist[7];
301 	u32			reserved3;
302 	u32			reserved4;
303 	u16			reserved5;
304 	u16			io_bitmap_base;
305 
306 } __attribute__((packed));
307 #endif
308 
309 /*
310  * IO-bitmap sizes:
311  */
312 #define IO_BITMAP_BITS			65536
313 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
314 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
315 #define IO_BITMAP_OFFSET		offsetof(struct tss_struct, io_bitmap)
316 #define INVALID_IO_BITMAP_OFFSET	0x8000
317 
318 struct tss_struct {
319 	/*
320 	 * The hardware state:
321 	 */
322 	struct x86_hw_tss	x86_tss;
323 
324 	/*
325 	 * The extra 1 is there because the CPU will access an
326 	 * additional byte beyond the end of the IO permission
327 	 * bitmap. The extra byte must be all 1 bits, and must
328 	 * be within the limit.
329 	 */
330 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
331 
332 #ifdef CONFIG_X86_32
333 	/*
334 	 * Space for the temporary SYSENTER stack.
335 	 */
336 	unsigned long		SYSENTER_stack_canary;
337 	unsigned long		SYSENTER_stack[64];
338 #endif
339 
340 } ____cacheline_aligned;
341 
342 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
343 
344 /*
345  * sizeof(unsigned long) coming from an extra "long" at the end
346  * of the iobitmap.
347  *
348  * -1? seg base+limit should be pointing to the address of the
349  * last valid byte
350  */
351 #define __KERNEL_TSS_LIMIT	\
352 	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
353 
354 #ifdef CONFIG_X86_32
355 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
356 #endif
357 
358 /*
359  * Save the original ist values for checking stack pointers during debugging
360  */
361 struct orig_ist {
362 	unsigned long		ist[7];
363 };
364 
365 #ifdef CONFIG_X86_64
366 DECLARE_PER_CPU(struct orig_ist, orig_ist);
367 
368 union irq_stack_union {
369 	char irq_stack[IRQ_STACK_SIZE];
370 	/*
371 	 * GCC hardcodes the stack canary as %gs:40.  Since the
372 	 * irq_stack is the object at %gs:0, we reserve the bottom
373 	 * 48 bytes of the irq stack for the canary.
374 	 */
375 	struct {
376 		char gs_base[40];
377 		unsigned long stack_canary;
378 	};
379 };
380 
381 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
382 DECLARE_INIT_PER_CPU(irq_stack_union);
383 
384 DECLARE_PER_CPU(char *, irq_stack_ptr);
385 DECLARE_PER_CPU(unsigned int, irq_count);
386 extern asmlinkage void ignore_sysret(void);
387 #else	/* X86_64 */
388 #ifdef CONFIG_CC_STACKPROTECTOR
389 /*
390  * Make sure stack canary segment base is cached-aligned:
391  *   "For Intel Atom processors, avoid non zero segment base address
392  *    that is not aligned to cache line boundary at all cost."
393  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
394  */
395 struct stack_canary {
396 	char __pad[20];		/* canary at %gs:20 */
397 	unsigned long canary;
398 };
399 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
400 #endif
401 /*
402  * per-CPU IRQ handling stacks
403  */
404 struct irq_stack {
405 	u32                     stack[THREAD_SIZE/sizeof(u32)];
406 } __aligned(THREAD_SIZE);
407 
408 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
409 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
410 #endif	/* X86_64 */
411 
412 extern unsigned int fpu_kernel_xstate_size;
413 extern unsigned int fpu_user_xstate_size;
414 
415 struct perf_event;
416 
417 typedef struct {
418 	unsigned long		seg;
419 } mm_segment_t;
420 
421 struct thread_struct {
422 	/* Cached TLS descriptors: */
423 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
424 	unsigned long		sp0;
425 	unsigned long		sp;
426 #ifdef CONFIG_X86_32
427 	unsigned long		sysenter_cs;
428 #else
429 	unsigned short		es;
430 	unsigned short		ds;
431 	unsigned short		fsindex;
432 	unsigned short		gsindex;
433 #endif
434 
435 	u32			status;		/* thread synchronous flags */
436 
437 #ifdef CONFIG_X86_64
438 	unsigned long		fsbase;
439 	unsigned long		gsbase;
440 #else
441 	/*
442 	 * XXX: this could presumably be unsigned short.  Alternatively,
443 	 * 32-bit kernels could be taught to use fsindex instead.
444 	 */
445 	unsigned long fs;
446 	unsigned long gs;
447 #endif
448 
449 	/* Save middle states of ptrace breakpoints */
450 	struct perf_event	*ptrace_bps[HBP_NUM];
451 	/* Debug status used for traps, single steps, etc... */
452 	unsigned long           debugreg6;
453 	/* Keep track of the exact dr7 value set by the user */
454 	unsigned long           ptrace_dr7;
455 	/* Fault info: */
456 	unsigned long		cr2;
457 	unsigned long		trap_nr;
458 	unsigned long		error_code;
459 #ifdef CONFIG_VM86
460 	/* Virtual 86 mode info */
461 	struct vm86		*vm86;
462 #endif
463 	/* IO permissions: */
464 	unsigned long		*io_bitmap_ptr;
465 	unsigned long		iopl;
466 	/* Max allowed port in the bitmap, in bytes: */
467 	unsigned		io_bitmap_max;
468 
469 	mm_segment_t		addr_limit;
470 
471 	unsigned int		sig_on_uaccess_err:1;
472 	unsigned int		uaccess_err:1;	/* uaccess failed */
473 
474 	/* Floating point and extended processor state */
475 	struct fpu		fpu;
476 	/*
477 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
478 	 * the end.
479 	 */
480 };
481 
482 /*
483  * Thread-synchronous status.
484  *
485  * This is different from the flags in that nobody else
486  * ever touches our thread-synchronous status, so we don't
487  * have to worry about atomic accesses.
488  */
489 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
490 
491 /*
492  * Set IOPL bits in EFLAGS from given mask
493  */
494 static inline void native_set_iopl_mask(unsigned mask)
495 {
496 #ifdef CONFIG_X86_32
497 	unsigned int reg;
498 
499 	asm volatile ("pushfl;"
500 		      "popl %0;"
501 		      "andl %1, %0;"
502 		      "orl %2, %0;"
503 		      "pushl %0;"
504 		      "popfl"
505 		      : "=&r" (reg)
506 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
507 #endif
508 }
509 
510 static inline void
511 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
512 {
513 	tss->x86_tss.sp0 = thread->sp0;
514 #ifdef CONFIG_X86_32
515 	/* Only happens when SEP is enabled, no need to test "SEP"arately: */
516 	if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
517 		tss->x86_tss.ss1 = thread->sysenter_cs;
518 		wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
519 	}
520 #endif
521 }
522 
523 static inline void native_swapgs(void)
524 {
525 #ifdef CONFIG_X86_64
526 	asm volatile("swapgs" ::: "memory");
527 #endif
528 }
529 
530 static inline unsigned long current_top_of_stack(void)
531 {
532 #ifdef CONFIG_X86_64
533 	return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
534 #else
535 	/* sp0 on x86_32 is special in and around vm86 mode. */
536 	return this_cpu_read_stable(cpu_current_top_of_stack);
537 #endif
538 }
539 
540 #ifdef CONFIG_PARAVIRT
541 #include <asm/paravirt.h>
542 #else
543 #define __cpuid			native_cpuid
544 
545 static inline void load_sp0(struct tss_struct *tss,
546 			    struct thread_struct *thread)
547 {
548 	native_load_sp0(tss, thread);
549 }
550 
551 #define set_iopl_mask native_set_iopl_mask
552 #endif /* CONFIG_PARAVIRT */
553 
554 /* Free all resources held by a thread. */
555 extern void release_thread(struct task_struct *);
556 
557 unsigned long get_wchan(struct task_struct *p);
558 
559 /*
560  * Generic CPUID function
561  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
562  * resulting in stale register contents being returned.
563  */
564 static inline void cpuid(unsigned int op,
565 			 unsigned int *eax, unsigned int *ebx,
566 			 unsigned int *ecx, unsigned int *edx)
567 {
568 	*eax = op;
569 	*ecx = 0;
570 	__cpuid(eax, ebx, ecx, edx);
571 }
572 
573 /* Some CPUID calls want 'count' to be placed in ecx */
574 static inline void cpuid_count(unsigned int op, int count,
575 			       unsigned int *eax, unsigned int *ebx,
576 			       unsigned int *ecx, unsigned int *edx)
577 {
578 	*eax = op;
579 	*ecx = count;
580 	__cpuid(eax, ebx, ecx, edx);
581 }
582 
583 /*
584  * CPUID functions returning a single datum
585  */
586 static inline unsigned int cpuid_eax(unsigned int op)
587 {
588 	unsigned int eax, ebx, ecx, edx;
589 
590 	cpuid(op, &eax, &ebx, &ecx, &edx);
591 
592 	return eax;
593 }
594 
595 static inline unsigned int cpuid_ebx(unsigned int op)
596 {
597 	unsigned int eax, ebx, ecx, edx;
598 
599 	cpuid(op, &eax, &ebx, &ecx, &edx);
600 
601 	return ebx;
602 }
603 
604 static inline unsigned int cpuid_ecx(unsigned int op)
605 {
606 	unsigned int eax, ebx, ecx, edx;
607 
608 	cpuid(op, &eax, &ebx, &ecx, &edx);
609 
610 	return ecx;
611 }
612 
613 static inline unsigned int cpuid_edx(unsigned int op)
614 {
615 	unsigned int eax, ebx, ecx, edx;
616 
617 	cpuid(op, &eax, &ebx, &ecx, &edx);
618 
619 	return edx;
620 }
621 
622 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
623 static __always_inline void rep_nop(void)
624 {
625 	asm volatile("rep; nop" ::: "memory");
626 }
627 
628 static __always_inline void cpu_relax(void)
629 {
630 	rep_nop();
631 }
632 
633 /*
634  * This function forces the icache and prefetched instruction stream to
635  * catch up with reality in two very specific cases:
636  *
637  *  a) Text was modified using one virtual address and is about to be executed
638  *     from the same physical page at a different virtual address.
639  *
640  *  b) Text was modified on a different CPU, may subsequently be
641  *     executed on this CPU, and you want to make sure the new version
642  *     gets executed.  This generally means you're calling this in a IPI.
643  *
644  * If you're calling this for a different reason, you're probably doing
645  * it wrong.
646  */
647 static inline void sync_core(void)
648 {
649 	/*
650 	 * There are quite a few ways to do this.  IRET-to-self is nice
651 	 * because it works on every CPU, at any CPL (so it's compatible
652 	 * with paravirtualization), and it never exits to a hypervisor.
653 	 * The only down sides are that it's a bit slow (it seems to be
654 	 * a bit more than 2x slower than the fastest options) and that
655 	 * it unmasks NMIs.  The "push %cs" is needed because, in
656 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
657 	 * value when we do IRET directly.
658 	 *
659 	 * In case NMI unmasking or performance ever becomes a problem,
660 	 * the next best option appears to be MOV-to-CR2 and an
661 	 * unconditional jump.  That sequence also works on all CPUs,
662 	 * but it will fault at CPL3 (i.e. Xen PV and lguest).
663 	 *
664 	 * CPUID is the conventional way, but it's nasty: it doesn't
665 	 * exist on some 486-like CPUs, and it usually exits to a
666 	 * hypervisor.
667 	 *
668 	 * Like all of Linux's memory ordering operations, this is a
669 	 * compiler barrier as well.
670 	 */
671 	register void *__sp asm(_ASM_SP);
672 
673 #ifdef CONFIG_X86_32
674 	asm volatile (
675 		"pushfl\n\t"
676 		"pushl %%cs\n\t"
677 		"pushl $1f\n\t"
678 		"iret\n\t"
679 		"1:"
680 		: "+r" (__sp) : : "memory");
681 #else
682 	unsigned int tmp;
683 
684 	asm volatile (
685 		"mov %%ss, %0\n\t"
686 		"pushq %q0\n\t"
687 		"pushq %%rsp\n\t"
688 		"addq $8, (%%rsp)\n\t"
689 		"pushfq\n\t"
690 		"mov %%cs, %0\n\t"
691 		"pushq %q0\n\t"
692 		"pushq $1f\n\t"
693 		"iretq\n\t"
694 		"1:"
695 		: "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
696 #endif
697 }
698 
699 extern void select_idle_routine(const struct cpuinfo_x86 *c);
700 extern void amd_e400_c1e_apic_setup(void);
701 
702 extern unsigned long		boot_option_idle_override;
703 
704 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
705 			 IDLE_POLL};
706 
707 extern void enable_sep_cpu(void);
708 extern int sysenter_setup(void);
709 
710 extern void early_trap_init(void);
711 void early_trap_pf_init(void);
712 
713 /* Defined in head.S */
714 extern struct desc_ptr		early_gdt_descr;
715 
716 extern void cpu_set_gdt(int);
717 extern void switch_to_new_gdt(int);
718 extern void load_percpu_segment(int);
719 extern void cpu_init(void);
720 
721 static inline unsigned long get_debugctlmsr(void)
722 {
723 	unsigned long debugctlmsr = 0;
724 
725 #ifndef CONFIG_X86_DEBUGCTLMSR
726 	if (boot_cpu_data.x86 < 6)
727 		return 0;
728 #endif
729 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
730 
731 	return debugctlmsr;
732 }
733 
734 static inline void update_debugctlmsr(unsigned long debugctlmsr)
735 {
736 #ifndef CONFIG_X86_DEBUGCTLMSR
737 	if (boot_cpu_data.x86 < 6)
738 		return;
739 #endif
740 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
741 }
742 
743 extern void set_task_blockstep(struct task_struct *task, bool on);
744 
745 /* Boot loader type from the setup header: */
746 extern int			bootloader_type;
747 extern int			bootloader_version;
748 
749 extern char			ignore_fpu_irq;
750 
751 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
752 #define ARCH_HAS_PREFETCHW
753 #define ARCH_HAS_SPINLOCK_PREFETCH
754 
755 #ifdef CONFIG_X86_32
756 # define BASE_PREFETCH		""
757 # define ARCH_HAS_PREFETCH
758 #else
759 # define BASE_PREFETCH		"prefetcht0 %P1"
760 #endif
761 
762 /*
763  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
764  *
765  * It's not worth to care about 3dnow prefetches for the K6
766  * because they are microcoded there and very slow.
767  */
768 static inline void prefetch(const void *x)
769 {
770 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
771 			  X86_FEATURE_XMM,
772 			  "m" (*(const char *)x));
773 }
774 
775 /*
776  * 3dnow prefetch to get an exclusive cache line.
777  * Useful for spinlocks to avoid one state transition in the
778  * cache coherency protocol:
779  */
780 static inline void prefetchw(const void *x)
781 {
782 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
783 			  X86_FEATURE_3DNOWPREFETCH,
784 			  "m" (*(const char *)x));
785 }
786 
787 static inline void spin_lock_prefetch(const void *x)
788 {
789 	prefetchw(x);
790 }
791 
792 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
793 			   TOP_OF_KERNEL_STACK_PADDING)
794 
795 #ifdef CONFIG_X86_32
796 /*
797  * User space process size: 3GB (default).
798  */
799 #define TASK_SIZE		PAGE_OFFSET
800 #define TASK_SIZE_MAX		TASK_SIZE
801 #define STACK_TOP		TASK_SIZE
802 #define STACK_TOP_MAX		STACK_TOP
803 
804 #define INIT_THREAD  {							  \
805 	.sp0			= TOP_OF_INIT_STACK,			  \
806 	.sysenter_cs		= __KERNEL_CS,				  \
807 	.io_bitmap_ptr		= NULL,					  \
808 	.addr_limit		= KERNEL_DS,				  \
809 }
810 
811 /*
812  * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
813  * This is necessary to guarantee that the entire "struct pt_regs"
814  * is accessible even if the CPU haven't stored the SS/ESP registers
815  * on the stack (interrupt gate does not save these registers
816  * when switching to the same priv ring).
817  * Therefore beware: accessing the ss/esp fields of the
818  * "struct pt_regs" is possible, but they may contain the
819  * completely wrong values.
820  */
821 #define task_pt_regs(task) \
822 ({									\
823 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
824 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
825 	((struct pt_regs *)__ptr) - 1;					\
826 })
827 
828 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
829 
830 #else
831 /*
832  * User space process size. 47bits minus one guard page.  The guard
833  * page is necessary on Intel CPUs: if a SYSCALL instruction is at
834  * the highest possible canonical userspace address, then that
835  * syscall will enter the kernel with a non-canonical return
836  * address, and SYSRET will explode dangerously.  We avoid this
837  * particular problem by preventing anything from being mapped
838  * at the maximum canonical address.
839  */
840 #define TASK_SIZE_MAX	((1UL << 47) - PAGE_SIZE)
841 
842 /* This decides where the kernel will search for a free chunk of vm
843  * space during mmap's.
844  */
845 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
846 					0xc0000000 : 0xFFFFe000)
847 
848 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
849 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
850 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
851 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
852 
853 #define STACK_TOP		TASK_SIZE
854 #define STACK_TOP_MAX		TASK_SIZE_MAX
855 
856 #define INIT_THREAD  {						\
857 	.sp0			= TOP_OF_INIT_STACK,		\
858 	.addr_limit		= KERNEL_DS,			\
859 }
860 
861 #define task_pt_regs(tsk)	((struct pt_regs *)(tsk)->thread.sp0 - 1)
862 extern unsigned long KSTK_ESP(struct task_struct *task);
863 
864 #endif /* CONFIG_X86_64 */
865 
866 extern unsigned long thread_saved_pc(struct task_struct *tsk);
867 
868 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
869 					       unsigned long new_sp);
870 
871 /*
872  * This decides where the kernel will search for a free chunk of vm
873  * space during mmap's.
874  */
875 #define TASK_UNMAPPED_BASE	(PAGE_ALIGN(TASK_SIZE / 3))
876 
877 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
878 
879 /* Get/set a process' ability to use the timestamp counter instruction */
880 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
881 #define SET_TSC_CTL(val)	set_tsc_mode((val))
882 
883 extern int get_tsc_mode(unsigned long adr);
884 extern int set_tsc_mode(unsigned int val);
885 
886 /* Register/unregister a process' MPX related resource */
887 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
888 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
889 
890 #ifdef CONFIG_X86_INTEL_MPX
891 extern int mpx_enable_management(void);
892 extern int mpx_disable_management(void);
893 #else
894 static inline int mpx_enable_management(void)
895 {
896 	return -EINVAL;
897 }
898 static inline int mpx_disable_management(void)
899 {
900 	return -EINVAL;
901 }
902 #endif /* CONFIG_X86_INTEL_MPX */
903 
904 extern u16 amd_get_nb_id(int cpu);
905 extern u32 amd_get_nodes_per_socket(void);
906 
907 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
908 {
909 	uint32_t base, eax, signature[3];
910 
911 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
912 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
913 
914 		if (!memcmp(sig, signature, 12) &&
915 		    (leaves == 0 || ((eax - base) >= leaves)))
916 			return base;
917 	}
918 
919 	return 0;
920 }
921 
922 extern unsigned long arch_align_stack(unsigned long sp);
923 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
924 
925 void default_idle(void);
926 #ifdef	CONFIG_XEN
927 bool xen_set_default_idle(void);
928 #else
929 #define xen_set_default_idle 0
930 #endif
931 
932 void stop_this_cpu(void *dummy);
933 void df_debug(struct pt_regs *regs, long error_code);
934 #endif /* _ASM_X86_PROCESSOR_H */
935