xref: /openbmc/linux/arch/x86/include/asm/processor.h (revision ba61bb17)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct vm86;
11 
12 #include <asm/math_emu.h>
13 #include <asm/segment.h>
14 #include <asm/types.h>
15 #include <uapi/asm/sigcontext.h>
16 #include <asm/current.h>
17 #include <asm/cpufeatures.h>
18 #include <asm/page.h>
19 #include <asm/pgtable_types.h>
20 #include <asm/percpu.h>
21 #include <asm/msr.h>
22 #include <asm/desc_defs.h>
23 #include <asm/nops.h>
24 #include <asm/special_insns.h>
25 #include <asm/fpu/types.h>
26 #include <asm/unwind_hints.h>
27 
28 #include <linux/personality.h>
29 #include <linux/cache.h>
30 #include <linux/threads.h>
31 #include <linux/math64.h>
32 #include <linux/err.h>
33 #include <linux/irqflags.h>
34 #include <linux/mem_encrypt.h>
35 
36 /*
37  * We handle most unaligned accesses in hardware.  On the other hand
38  * unaligned DMA can be quite expensive on some Nehalem processors.
39  *
40  * Based on this we disable the IP header alignment in network drivers.
41  */
42 #define NET_IP_ALIGN	0
43 
44 #define HBP_NUM 4
45 /*
46  * Default implementation of macro that returns current
47  * instruction pointer ("program counter").
48  */
49 static inline void *current_text_addr(void)
50 {
51 	void *pc;
52 
53 	asm volatile("mov $1f, %0; 1:":"=r" (pc));
54 
55 	return pc;
56 }
57 
58 /*
59  * These alignment constraints are for performance in the vSMP case,
60  * but in the task_struct case we must also meet hardware imposed
61  * alignment requirements of the FPU state:
62  */
63 #ifdef CONFIG_X86_VSMP
64 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
65 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
66 #else
67 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
68 # define ARCH_MIN_MMSTRUCT_ALIGN	0
69 #endif
70 
71 enum tlb_infos {
72 	ENTRIES,
73 	NR_INFO
74 };
75 
76 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83 
84 /*
85  *  CPU type and hardware bug flags. Kept separately for each CPU.
86  *  Members of this structure are referenced in head_32.S, so think twice
87  *  before touching them. [mj]
88  */
89 
90 struct cpuinfo_x86 {
91 	__u8			x86;		/* CPU family */
92 	__u8			x86_vendor;	/* CPU vendor */
93 	__u8			x86_model;
94 	__u8			x86_stepping;
95 #ifdef CONFIG_X86_64
96 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 	int			x86_tlbsize;
98 #endif
99 	__u8			x86_virt_bits;
100 	__u8			x86_phys_bits;
101 	/* CPUID returned core id bits: */
102 	__u8			x86_coreid_bits;
103 	__u8			cu_id;
104 	/* Max extended CPUID function supported: */
105 	__u32			extended_cpuid_level;
106 	/* Maximum supported CPUID level, -1=no CPUID: */
107 	int			cpuid_level;
108 	__u32			x86_capability[NCAPINTS + NBUGINTS];
109 	char			x86_vendor_id[16];
110 	char			x86_model_id[64];
111 	/* in KB - valid for CPUS which support this call: */
112 	unsigned int		x86_cache_size;
113 	int			x86_cache_alignment;	/* In bytes */
114 	/* Cache QoS architectural values: */
115 	int			x86_cache_max_rmid;	/* max index */
116 	int			x86_cache_occ_scale;	/* scale to bytes */
117 	int			x86_power;
118 	unsigned long		loops_per_jiffy;
119 	/* cpuid returned max cores value: */
120 	u16			 x86_max_cores;
121 	u16			apicid;
122 	u16			initial_apicid;
123 	u16			x86_clflush_size;
124 	/* number of cores as seen by the OS: */
125 	u16			booted_cores;
126 	/* Physical processor id: */
127 	u16			phys_proc_id;
128 	/* Logical processor id: */
129 	u16			logical_proc_id;
130 	/* Core id: */
131 	u16			cpu_core_id;
132 	/* Index into per_cpu list: */
133 	u16			cpu_index;
134 	u32			microcode;
135 	unsigned		initialized : 1;
136 } __randomize_layout;
137 
138 struct cpuid_regs {
139 	u32 eax, ebx, ecx, edx;
140 };
141 
142 enum cpuid_regs_idx {
143 	CPUID_EAX = 0,
144 	CPUID_EBX,
145 	CPUID_ECX,
146 	CPUID_EDX,
147 };
148 
149 #define X86_VENDOR_INTEL	0
150 #define X86_VENDOR_CYRIX	1
151 #define X86_VENDOR_AMD		2
152 #define X86_VENDOR_UMC		3
153 #define X86_VENDOR_CENTAUR	5
154 #define X86_VENDOR_TRANSMETA	7
155 #define X86_VENDOR_NSC		8
156 #define X86_VENDOR_NUM		9
157 
158 #define X86_VENDOR_UNKNOWN	0xff
159 
160 /*
161  * capabilities of CPUs
162  */
163 extern struct cpuinfo_x86	boot_cpu_data;
164 extern struct cpuinfo_x86	new_cpu_data;
165 
166 extern struct x86_hw_tss	doublefault_tss;
167 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
168 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
169 
170 #ifdef CONFIG_SMP
171 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
172 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
173 #else
174 #define cpu_info		boot_cpu_data
175 #define cpu_data(cpu)		boot_cpu_data
176 #endif
177 
178 extern const struct seq_operations cpuinfo_op;
179 
180 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
181 
182 extern void cpu_detect(struct cpuinfo_x86 *c);
183 
184 extern void early_cpu_init(void);
185 extern void identify_boot_cpu(void);
186 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
187 extern void print_cpu_info(struct cpuinfo_x86 *);
188 void print_cpu_msr(struct cpuinfo_x86 *);
189 
190 #ifdef CONFIG_X86_32
191 extern int have_cpuid_p(void);
192 #else
193 static inline int have_cpuid_p(void)
194 {
195 	return 1;
196 }
197 #endif
198 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
199 				unsigned int *ecx, unsigned int *edx)
200 {
201 	/* ecx is often an input as well as an output. */
202 	asm volatile("cpuid"
203 	    : "=a" (*eax),
204 	      "=b" (*ebx),
205 	      "=c" (*ecx),
206 	      "=d" (*edx)
207 	    : "0" (*eax), "2" (*ecx)
208 	    : "memory");
209 }
210 
211 #define native_cpuid_reg(reg)					\
212 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
213 {								\
214 	unsigned int eax = op, ebx, ecx = 0, edx;		\
215 								\
216 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
217 								\
218 	return reg;						\
219 }
220 
221 /*
222  * Native CPUID functions returning a single datum.
223  */
224 native_cpuid_reg(eax)
225 native_cpuid_reg(ebx)
226 native_cpuid_reg(ecx)
227 native_cpuid_reg(edx)
228 
229 /*
230  * Friendlier CR3 helpers.
231  */
232 static inline unsigned long read_cr3_pa(void)
233 {
234 	return __read_cr3() & CR3_ADDR_MASK;
235 }
236 
237 static inline unsigned long native_read_cr3_pa(void)
238 {
239 	return __native_read_cr3() & CR3_ADDR_MASK;
240 }
241 
242 static inline void load_cr3(pgd_t *pgdir)
243 {
244 	write_cr3(__sme_pa(pgdir));
245 }
246 
247 /*
248  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
249  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
250  * unrelated to the task-switch mechanism:
251  */
252 #ifdef CONFIG_X86_32
253 /* This is the TSS defined by the hardware. */
254 struct x86_hw_tss {
255 	unsigned short		back_link, __blh;
256 	unsigned long		sp0;
257 	unsigned short		ss0, __ss0h;
258 	unsigned long		sp1;
259 
260 	/*
261 	 * We don't use ring 1, so ss1 is a convenient scratch space in
262 	 * the same cacheline as sp0.  We use ss1 to cache the value in
263 	 * MSR_IA32_SYSENTER_CS.  When we context switch
264 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
265 	 * written matches ss1, and, if it's not, then we wrmsr the new
266 	 * value and update ss1.
267 	 *
268 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
269 	 * that we set it to zero in vm86 tasks to avoid corrupting the
270 	 * stack if we were to go through the sysenter path from vm86
271 	 * mode.
272 	 */
273 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
274 
275 	unsigned short		__ss1h;
276 	unsigned long		sp2;
277 	unsigned short		ss2, __ss2h;
278 	unsigned long		__cr3;
279 	unsigned long		ip;
280 	unsigned long		flags;
281 	unsigned long		ax;
282 	unsigned long		cx;
283 	unsigned long		dx;
284 	unsigned long		bx;
285 	unsigned long		sp;
286 	unsigned long		bp;
287 	unsigned long		si;
288 	unsigned long		di;
289 	unsigned short		es, __esh;
290 	unsigned short		cs, __csh;
291 	unsigned short		ss, __ssh;
292 	unsigned short		ds, __dsh;
293 	unsigned short		fs, __fsh;
294 	unsigned short		gs, __gsh;
295 	unsigned short		ldt, __ldth;
296 	unsigned short		trace;
297 	unsigned short		io_bitmap_base;
298 
299 } __attribute__((packed));
300 #else
301 struct x86_hw_tss {
302 	u32			reserved1;
303 	u64			sp0;
304 
305 	/*
306 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
307 	 * Linux does not use ring 1, so sp1 is not otherwise needed.
308 	 */
309 	u64			sp1;
310 
311 	u64			sp2;
312 	u64			reserved2;
313 	u64			ist[7];
314 	u32			reserved3;
315 	u32			reserved4;
316 	u16			reserved5;
317 	u16			io_bitmap_base;
318 
319 } __attribute__((packed));
320 #endif
321 
322 /*
323  * IO-bitmap sizes:
324  */
325 #define IO_BITMAP_BITS			65536
326 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
327 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
328 #define IO_BITMAP_OFFSET		(offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
329 #define INVALID_IO_BITMAP_OFFSET	0x8000
330 
331 struct entry_stack {
332 	unsigned long		words[64];
333 };
334 
335 struct entry_stack_page {
336 	struct entry_stack stack;
337 } __aligned(PAGE_SIZE);
338 
339 struct tss_struct {
340 	/*
341 	 * The fixed hardware portion.  This must not cross a page boundary
342 	 * at risk of violating the SDM's advice and potentially triggering
343 	 * errata.
344 	 */
345 	struct x86_hw_tss	x86_tss;
346 
347 	/*
348 	 * The extra 1 is there because the CPU will access an
349 	 * additional byte beyond the end of the IO permission
350 	 * bitmap. The extra byte must be all 1 bits, and must
351 	 * be within the limit.
352 	 */
353 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
354 } __aligned(PAGE_SIZE);
355 
356 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
357 
358 /*
359  * sizeof(unsigned long) coming from an extra "long" at the end
360  * of the iobitmap.
361  *
362  * -1? seg base+limit should be pointing to the address of the
363  * last valid byte
364  */
365 #define __KERNEL_TSS_LIMIT	\
366 	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
367 
368 #ifdef CONFIG_X86_32
369 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
370 #else
371 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
372 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
373 #endif
374 
375 /*
376  * Save the original ist values for checking stack pointers during debugging
377  */
378 struct orig_ist {
379 	unsigned long		ist[7];
380 };
381 
382 #ifdef CONFIG_X86_64
383 DECLARE_PER_CPU(struct orig_ist, orig_ist);
384 
385 union irq_stack_union {
386 	char irq_stack[IRQ_STACK_SIZE];
387 	/*
388 	 * GCC hardcodes the stack canary as %gs:40.  Since the
389 	 * irq_stack is the object at %gs:0, we reserve the bottom
390 	 * 48 bytes of the irq stack for the canary.
391 	 */
392 	struct {
393 		char gs_base[40];
394 		unsigned long stack_canary;
395 	};
396 };
397 
398 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
399 DECLARE_INIT_PER_CPU(irq_stack_union);
400 
401 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
402 {
403 	return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu);
404 }
405 
406 DECLARE_PER_CPU(char *, irq_stack_ptr);
407 DECLARE_PER_CPU(unsigned int, irq_count);
408 extern asmlinkage void ignore_sysret(void);
409 
410 #if IS_ENABLED(CONFIG_KVM)
411 /* Save actual FS/GS selectors and bases to current->thread */
412 void save_fsgs_for_kvm(void);
413 #endif
414 #else	/* X86_64 */
415 #ifdef CONFIG_STACKPROTECTOR
416 /*
417  * Make sure stack canary segment base is cached-aligned:
418  *   "For Intel Atom processors, avoid non zero segment base address
419  *    that is not aligned to cache line boundary at all cost."
420  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
421  */
422 struct stack_canary {
423 	char __pad[20];		/* canary at %gs:20 */
424 	unsigned long canary;
425 };
426 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
427 #endif
428 /*
429  * per-CPU IRQ handling stacks
430  */
431 struct irq_stack {
432 	u32                     stack[THREAD_SIZE/sizeof(u32)];
433 } __aligned(THREAD_SIZE);
434 
435 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
436 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
437 #endif	/* X86_64 */
438 
439 extern unsigned int fpu_kernel_xstate_size;
440 extern unsigned int fpu_user_xstate_size;
441 
442 struct perf_event;
443 
444 typedef struct {
445 	unsigned long		seg;
446 } mm_segment_t;
447 
448 struct thread_struct {
449 	/* Cached TLS descriptors: */
450 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
451 #ifdef CONFIG_X86_32
452 	unsigned long		sp0;
453 #endif
454 	unsigned long		sp;
455 #ifdef CONFIG_X86_32
456 	unsigned long		sysenter_cs;
457 #else
458 	unsigned short		es;
459 	unsigned short		ds;
460 	unsigned short		fsindex;
461 	unsigned short		gsindex;
462 #endif
463 
464 #ifdef CONFIG_X86_64
465 	unsigned long		fsbase;
466 	unsigned long		gsbase;
467 #else
468 	/*
469 	 * XXX: this could presumably be unsigned short.  Alternatively,
470 	 * 32-bit kernels could be taught to use fsindex instead.
471 	 */
472 	unsigned long fs;
473 	unsigned long gs;
474 #endif
475 
476 	/* Save middle states of ptrace breakpoints */
477 	struct perf_event	*ptrace_bps[HBP_NUM];
478 	/* Debug status used for traps, single steps, etc... */
479 	unsigned long           debugreg6;
480 	/* Keep track of the exact dr7 value set by the user */
481 	unsigned long           ptrace_dr7;
482 	/* Fault info: */
483 	unsigned long		cr2;
484 	unsigned long		trap_nr;
485 	unsigned long		error_code;
486 #ifdef CONFIG_VM86
487 	/* Virtual 86 mode info */
488 	struct vm86		*vm86;
489 #endif
490 	/* IO permissions: */
491 	unsigned long		*io_bitmap_ptr;
492 	unsigned long		iopl;
493 	/* Max allowed port in the bitmap, in bytes: */
494 	unsigned		io_bitmap_max;
495 
496 	mm_segment_t		addr_limit;
497 
498 	unsigned int		sig_on_uaccess_err:1;
499 	unsigned int		uaccess_err:1;	/* uaccess failed */
500 
501 	/* Floating point and extended processor state */
502 	struct fpu		fpu;
503 	/*
504 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
505 	 * the end.
506 	 */
507 };
508 
509 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
510 static inline void arch_thread_struct_whitelist(unsigned long *offset,
511 						unsigned long *size)
512 {
513 	*offset = offsetof(struct thread_struct, fpu.state);
514 	*size = fpu_kernel_xstate_size;
515 }
516 
517 /*
518  * Thread-synchronous status.
519  *
520  * This is different from the flags in that nobody else
521  * ever touches our thread-synchronous status, so we don't
522  * have to worry about atomic accesses.
523  */
524 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
525 
526 /*
527  * Set IOPL bits in EFLAGS from given mask
528  */
529 static inline void native_set_iopl_mask(unsigned mask)
530 {
531 #ifdef CONFIG_X86_32
532 	unsigned int reg;
533 
534 	asm volatile ("pushfl;"
535 		      "popl %0;"
536 		      "andl %1, %0;"
537 		      "orl %2, %0;"
538 		      "pushl %0;"
539 		      "popfl"
540 		      : "=&r" (reg)
541 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
542 #endif
543 }
544 
545 static inline void
546 native_load_sp0(unsigned long sp0)
547 {
548 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
549 }
550 
551 static inline void native_swapgs(void)
552 {
553 #ifdef CONFIG_X86_64
554 	asm volatile("swapgs" ::: "memory");
555 #endif
556 }
557 
558 static inline unsigned long current_top_of_stack(void)
559 {
560 	/*
561 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
562 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
563 	 *  entry trampoline.
564 	 */
565 	return this_cpu_read_stable(cpu_current_top_of_stack);
566 }
567 
568 static inline bool on_thread_stack(void)
569 {
570 	return (unsigned long)(current_top_of_stack() -
571 			       current_stack_pointer) < THREAD_SIZE;
572 }
573 
574 #ifdef CONFIG_PARAVIRT
575 #include <asm/paravirt.h>
576 #else
577 #define __cpuid			native_cpuid
578 
579 static inline void load_sp0(unsigned long sp0)
580 {
581 	native_load_sp0(sp0);
582 }
583 
584 #define set_iopl_mask native_set_iopl_mask
585 #endif /* CONFIG_PARAVIRT */
586 
587 /* Free all resources held by a thread. */
588 extern void release_thread(struct task_struct *);
589 
590 unsigned long get_wchan(struct task_struct *p);
591 
592 /*
593  * Generic CPUID function
594  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
595  * resulting in stale register contents being returned.
596  */
597 static inline void cpuid(unsigned int op,
598 			 unsigned int *eax, unsigned int *ebx,
599 			 unsigned int *ecx, unsigned int *edx)
600 {
601 	*eax = op;
602 	*ecx = 0;
603 	__cpuid(eax, ebx, ecx, edx);
604 }
605 
606 /* Some CPUID calls want 'count' to be placed in ecx */
607 static inline void cpuid_count(unsigned int op, int count,
608 			       unsigned int *eax, unsigned int *ebx,
609 			       unsigned int *ecx, unsigned int *edx)
610 {
611 	*eax = op;
612 	*ecx = count;
613 	__cpuid(eax, ebx, ecx, edx);
614 }
615 
616 /*
617  * CPUID functions returning a single datum
618  */
619 static inline unsigned int cpuid_eax(unsigned int op)
620 {
621 	unsigned int eax, ebx, ecx, edx;
622 
623 	cpuid(op, &eax, &ebx, &ecx, &edx);
624 
625 	return eax;
626 }
627 
628 static inline unsigned int cpuid_ebx(unsigned int op)
629 {
630 	unsigned int eax, ebx, ecx, edx;
631 
632 	cpuid(op, &eax, &ebx, &ecx, &edx);
633 
634 	return ebx;
635 }
636 
637 static inline unsigned int cpuid_ecx(unsigned int op)
638 {
639 	unsigned int eax, ebx, ecx, edx;
640 
641 	cpuid(op, &eax, &ebx, &ecx, &edx);
642 
643 	return ecx;
644 }
645 
646 static inline unsigned int cpuid_edx(unsigned int op)
647 {
648 	unsigned int eax, ebx, ecx, edx;
649 
650 	cpuid(op, &eax, &ebx, &ecx, &edx);
651 
652 	return edx;
653 }
654 
655 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
656 static __always_inline void rep_nop(void)
657 {
658 	asm volatile("rep; nop" ::: "memory");
659 }
660 
661 static __always_inline void cpu_relax(void)
662 {
663 	rep_nop();
664 }
665 
666 /*
667  * This function forces the icache and prefetched instruction stream to
668  * catch up with reality in two very specific cases:
669  *
670  *  a) Text was modified using one virtual address and is about to be executed
671  *     from the same physical page at a different virtual address.
672  *
673  *  b) Text was modified on a different CPU, may subsequently be
674  *     executed on this CPU, and you want to make sure the new version
675  *     gets executed.  This generally means you're calling this in a IPI.
676  *
677  * If you're calling this for a different reason, you're probably doing
678  * it wrong.
679  */
680 static inline void sync_core(void)
681 {
682 	/*
683 	 * There are quite a few ways to do this.  IRET-to-self is nice
684 	 * because it works on every CPU, at any CPL (so it's compatible
685 	 * with paravirtualization), and it never exits to a hypervisor.
686 	 * The only down sides are that it's a bit slow (it seems to be
687 	 * a bit more than 2x slower than the fastest options) and that
688 	 * it unmasks NMIs.  The "push %cs" is needed because, in
689 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
690 	 * value when we do IRET directly.
691 	 *
692 	 * In case NMI unmasking or performance ever becomes a problem,
693 	 * the next best option appears to be MOV-to-CR2 and an
694 	 * unconditional jump.  That sequence also works on all CPUs,
695 	 * but it will fault at CPL3 (i.e. Xen PV).
696 	 *
697 	 * CPUID is the conventional way, but it's nasty: it doesn't
698 	 * exist on some 486-like CPUs, and it usually exits to a
699 	 * hypervisor.
700 	 *
701 	 * Like all of Linux's memory ordering operations, this is a
702 	 * compiler barrier as well.
703 	 */
704 #ifdef CONFIG_X86_32
705 	asm volatile (
706 		"pushfl\n\t"
707 		"pushl %%cs\n\t"
708 		"pushl $1f\n\t"
709 		"iret\n\t"
710 		"1:"
711 		: ASM_CALL_CONSTRAINT : : "memory");
712 #else
713 	unsigned int tmp;
714 
715 	asm volatile (
716 		UNWIND_HINT_SAVE
717 		"mov %%ss, %0\n\t"
718 		"pushq %q0\n\t"
719 		"pushq %%rsp\n\t"
720 		"addq $8, (%%rsp)\n\t"
721 		"pushfq\n\t"
722 		"mov %%cs, %0\n\t"
723 		"pushq %q0\n\t"
724 		"pushq $1f\n\t"
725 		"iretq\n\t"
726 		UNWIND_HINT_RESTORE
727 		"1:"
728 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
729 #endif
730 }
731 
732 extern void select_idle_routine(const struct cpuinfo_x86 *c);
733 extern void amd_e400_c1e_apic_setup(void);
734 
735 extern unsigned long		boot_option_idle_override;
736 
737 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
738 			 IDLE_POLL};
739 
740 extern void enable_sep_cpu(void);
741 extern int sysenter_setup(void);
742 
743 void early_trap_pf_init(void);
744 
745 /* Defined in head.S */
746 extern struct desc_ptr		early_gdt_descr;
747 
748 extern void switch_to_new_gdt(int);
749 extern void load_direct_gdt(int);
750 extern void load_fixmap_gdt(int);
751 extern void load_percpu_segment(int);
752 extern void cpu_init(void);
753 
754 static inline unsigned long get_debugctlmsr(void)
755 {
756 	unsigned long debugctlmsr = 0;
757 
758 #ifndef CONFIG_X86_DEBUGCTLMSR
759 	if (boot_cpu_data.x86 < 6)
760 		return 0;
761 #endif
762 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
763 
764 	return debugctlmsr;
765 }
766 
767 static inline void update_debugctlmsr(unsigned long debugctlmsr)
768 {
769 #ifndef CONFIG_X86_DEBUGCTLMSR
770 	if (boot_cpu_data.x86 < 6)
771 		return;
772 #endif
773 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
774 }
775 
776 extern void set_task_blockstep(struct task_struct *task, bool on);
777 
778 /* Boot loader type from the setup header: */
779 extern int			bootloader_type;
780 extern int			bootloader_version;
781 
782 extern char			ignore_fpu_irq;
783 
784 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
785 #define ARCH_HAS_PREFETCHW
786 #define ARCH_HAS_SPINLOCK_PREFETCH
787 
788 #ifdef CONFIG_X86_32
789 # define BASE_PREFETCH		""
790 # define ARCH_HAS_PREFETCH
791 #else
792 # define BASE_PREFETCH		"prefetcht0 %P1"
793 #endif
794 
795 /*
796  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
797  *
798  * It's not worth to care about 3dnow prefetches for the K6
799  * because they are microcoded there and very slow.
800  */
801 static inline void prefetch(const void *x)
802 {
803 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
804 			  X86_FEATURE_XMM,
805 			  "m" (*(const char *)x));
806 }
807 
808 /*
809  * 3dnow prefetch to get an exclusive cache line.
810  * Useful for spinlocks to avoid one state transition in the
811  * cache coherency protocol:
812  */
813 static inline void prefetchw(const void *x)
814 {
815 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
816 			  X86_FEATURE_3DNOWPREFETCH,
817 			  "m" (*(const char *)x));
818 }
819 
820 static inline void spin_lock_prefetch(const void *x)
821 {
822 	prefetchw(x);
823 }
824 
825 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
826 			   TOP_OF_KERNEL_STACK_PADDING)
827 
828 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
829 
830 #define task_pt_regs(task) \
831 ({									\
832 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
833 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
834 	((struct pt_regs *)__ptr) - 1;					\
835 })
836 
837 #ifdef CONFIG_X86_32
838 /*
839  * User space process size: 3GB (default).
840  */
841 #define IA32_PAGE_OFFSET	PAGE_OFFSET
842 #define TASK_SIZE		PAGE_OFFSET
843 #define TASK_SIZE_LOW		TASK_SIZE
844 #define TASK_SIZE_MAX		TASK_SIZE
845 #define DEFAULT_MAP_WINDOW	TASK_SIZE
846 #define STACK_TOP		TASK_SIZE
847 #define STACK_TOP_MAX		STACK_TOP
848 
849 #define INIT_THREAD  {							  \
850 	.sp0			= TOP_OF_INIT_STACK,			  \
851 	.sysenter_cs		= __KERNEL_CS,				  \
852 	.io_bitmap_ptr		= NULL,					  \
853 	.addr_limit		= KERNEL_DS,				  \
854 }
855 
856 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
857 
858 #else
859 /*
860  * User space process size.  This is the first address outside the user range.
861  * There are a few constraints that determine this:
862  *
863  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
864  * address, then that syscall will enter the kernel with a
865  * non-canonical return address, and SYSRET will explode dangerously.
866  * We avoid this particular problem by preventing anything executable
867  * from being mapped at the maximum canonical address.
868  *
869  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
870  * CPUs malfunction if they execute code from the highest canonical page.
871  * They'll speculate right off the end of the canonical space, and
872  * bad things happen.  This is worked around in the same way as the
873  * Intel problem.
874  *
875  * With page table isolation enabled, we map the LDT in ... [stay tuned]
876  */
877 #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
878 
879 #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
880 
881 /* This decides where the kernel will search for a free chunk of vm
882  * space during mmap's.
883  */
884 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
885 					0xc0000000 : 0xFFFFe000)
886 
887 #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
888 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
889 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
890 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
891 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
892 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
893 
894 #define STACK_TOP		TASK_SIZE_LOW
895 #define STACK_TOP_MAX		TASK_SIZE_MAX
896 
897 #define INIT_THREAD  {						\
898 	.addr_limit		= KERNEL_DS,			\
899 }
900 
901 extern unsigned long KSTK_ESP(struct task_struct *task);
902 
903 #endif /* CONFIG_X86_64 */
904 
905 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
906 					       unsigned long new_sp);
907 
908 /*
909  * This decides where the kernel will search for a free chunk of vm
910  * space during mmap's.
911  */
912 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
913 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
914 
915 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
916 
917 /* Get/set a process' ability to use the timestamp counter instruction */
918 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
919 #define SET_TSC_CTL(val)	set_tsc_mode((val))
920 
921 extern int get_tsc_mode(unsigned long adr);
922 extern int set_tsc_mode(unsigned int val);
923 
924 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
925 
926 /* Register/unregister a process' MPX related resource */
927 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
928 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
929 
930 #ifdef CONFIG_X86_INTEL_MPX
931 extern int mpx_enable_management(void);
932 extern int mpx_disable_management(void);
933 #else
934 static inline int mpx_enable_management(void)
935 {
936 	return -EINVAL;
937 }
938 static inline int mpx_disable_management(void)
939 {
940 	return -EINVAL;
941 }
942 #endif /* CONFIG_X86_INTEL_MPX */
943 
944 #ifdef CONFIG_CPU_SUP_AMD
945 extern u16 amd_get_nb_id(int cpu);
946 extern u32 amd_get_nodes_per_socket(void);
947 #else
948 static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
949 static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
950 #endif
951 
952 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
953 {
954 	uint32_t base, eax, signature[3];
955 
956 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
957 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
958 
959 		if (!memcmp(sig, signature, 12) &&
960 		    (leaves == 0 || ((eax - base) >= leaves)))
961 			return base;
962 	}
963 
964 	return 0;
965 }
966 
967 extern unsigned long arch_align_stack(unsigned long sp);
968 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
969 
970 void default_idle(void);
971 #ifdef	CONFIG_XEN
972 bool xen_set_default_idle(void);
973 #else
974 #define xen_set_default_idle 0
975 #endif
976 
977 void stop_this_cpu(void *dummy);
978 void df_debug(struct pt_regs *regs, long error_code);
979 void microcode_check(void);
980 #endif /* _ASM_X86_PROCESSOR_H */
981