1 #ifndef _ASM_X86_PROCESSOR_H 2 #define _ASM_X86_PROCESSOR_H 3 4 #include <asm/processor-flags.h> 5 6 /* Forward declaration, a strange C thing */ 7 struct task_struct; 8 struct mm_struct; 9 struct vm86; 10 11 #include <asm/math_emu.h> 12 #include <asm/segment.h> 13 #include <asm/types.h> 14 #include <uapi/asm/sigcontext.h> 15 #include <asm/current.h> 16 #include <asm/cpufeatures.h> 17 #include <asm/page.h> 18 #include <asm/pgtable_types.h> 19 #include <asm/percpu.h> 20 #include <asm/msr.h> 21 #include <asm/desc_defs.h> 22 #include <asm/nops.h> 23 #include <asm/special_insns.h> 24 #include <asm/fpu/types.h> 25 #include <asm/unwind_hints.h> 26 27 #include <linux/personality.h> 28 #include <linux/cache.h> 29 #include <linux/threads.h> 30 #include <linux/math64.h> 31 #include <linux/err.h> 32 #include <linux/irqflags.h> 33 #include <linux/mem_encrypt.h> 34 35 /* 36 * We handle most unaligned accesses in hardware. On the other hand 37 * unaligned DMA can be quite expensive on some Nehalem processors. 38 * 39 * Based on this we disable the IP header alignment in network drivers. 40 */ 41 #define NET_IP_ALIGN 0 42 43 #define HBP_NUM 4 44 /* 45 * Default implementation of macro that returns current 46 * instruction pointer ("program counter"). 47 */ 48 static inline void *current_text_addr(void) 49 { 50 void *pc; 51 52 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 53 54 return pc; 55 } 56 57 /* 58 * These alignment constraints are for performance in the vSMP case, 59 * but in the task_struct case we must also meet hardware imposed 60 * alignment requirements of the FPU state: 61 */ 62 #ifdef CONFIG_X86_VSMP 63 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 64 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 65 #else 66 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 67 # define ARCH_MIN_MMSTRUCT_ALIGN 0 68 #endif 69 70 enum tlb_infos { 71 ENTRIES, 72 NR_INFO 73 }; 74 75 extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 76 extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 77 extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 78 extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 79 extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 80 extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 81 extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 82 83 /* 84 * CPU type and hardware bug flags. Kept separately for each CPU. 85 * Members of this structure are referenced in head_32.S, so think twice 86 * before touching them. [mj] 87 */ 88 89 struct cpuinfo_x86 { 90 __u8 x86; /* CPU family */ 91 __u8 x86_vendor; /* CPU vendor */ 92 __u8 x86_model; 93 __u8 x86_mask; 94 #ifdef CONFIG_X86_64 95 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 96 int x86_tlbsize; 97 #endif 98 __u8 x86_virt_bits; 99 __u8 x86_phys_bits; 100 /* CPUID returned core id bits: */ 101 __u8 x86_coreid_bits; 102 __u8 cu_id; 103 /* Max extended CPUID function supported: */ 104 __u32 extended_cpuid_level; 105 /* Maximum supported CPUID level, -1=no CPUID: */ 106 int cpuid_level; 107 __u32 x86_capability[NCAPINTS + NBUGINTS]; 108 char x86_vendor_id[16]; 109 char x86_model_id[64]; 110 /* in KB - valid for CPUS which support this call: */ 111 int x86_cache_size; 112 int x86_cache_alignment; /* In bytes */ 113 /* Cache QoS architectural values: */ 114 int x86_cache_max_rmid; /* max index */ 115 int x86_cache_occ_scale; /* scale to bytes */ 116 int x86_power; 117 unsigned long loops_per_jiffy; 118 /* cpuid returned max cores value: */ 119 u16 x86_max_cores; 120 u16 apicid; 121 u16 initial_apicid; 122 u16 x86_clflush_size; 123 /* number of cores as seen by the OS: */ 124 u16 booted_cores; 125 /* Physical processor id: */ 126 u16 phys_proc_id; 127 /* Logical processor id: */ 128 u16 logical_proc_id; 129 /* Core id: */ 130 u16 cpu_core_id; 131 /* Index into per_cpu list: */ 132 u16 cpu_index; 133 u32 microcode; 134 } __randomize_layout; 135 136 struct cpuid_regs { 137 u32 eax, ebx, ecx, edx; 138 }; 139 140 enum cpuid_regs_idx { 141 CPUID_EAX = 0, 142 CPUID_EBX, 143 CPUID_ECX, 144 CPUID_EDX, 145 }; 146 147 #define X86_VENDOR_INTEL 0 148 #define X86_VENDOR_CYRIX 1 149 #define X86_VENDOR_AMD 2 150 #define X86_VENDOR_UMC 3 151 #define X86_VENDOR_CENTAUR 5 152 #define X86_VENDOR_TRANSMETA 7 153 #define X86_VENDOR_NSC 8 154 #define X86_VENDOR_NUM 9 155 156 #define X86_VENDOR_UNKNOWN 0xff 157 158 /* 159 * capabilities of CPUs 160 */ 161 extern struct cpuinfo_x86 boot_cpu_data; 162 extern struct cpuinfo_x86 new_cpu_data; 163 164 extern struct tss_struct doublefault_tss; 165 extern __u32 cpu_caps_cleared[NCAPINTS]; 166 extern __u32 cpu_caps_set[NCAPINTS]; 167 168 #ifdef CONFIG_SMP 169 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 170 #define cpu_data(cpu) per_cpu(cpu_info, cpu) 171 #else 172 #define cpu_info boot_cpu_data 173 #define cpu_data(cpu) boot_cpu_data 174 #endif 175 176 extern const struct seq_operations cpuinfo_op; 177 178 #define cache_line_size() (boot_cpu_data.x86_cache_alignment) 179 180 extern void cpu_detect(struct cpuinfo_x86 *c); 181 182 extern void early_cpu_init(void); 183 extern void identify_boot_cpu(void); 184 extern void identify_secondary_cpu(struct cpuinfo_x86 *); 185 extern void print_cpu_info(struct cpuinfo_x86 *); 186 void print_cpu_msr(struct cpuinfo_x86 *); 187 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); 188 extern u32 get_scattered_cpuid_leaf(unsigned int level, 189 unsigned int sub_leaf, 190 enum cpuid_regs_idx reg); 191 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c); 192 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); 193 194 extern void detect_extended_topology(struct cpuinfo_x86 *c); 195 extern void detect_ht(struct cpuinfo_x86 *c); 196 197 #ifdef CONFIG_X86_32 198 extern int have_cpuid_p(void); 199 #else 200 static inline int have_cpuid_p(void) 201 { 202 return 1; 203 } 204 #endif 205 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 206 unsigned int *ecx, unsigned int *edx) 207 { 208 /* ecx is often an input as well as an output. */ 209 asm volatile("cpuid" 210 : "=a" (*eax), 211 "=b" (*ebx), 212 "=c" (*ecx), 213 "=d" (*edx) 214 : "0" (*eax), "2" (*ecx) 215 : "memory"); 216 } 217 218 #define native_cpuid_reg(reg) \ 219 static inline unsigned int native_cpuid_##reg(unsigned int op) \ 220 { \ 221 unsigned int eax = op, ebx, ecx = 0, edx; \ 222 \ 223 native_cpuid(&eax, &ebx, &ecx, &edx); \ 224 \ 225 return reg; \ 226 } 227 228 /* 229 * Native CPUID functions returning a single datum. 230 */ 231 native_cpuid_reg(eax) 232 native_cpuid_reg(ebx) 233 native_cpuid_reg(ecx) 234 native_cpuid_reg(edx) 235 236 /* 237 * Friendlier CR3 helpers. 238 */ 239 static inline unsigned long read_cr3_pa(void) 240 { 241 return __read_cr3() & CR3_ADDR_MASK; 242 } 243 244 static inline unsigned long native_read_cr3_pa(void) 245 { 246 return __native_read_cr3() & CR3_ADDR_MASK; 247 } 248 249 static inline void load_cr3(pgd_t *pgdir) 250 { 251 write_cr3(__sme_pa(pgdir)); 252 } 253 254 #ifdef CONFIG_X86_32 255 /* This is the TSS defined by the hardware. */ 256 struct x86_hw_tss { 257 unsigned short back_link, __blh; 258 unsigned long sp0; 259 unsigned short ss0, __ss0h; 260 unsigned long sp1; 261 262 /* 263 * We don't use ring 1, so ss1 is a convenient scratch space in 264 * the same cacheline as sp0. We use ss1 to cache the value in 265 * MSR_IA32_SYSENTER_CS. When we context switch 266 * MSR_IA32_SYSENTER_CS, we first check if the new value being 267 * written matches ss1, and, if it's not, then we wrmsr the new 268 * value and update ss1. 269 * 270 * The only reason we context switch MSR_IA32_SYSENTER_CS is 271 * that we set it to zero in vm86 tasks to avoid corrupting the 272 * stack if we were to go through the sysenter path from vm86 273 * mode. 274 */ 275 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 276 277 unsigned short __ss1h; 278 unsigned long sp2; 279 unsigned short ss2, __ss2h; 280 unsigned long __cr3; 281 unsigned long ip; 282 unsigned long flags; 283 unsigned long ax; 284 unsigned long cx; 285 unsigned long dx; 286 unsigned long bx; 287 unsigned long sp; 288 unsigned long bp; 289 unsigned long si; 290 unsigned long di; 291 unsigned short es, __esh; 292 unsigned short cs, __csh; 293 unsigned short ss, __ssh; 294 unsigned short ds, __dsh; 295 unsigned short fs, __fsh; 296 unsigned short gs, __gsh; 297 unsigned short ldt, __ldth; 298 unsigned short trace; 299 unsigned short io_bitmap_base; 300 301 } __attribute__((packed)); 302 #else 303 struct x86_hw_tss { 304 u32 reserved1; 305 u64 sp0; 306 u64 sp1; 307 u64 sp2; 308 u64 reserved2; 309 u64 ist[7]; 310 u32 reserved3; 311 u32 reserved4; 312 u16 reserved5; 313 u16 io_bitmap_base; 314 315 } __attribute__((packed)); 316 #endif 317 318 /* 319 * IO-bitmap sizes: 320 */ 321 #define IO_BITMAP_BITS 65536 322 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 323 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 324 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap) 325 #define INVALID_IO_BITMAP_OFFSET 0x8000 326 327 struct tss_struct { 328 /* 329 * The hardware state: 330 */ 331 struct x86_hw_tss x86_tss; 332 333 /* 334 * The extra 1 is there because the CPU will access an 335 * additional byte beyond the end of the IO permission 336 * bitmap. The extra byte must be all 1 bits, and must 337 * be within the limit. 338 */ 339 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 340 341 #ifdef CONFIG_X86_32 342 /* 343 * Space for the temporary SYSENTER stack. 344 */ 345 unsigned long SYSENTER_stack_canary; 346 unsigned long SYSENTER_stack[64]; 347 #endif 348 349 } ____cacheline_aligned; 350 351 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss); 352 353 /* 354 * sizeof(unsigned long) coming from an extra "long" at the end 355 * of the iobitmap. 356 * 357 * -1? seg base+limit should be pointing to the address of the 358 * last valid byte 359 */ 360 #define __KERNEL_TSS_LIMIT \ 361 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 362 363 #ifdef CONFIG_X86_32 364 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 365 #endif 366 367 /* 368 * Save the original ist values for checking stack pointers during debugging 369 */ 370 struct orig_ist { 371 unsigned long ist[7]; 372 }; 373 374 #ifdef CONFIG_X86_64 375 DECLARE_PER_CPU(struct orig_ist, orig_ist); 376 377 union irq_stack_union { 378 char irq_stack[IRQ_STACK_SIZE]; 379 /* 380 * GCC hardcodes the stack canary as %gs:40. Since the 381 * irq_stack is the object at %gs:0, we reserve the bottom 382 * 48 bytes of the irq stack for the canary. 383 */ 384 struct { 385 char gs_base[40]; 386 unsigned long stack_canary; 387 }; 388 }; 389 390 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 391 DECLARE_INIT_PER_CPU(irq_stack_union); 392 393 DECLARE_PER_CPU(char *, irq_stack_ptr); 394 DECLARE_PER_CPU(unsigned int, irq_count); 395 extern asmlinkage void ignore_sysret(void); 396 #else /* X86_64 */ 397 #ifdef CONFIG_CC_STACKPROTECTOR 398 /* 399 * Make sure stack canary segment base is cached-aligned: 400 * "For Intel Atom processors, avoid non zero segment base address 401 * that is not aligned to cache line boundary at all cost." 402 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 403 */ 404 struct stack_canary { 405 char __pad[20]; /* canary at %gs:20 */ 406 unsigned long canary; 407 }; 408 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 409 #endif 410 /* 411 * per-CPU IRQ handling stacks 412 */ 413 struct irq_stack { 414 u32 stack[THREAD_SIZE/sizeof(u32)]; 415 } __aligned(THREAD_SIZE); 416 417 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 418 DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 419 #endif /* X86_64 */ 420 421 extern unsigned int fpu_kernel_xstate_size; 422 extern unsigned int fpu_user_xstate_size; 423 424 struct perf_event; 425 426 typedef struct { 427 unsigned long seg; 428 } mm_segment_t; 429 430 struct thread_struct { 431 /* Cached TLS descriptors: */ 432 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 433 unsigned long sp0; 434 unsigned long sp; 435 #ifdef CONFIG_X86_32 436 unsigned long sysenter_cs; 437 #else 438 unsigned short es; 439 unsigned short ds; 440 unsigned short fsindex; 441 unsigned short gsindex; 442 #endif 443 444 u32 status; /* thread synchronous flags */ 445 446 #ifdef CONFIG_X86_64 447 unsigned long fsbase; 448 unsigned long gsbase; 449 #else 450 /* 451 * XXX: this could presumably be unsigned short. Alternatively, 452 * 32-bit kernels could be taught to use fsindex instead. 453 */ 454 unsigned long fs; 455 unsigned long gs; 456 #endif 457 458 /* Save middle states of ptrace breakpoints */ 459 struct perf_event *ptrace_bps[HBP_NUM]; 460 /* Debug status used for traps, single steps, etc... */ 461 unsigned long debugreg6; 462 /* Keep track of the exact dr7 value set by the user */ 463 unsigned long ptrace_dr7; 464 /* Fault info: */ 465 unsigned long cr2; 466 unsigned long trap_nr; 467 unsigned long error_code; 468 #ifdef CONFIG_VM86 469 /* Virtual 86 mode info */ 470 struct vm86 *vm86; 471 #endif 472 /* IO permissions: */ 473 unsigned long *io_bitmap_ptr; 474 unsigned long iopl; 475 /* Max allowed port in the bitmap, in bytes: */ 476 unsigned io_bitmap_max; 477 478 mm_segment_t addr_limit; 479 480 unsigned int sig_on_uaccess_err:1; 481 unsigned int uaccess_err:1; /* uaccess failed */ 482 483 /* Floating point and extended processor state */ 484 struct fpu fpu; 485 /* 486 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 487 * the end. 488 */ 489 }; 490 491 /* 492 * Thread-synchronous status. 493 * 494 * This is different from the flags in that nobody else 495 * ever touches our thread-synchronous status, so we don't 496 * have to worry about atomic accesses. 497 */ 498 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 499 500 /* 501 * Set IOPL bits in EFLAGS from given mask 502 */ 503 static inline void native_set_iopl_mask(unsigned mask) 504 { 505 #ifdef CONFIG_X86_32 506 unsigned int reg; 507 508 asm volatile ("pushfl;" 509 "popl %0;" 510 "andl %1, %0;" 511 "orl %2, %0;" 512 "pushl %0;" 513 "popfl" 514 : "=&r" (reg) 515 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 516 #endif 517 } 518 519 static inline void 520 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread) 521 { 522 tss->x86_tss.sp0 = thread->sp0; 523 #ifdef CONFIG_X86_32 524 /* Only happens when SEP is enabled, no need to test "SEP"arately: */ 525 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) { 526 tss->x86_tss.ss1 = thread->sysenter_cs; 527 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0); 528 } 529 #endif 530 } 531 532 static inline void native_swapgs(void) 533 { 534 #ifdef CONFIG_X86_64 535 asm volatile("swapgs" ::: "memory"); 536 #endif 537 } 538 539 static inline unsigned long current_top_of_stack(void) 540 { 541 #ifdef CONFIG_X86_64 542 return this_cpu_read_stable(cpu_tss.x86_tss.sp0); 543 #else 544 /* sp0 on x86_32 is special in and around vm86 mode. */ 545 return this_cpu_read_stable(cpu_current_top_of_stack); 546 #endif 547 } 548 549 #ifdef CONFIG_PARAVIRT 550 #include <asm/paravirt.h> 551 #else 552 #define __cpuid native_cpuid 553 554 static inline void load_sp0(struct tss_struct *tss, 555 struct thread_struct *thread) 556 { 557 native_load_sp0(tss, thread); 558 } 559 560 #define set_iopl_mask native_set_iopl_mask 561 #endif /* CONFIG_PARAVIRT */ 562 563 /* Free all resources held by a thread. */ 564 extern void release_thread(struct task_struct *); 565 566 unsigned long get_wchan(struct task_struct *p); 567 568 /* 569 * Generic CPUID function 570 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 571 * resulting in stale register contents being returned. 572 */ 573 static inline void cpuid(unsigned int op, 574 unsigned int *eax, unsigned int *ebx, 575 unsigned int *ecx, unsigned int *edx) 576 { 577 *eax = op; 578 *ecx = 0; 579 __cpuid(eax, ebx, ecx, edx); 580 } 581 582 /* Some CPUID calls want 'count' to be placed in ecx */ 583 static inline void cpuid_count(unsigned int op, int count, 584 unsigned int *eax, unsigned int *ebx, 585 unsigned int *ecx, unsigned int *edx) 586 { 587 *eax = op; 588 *ecx = count; 589 __cpuid(eax, ebx, ecx, edx); 590 } 591 592 /* 593 * CPUID functions returning a single datum 594 */ 595 static inline unsigned int cpuid_eax(unsigned int op) 596 { 597 unsigned int eax, ebx, ecx, edx; 598 599 cpuid(op, &eax, &ebx, &ecx, &edx); 600 601 return eax; 602 } 603 604 static inline unsigned int cpuid_ebx(unsigned int op) 605 { 606 unsigned int eax, ebx, ecx, edx; 607 608 cpuid(op, &eax, &ebx, &ecx, &edx); 609 610 return ebx; 611 } 612 613 static inline unsigned int cpuid_ecx(unsigned int op) 614 { 615 unsigned int eax, ebx, ecx, edx; 616 617 cpuid(op, &eax, &ebx, &ecx, &edx); 618 619 return ecx; 620 } 621 622 static inline unsigned int cpuid_edx(unsigned int op) 623 { 624 unsigned int eax, ebx, ecx, edx; 625 626 cpuid(op, &eax, &ebx, &ecx, &edx); 627 628 return edx; 629 } 630 631 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 632 static __always_inline void rep_nop(void) 633 { 634 asm volatile("rep; nop" ::: "memory"); 635 } 636 637 static __always_inline void cpu_relax(void) 638 { 639 rep_nop(); 640 } 641 642 /* 643 * This function forces the icache and prefetched instruction stream to 644 * catch up with reality in two very specific cases: 645 * 646 * a) Text was modified using one virtual address and is about to be executed 647 * from the same physical page at a different virtual address. 648 * 649 * b) Text was modified on a different CPU, may subsequently be 650 * executed on this CPU, and you want to make sure the new version 651 * gets executed. This generally means you're calling this in a IPI. 652 * 653 * If you're calling this for a different reason, you're probably doing 654 * it wrong. 655 */ 656 static inline void sync_core(void) 657 { 658 /* 659 * There are quite a few ways to do this. IRET-to-self is nice 660 * because it works on every CPU, at any CPL (so it's compatible 661 * with paravirtualization), and it never exits to a hypervisor. 662 * The only down sides are that it's a bit slow (it seems to be 663 * a bit more than 2x slower than the fastest options) and that 664 * it unmasks NMIs. The "push %cs" is needed because, in 665 * paravirtual environments, __KERNEL_CS may not be a valid CS 666 * value when we do IRET directly. 667 * 668 * In case NMI unmasking or performance ever becomes a problem, 669 * the next best option appears to be MOV-to-CR2 and an 670 * unconditional jump. That sequence also works on all CPUs, 671 * but it will fault at CPL3 (i.e. Xen PV). 672 * 673 * CPUID is the conventional way, but it's nasty: it doesn't 674 * exist on some 486-like CPUs, and it usually exits to a 675 * hypervisor. 676 * 677 * Like all of Linux's memory ordering operations, this is a 678 * compiler barrier as well. 679 */ 680 register void *__sp asm(_ASM_SP); 681 682 #ifdef CONFIG_X86_32 683 asm volatile ( 684 "pushfl\n\t" 685 "pushl %%cs\n\t" 686 "pushl $1f\n\t" 687 "iret\n\t" 688 "1:" 689 : "+r" (__sp) : : "memory"); 690 #else 691 unsigned int tmp; 692 693 asm volatile ( 694 UNWIND_HINT_SAVE 695 "mov %%ss, %0\n\t" 696 "pushq %q0\n\t" 697 "pushq %%rsp\n\t" 698 "addq $8, (%%rsp)\n\t" 699 "pushfq\n\t" 700 "mov %%cs, %0\n\t" 701 "pushq %q0\n\t" 702 "pushq $1f\n\t" 703 "iretq\n\t" 704 UNWIND_HINT_RESTORE 705 "1:" 706 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory"); 707 #endif 708 } 709 710 extern void select_idle_routine(const struct cpuinfo_x86 *c); 711 extern void amd_e400_c1e_apic_setup(void); 712 713 extern unsigned long boot_option_idle_override; 714 715 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 716 IDLE_POLL}; 717 718 extern void enable_sep_cpu(void); 719 extern int sysenter_setup(void); 720 721 extern void early_trap_init(void); 722 void early_trap_pf_init(void); 723 724 /* Defined in head.S */ 725 extern struct desc_ptr early_gdt_descr; 726 727 extern void cpu_set_gdt(int); 728 extern void switch_to_new_gdt(int); 729 extern void load_direct_gdt(int); 730 extern void load_fixmap_gdt(int); 731 extern void load_percpu_segment(int); 732 extern void cpu_init(void); 733 734 static inline unsigned long get_debugctlmsr(void) 735 { 736 unsigned long debugctlmsr = 0; 737 738 #ifndef CONFIG_X86_DEBUGCTLMSR 739 if (boot_cpu_data.x86 < 6) 740 return 0; 741 #endif 742 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 743 744 return debugctlmsr; 745 } 746 747 static inline void update_debugctlmsr(unsigned long debugctlmsr) 748 { 749 #ifndef CONFIG_X86_DEBUGCTLMSR 750 if (boot_cpu_data.x86 < 6) 751 return; 752 #endif 753 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 754 } 755 756 extern void set_task_blockstep(struct task_struct *task, bool on); 757 758 /* Boot loader type from the setup header: */ 759 extern int bootloader_type; 760 extern int bootloader_version; 761 762 extern char ignore_fpu_irq; 763 764 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 765 #define ARCH_HAS_PREFETCHW 766 #define ARCH_HAS_SPINLOCK_PREFETCH 767 768 #ifdef CONFIG_X86_32 769 # define BASE_PREFETCH "" 770 # define ARCH_HAS_PREFETCH 771 #else 772 # define BASE_PREFETCH "prefetcht0 %P1" 773 #endif 774 775 /* 776 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 777 * 778 * It's not worth to care about 3dnow prefetches for the K6 779 * because they are microcoded there and very slow. 780 */ 781 static inline void prefetch(const void *x) 782 { 783 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 784 X86_FEATURE_XMM, 785 "m" (*(const char *)x)); 786 } 787 788 /* 789 * 3dnow prefetch to get an exclusive cache line. 790 * Useful for spinlocks to avoid one state transition in the 791 * cache coherency protocol: 792 */ 793 static inline void prefetchw(const void *x) 794 { 795 alternative_input(BASE_PREFETCH, "prefetchw %P1", 796 X86_FEATURE_3DNOWPREFETCH, 797 "m" (*(const char *)x)); 798 } 799 800 static inline void spin_lock_prefetch(const void *x) 801 { 802 prefetchw(x); 803 } 804 805 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 806 TOP_OF_KERNEL_STACK_PADDING) 807 808 #ifdef CONFIG_X86_32 809 /* 810 * User space process size: 3GB (default). 811 */ 812 #define IA32_PAGE_OFFSET PAGE_OFFSET 813 #define TASK_SIZE PAGE_OFFSET 814 #define TASK_SIZE_LOW TASK_SIZE 815 #define TASK_SIZE_MAX TASK_SIZE 816 #define DEFAULT_MAP_WINDOW TASK_SIZE 817 #define STACK_TOP TASK_SIZE 818 #define STACK_TOP_MAX STACK_TOP 819 820 #define INIT_THREAD { \ 821 .sp0 = TOP_OF_INIT_STACK, \ 822 .sysenter_cs = __KERNEL_CS, \ 823 .io_bitmap_ptr = NULL, \ 824 .addr_limit = KERNEL_DS, \ 825 } 826 827 /* 828 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack. 829 * This is necessary to guarantee that the entire "struct pt_regs" 830 * is accessible even if the CPU haven't stored the SS/ESP registers 831 * on the stack (interrupt gate does not save these registers 832 * when switching to the same priv ring). 833 * Therefore beware: accessing the ss/esp fields of the 834 * "struct pt_regs" is possible, but they may contain the 835 * completely wrong values. 836 */ 837 #define task_pt_regs(task) \ 838 ({ \ 839 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 840 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 841 ((struct pt_regs *)__ptr) - 1; \ 842 }) 843 844 #define KSTK_ESP(task) (task_pt_regs(task)->sp) 845 846 #else 847 /* 848 * User space process size. 47bits minus one guard page. The guard 849 * page is necessary on Intel CPUs: if a SYSCALL instruction is at 850 * the highest possible canonical userspace address, then that 851 * syscall will enter the kernel with a non-canonical return 852 * address, and SYSRET will explode dangerously. We avoid this 853 * particular problem by preventing anything from being mapped 854 * at the maximum canonical address. 855 */ 856 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 857 858 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 859 860 /* This decides where the kernel will search for a free chunk of vm 861 * space during mmap's. 862 */ 863 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 864 0xc0000000 : 0xFFFFe000) 865 866 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 867 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 868 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 869 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 870 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 871 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 872 873 #define STACK_TOP TASK_SIZE_LOW 874 #define STACK_TOP_MAX TASK_SIZE_MAX 875 876 #define INIT_THREAD { \ 877 .sp0 = TOP_OF_INIT_STACK, \ 878 .addr_limit = KERNEL_DS, \ 879 } 880 881 #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1) 882 extern unsigned long KSTK_ESP(struct task_struct *task); 883 884 #endif /* CONFIG_X86_64 */ 885 886 extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 887 unsigned long new_sp); 888 889 /* 890 * This decides where the kernel will search for a free chunk of vm 891 * space during mmap's. 892 */ 893 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 894 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 895 896 #define KSTK_EIP(task) (task_pt_regs(task)->ip) 897 898 /* Get/set a process' ability to use the timestamp counter instruction */ 899 #define GET_TSC_CTL(adr) get_tsc_mode((adr)) 900 #define SET_TSC_CTL(val) set_tsc_mode((val)) 901 902 extern int get_tsc_mode(unsigned long adr); 903 extern int set_tsc_mode(unsigned int val); 904 905 DECLARE_PER_CPU(u64, msr_misc_features_shadow); 906 907 /* Register/unregister a process' MPX related resource */ 908 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 909 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 910 911 #ifdef CONFIG_X86_INTEL_MPX 912 extern int mpx_enable_management(void); 913 extern int mpx_disable_management(void); 914 #else 915 static inline int mpx_enable_management(void) 916 { 917 return -EINVAL; 918 } 919 static inline int mpx_disable_management(void) 920 { 921 return -EINVAL; 922 } 923 #endif /* CONFIG_X86_INTEL_MPX */ 924 925 #ifdef CONFIG_CPU_SUP_AMD 926 extern u16 amd_get_nb_id(int cpu); 927 extern u32 amd_get_nodes_per_socket(void); 928 #else 929 static inline u16 amd_get_nb_id(int cpu) { return 0; } 930 static inline u32 amd_get_nodes_per_socket(void) { return 0; } 931 #endif 932 933 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 934 { 935 uint32_t base, eax, signature[3]; 936 937 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 938 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 939 940 if (!memcmp(sig, signature, 12) && 941 (leaves == 0 || ((eax - base) >= leaves))) 942 return base; 943 } 944 945 return 0; 946 } 947 948 extern unsigned long arch_align_stack(unsigned long sp); 949 extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 950 951 void default_idle(void); 952 #ifdef CONFIG_XEN 953 bool xen_set_default_idle(void); 954 #else 955 #define xen_set_default_idle 0 956 #endif 957 958 void stop_this_cpu(void *dummy); 959 void df_debug(struct pt_regs *regs, long error_code); 960 #endif /* _ASM_X86_PROCESSOR_H */ 961