1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PROCESSOR_H 3 #define _ASM_X86_PROCESSOR_H 4 5 #include <asm/processor-flags.h> 6 7 /* Forward declaration, a strange C thing */ 8 struct task_struct; 9 struct mm_struct; 10 struct vm86; 11 12 #include <asm/math_emu.h> 13 #include <asm/segment.h> 14 #include <asm/types.h> 15 #include <uapi/asm/sigcontext.h> 16 #include <asm/current.h> 17 #include <asm/cpufeatures.h> 18 #include <asm/page.h> 19 #include <asm/pgtable_types.h> 20 #include <asm/percpu.h> 21 #include <asm/msr.h> 22 #include <asm/desc_defs.h> 23 #include <asm/nops.h> 24 #include <asm/special_insns.h> 25 #include <asm/fpu/types.h> 26 #include <asm/unwind_hints.h> 27 28 #include <linux/personality.h> 29 #include <linux/cache.h> 30 #include <linux/threads.h> 31 #include <linux/math64.h> 32 #include <linux/err.h> 33 #include <linux/irqflags.h> 34 #include <linux/mem_encrypt.h> 35 36 /* 37 * We handle most unaligned accesses in hardware. On the other hand 38 * unaligned DMA can be quite expensive on some Nehalem processors. 39 * 40 * Based on this we disable the IP header alignment in network drivers. 41 */ 42 #define NET_IP_ALIGN 0 43 44 #define HBP_NUM 4 45 /* 46 * Default implementation of macro that returns current 47 * instruction pointer ("program counter"). 48 */ 49 static inline void *current_text_addr(void) 50 { 51 void *pc; 52 53 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 54 55 return pc; 56 } 57 58 /* 59 * These alignment constraints are for performance in the vSMP case, 60 * but in the task_struct case we must also meet hardware imposed 61 * alignment requirements of the FPU state: 62 */ 63 #ifdef CONFIG_X86_VSMP 64 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 65 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 66 #else 67 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 68 # define ARCH_MIN_MMSTRUCT_ALIGN 0 69 #endif 70 71 enum tlb_infos { 72 ENTRIES, 73 NR_INFO 74 }; 75 76 extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 77 extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 78 extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 79 extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 80 extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 81 extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 82 extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 83 84 /* 85 * CPU type and hardware bug flags. Kept separately for each CPU. 86 * Members of this structure are referenced in head_32.S, so think twice 87 * before touching them. [mj] 88 */ 89 90 struct cpuinfo_x86 { 91 __u8 x86; /* CPU family */ 92 __u8 x86_vendor; /* CPU vendor */ 93 __u8 x86_model; 94 __u8 x86_mask; 95 #ifdef CONFIG_X86_64 96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 97 int x86_tlbsize; 98 #endif 99 __u8 x86_virt_bits; 100 __u8 x86_phys_bits; 101 /* CPUID returned core id bits: */ 102 __u8 x86_coreid_bits; 103 __u8 cu_id; 104 /* Max extended CPUID function supported: */ 105 __u32 extended_cpuid_level; 106 /* Maximum supported CPUID level, -1=no CPUID: */ 107 int cpuid_level; 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 char x86_vendor_id[16]; 110 char x86_model_id[64]; 111 /* in KB - valid for CPUS which support this call: */ 112 int x86_cache_size; 113 int x86_cache_alignment; /* In bytes */ 114 /* Cache QoS architectural values: */ 115 int x86_cache_max_rmid; /* max index */ 116 int x86_cache_occ_scale; /* scale to bytes */ 117 int x86_power; 118 unsigned long loops_per_jiffy; 119 /* cpuid returned max cores value: */ 120 u16 x86_max_cores; 121 u16 apicid; 122 u16 initial_apicid; 123 u16 x86_clflush_size; 124 /* number of cores as seen by the OS: */ 125 u16 booted_cores; 126 /* Physical processor id: */ 127 u16 phys_proc_id; 128 /* Logical processor id: */ 129 u16 logical_proc_id; 130 /* Core id: */ 131 u16 cpu_core_id; 132 /* Index into per_cpu list: */ 133 u16 cpu_index; 134 u32 microcode; 135 unsigned initialized : 1; 136 } __randomize_layout; 137 138 struct cpuid_regs { 139 u32 eax, ebx, ecx, edx; 140 }; 141 142 enum cpuid_regs_idx { 143 CPUID_EAX = 0, 144 CPUID_EBX, 145 CPUID_ECX, 146 CPUID_EDX, 147 }; 148 149 #define X86_VENDOR_INTEL 0 150 #define X86_VENDOR_CYRIX 1 151 #define X86_VENDOR_AMD 2 152 #define X86_VENDOR_UMC 3 153 #define X86_VENDOR_CENTAUR 5 154 #define X86_VENDOR_TRANSMETA 7 155 #define X86_VENDOR_NSC 8 156 #define X86_VENDOR_NUM 9 157 158 #define X86_VENDOR_UNKNOWN 0xff 159 160 /* 161 * capabilities of CPUs 162 */ 163 extern struct cpuinfo_x86 boot_cpu_data; 164 extern struct cpuinfo_x86 new_cpu_data; 165 166 extern struct x86_hw_tss doublefault_tss; 167 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 168 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 169 170 #ifdef CONFIG_SMP 171 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 172 #define cpu_data(cpu) per_cpu(cpu_info, cpu) 173 #else 174 #define cpu_info boot_cpu_data 175 #define cpu_data(cpu) boot_cpu_data 176 #endif 177 178 extern const struct seq_operations cpuinfo_op; 179 180 #define cache_line_size() (boot_cpu_data.x86_cache_alignment) 181 182 extern void cpu_detect(struct cpuinfo_x86 *c); 183 184 extern void early_cpu_init(void); 185 extern void identify_boot_cpu(void); 186 extern void identify_secondary_cpu(struct cpuinfo_x86 *); 187 extern void print_cpu_info(struct cpuinfo_x86 *); 188 void print_cpu_msr(struct cpuinfo_x86 *); 189 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); 190 extern u32 get_scattered_cpuid_leaf(unsigned int level, 191 unsigned int sub_leaf, 192 enum cpuid_regs_idx reg); 193 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c); 194 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); 195 196 extern void detect_extended_topology(struct cpuinfo_x86 *c); 197 extern void detect_ht(struct cpuinfo_x86 *c); 198 199 #ifdef CONFIG_X86_32 200 extern int have_cpuid_p(void); 201 #else 202 static inline int have_cpuid_p(void) 203 { 204 return 1; 205 } 206 #endif 207 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 208 unsigned int *ecx, unsigned int *edx) 209 { 210 /* ecx is often an input as well as an output. */ 211 asm volatile("cpuid" 212 : "=a" (*eax), 213 "=b" (*ebx), 214 "=c" (*ecx), 215 "=d" (*edx) 216 : "0" (*eax), "2" (*ecx) 217 : "memory"); 218 } 219 220 #define native_cpuid_reg(reg) \ 221 static inline unsigned int native_cpuid_##reg(unsigned int op) \ 222 { \ 223 unsigned int eax = op, ebx, ecx = 0, edx; \ 224 \ 225 native_cpuid(&eax, &ebx, &ecx, &edx); \ 226 \ 227 return reg; \ 228 } 229 230 /* 231 * Native CPUID functions returning a single datum. 232 */ 233 native_cpuid_reg(eax) 234 native_cpuid_reg(ebx) 235 native_cpuid_reg(ecx) 236 native_cpuid_reg(edx) 237 238 /* 239 * Friendlier CR3 helpers. 240 */ 241 static inline unsigned long read_cr3_pa(void) 242 { 243 return __read_cr3() & CR3_ADDR_MASK; 244 } 245 246 static inline unsigned long native_read_cr3_pa(void) 247 { 248 return __native_read_cr3() & CR3_ADDR_MASK; 249 } 250 251 static inline void load_cr3(pgd_t *pgdir) 252 { 253 write_cr3(__sme_pa(pgdir)); 254 } 255 256 /* 257 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 258 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 259 * unrelated to the task-switch mechanism: 260 */ 261 #ifdef CONFIG_X86_32 262 /* This is the TSS defined by the hardware. */ 263 struct x86_hw_tss { 264 unsigned short back_link, __blh; 265 unsigned long sp0; 266 unsigned short ss0, __ss0h; 267 unsigned long sp1; 268 269 /* 270 * We don't use ring 1, so ss1 is a convenient scratch space in 271 * the same cacheline as sp0. We use ss1 to cache the value in 272 * MSR_IA32_SYSENTER_CS. When we context switch 273 * MSR_IA32_SYSENTER_CS, we first check if the new value being 274 * written matches ss1, and, if it's not, then we wrmsr the new 275 * value and update ss1. 276 * 277 * The only reason we context switch MSR_IA32_SYSENTER_CS is 278 * that we set it to zero in vm86 tasks to avoid corrupting the 279 * stack if we were to go through the sysenter path from vm86 280 * mode. 281 */ 282 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 283 284 unsigned short __ss1h; 285 unsigned long sp2; 286 unsigned short ss2, __ss2h; 287 unsigned long __cr3; 288 unsigned long ip; 289 unsigned long flags; 290 unsigned long ax; 291 unsigned long cx; 292 unsigned long dx; 293 unsigned long bx; 294 unsigned long sp; 295 unsigned long bp; 296 unsigned long si; 297 unsigned long di; 298 unsigned short es, __esh; 299 unsigned short cs, __csh; 300 unsigned short ss, __ssh; 301 unsigned short ds, __dsh; 302 unsigned short fs, __fsh; 303 unsigned short gs, __gsh; 304 unsigned short ldt, __ldth; 305 unsigned short trace; 306 unsigned short io_bitmap_base; 307 308 } __attribute__((packed)); 309 #else 310 struct x86_hw_tss { 311 u32 reserved1; 312 u64 sp0; 313 314 /* 315 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 316 * Linux does not use ring 1, so sp1 is not otherwise needed. 317 */ 318 u64 sp1; 319 320 u64 sp2; 321 u64 reserved2; 322 u64 ist[7]; 323 u32 reserved3; 324 u32 reserved4; 325 u16 reserved5; 326 u16 io_bitmap_base; 327 328 } __attribute__((packed)); 329 #endif 330 331 /* 332 * IO-bitmap sizes: 333 */ 334 #define IO_BITMAP_BITS 65536 335 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 336 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 337 #define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss)) 338 #define INVALID_IO_BITMAP_OFFSET 0x8000 339 340 struct entry_stack { 341 unsigned long words[64]; 342 }; 343 344 struct entry_stack_page { 345 struct entry_stack stack; 346 } __aligned(PAGE_SIZE); 347 348 struct tss_struct { 349 /* 350 * The fixed hardware portion. This must not cross a page boundary 351 * at risk of violating the SDM's advice and potentially triggering 352 * errata. 353 */ 354 struct x86_hw_tss x86_tss; 355 356 /* 357 * The extra 1 is there because the CPU will access an 358 * additional byte beyond the end of the IO permission 359 * bitmap. The extra byte must be all 1 bits, and must 360 * be within the limit. 361 */ 362 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 363 } __aligned(PAGE_SIZE); 364 365 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 366 367 /* 368 * sizeof(unsigned long) coming from an extra "long" at the end 369 * of the iobitmap. 370 * 371 * -1? seg base+limit should be pointing to the address of the 372 * last valid byte 373 */ 374 #define __KERNEL_TSS_LIMIT \ 375 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 376 377 #ifdef CONFIG_X86_32 378 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 379 #else 380 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 381 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 382 #endif 383 384 /* 385 * Save the original ist values for checking stack pointers during debugging 386 */ 387 struct orig_ist { 388 unsigned long ist[7]; 389 }; 390 391 #ifdef CONFIG_X86_64 392 DECLARE_PER_CPU(struct orig_ist, orig_ist); 393 394 union irq_stack_union { 395 char irq_stack[IRQ_STACK_SIZE]; 396 /* 397 * GCC hardcodes the stack canary as %gs:40. Since the 398 * irq_stack is the object at %gs:0, we reserve the bottom 399 * 48 bytes of the irq stack for the canary. 400 */ 401 struct { 402 char gs_base[40]; 403 unsigned long stack_canary; 404 }; 405 }; 406 407 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 408 DECLARE_INIT_PER_CPU(irq_stack_union); 409 410 DECLARE_PER_CPU(char *, irq_stack_ptr); 411 DECLARE_PER_CPU(unsigned int, irq_count); 412 extern asmlinkage void ignore_sysret(void); 413 #else /* X86_64 */ 414 #ifdef CONFIG_CC_STACKPROTECTOR 415 /* 416 * Make sure stack canary segment base is cached-aligned: 417 * "For Intel Atom processors, avoid non zero segment base address 418 * that is not aligned to cache line boundary at all cost." 419 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 420 */ 421 struct stack_canary { 422 char __pad[20]; /* canary at %gs:20 */ 423 unsigned long canary; 424 }; 425 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 426 #endif 427 /* 428 * per-CPU IRQ handling stacks 429 */ 430 struct irq_stack { 431 u32 stack[THREAD_SIZE/sizeof(u32)]; 432 } __aligned(THREAD_SIZE); 433 434 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 435 DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 436 #endif /* X86_64 */ 437 438 extern unsigned int fpu_kernel_xstate_size; 439 extern unsigned int fpu_user_xstate_size; 440 441 struct perf_event; 442 443 typedef struct { 444 unsigned long seg; 445 } mm_segment_t; 446 447 struct thread_struct { 448 /* Cached TLS descriptors: */ 449 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 450 #ifdef CONFIG_X86_32 451 unsigned long sp0; 452 #endif 453 unsigned long sp; 454 #ifdef CONFIG_X86_32 455 unsigned long sysenter_cs; 456 #else 457 unsigned short es; 458 unsigned short ds; 459 unsigned short fsindex; 460 unsigned short gsindex; 461 #endif 462 463 u32 status; /* thread synchronous flags */ 464 465 #ifdef CONFIG_X86_64 466 unsigned long fsbase; 467 unsigned long gsbase; 468 #else 469 /* 470 * XXX: this could presumably be unsigned short. Alternatively, 471 * 32-bit kernels could be taught to use fsindex instead. 472 */ 473 unsigned long fs; 474 unsigned long gs; 475 #endif 476 477 /* Save middle states of ptrace breakpoints */ 478 struct perf_event *ptrace_bps[HBP_NUM]; 479 /* Debug status used for traps, single steps, etc... */ 480 unsigned long debugreg6; 481 /* Keep track of the exact dr7 value set by the user */ 482 unsigned long ptrace_dr7; 483 /* Fault info: */ 484 unsigned long cr2; 485 unsigned long trap_nr; 486 unsigned long error_code; 487 #ifdef CONFIG_VM86 488 /* Virtual 86 mode info */ 489 struct vm86 *vm86; 490 #endif 491 /* IO permissions: */ 492 unsigned long *io_bitmap_ptr; 493 unsigned long iopl; 494 /* Max allowed port in the bitmap, in bytes: */ 495 unsigned io_bitmap_max; 496 497 mm_segment_t addr_limit; 498 499 unsigned int sig_on_uaccess_err:1; 500 unsigned int uaccess_err:1; /* uaccess failed */ 501 502 /* Floating point and extended processor state */ 503 struct fpu fpu; 504 /* 505 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 506 * the end. 507 */ 508 }; 509 510 /* 511 * Thread-synchronous status. 512 * 513 * This is different from the flags in that nobody else 514 * ever touches our thread-synchronous status, so we don't 515 * have to worry about atomic accesses. 516 */ 517 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 518 519 /* 520 * Set IOPL bits in EFLAGS from given mask 521 */ 522 static inline void native_set_iopl_mask(unsigned mask) 523 { 524 #ifdef CONFIG_X86_32 525 unsigned int reg; 526 527 asm volatile ("pushfl;" 528 "popl %0;" 529 "andl %1, %0;" 530 "orl %2, %0;" 531 "pushl %0;" 532 "popfl" 533 : "=&r" (reg) 534 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 535 #endif 536 } 537 538 static inline void 539 native_load_sp0(unsigned long sp0) 540 { 541 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 542 } 543 544 static inline void native_swapgs(void) 545 { 546 #ifdef CONFIG_X86_64 547 asm volatile("swapgs" ::: "memory"); 548 #endif 549 } 550 551 static inline unsigned long current_top_of_stack(void) 552 { 553 /* 554 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 555 * and around vm86 mode and sp0 on x86_64 is special because of the 556 * entry trampoline. 557 */ 558 return this_cpu_read_stable(cpu_current_top_of_stack); 559 } 560 561 static inline bool on_thread_stack(void) 562 { 563 return (unsigned long)(current_top_of_stack() - 564 current_stack_pointer) < THREAD_SIZE; 565 } 566 567 #ifdef CONFIG_PARAVIRT 568 #include <asm/paravirt.h> 569 #else 570 #define __cpuid native_cpuid 571 572 static inline void load_sp0(unsigned long sp0) 573 { 574 native_load_sp0(sp0); 575 } 576 577 #define set_iopl_mask native_set_iopl_mask 578 #endif /* CONFIG_PARAVIRT */ 579 580 /* Free all resources held by a thread. */ 581 extern void release_thread(struct task_struct *); 582 583 unsigned long get_wchan(struct task_struct *p); 584 585 /* 586 * Generic CPUID function 587 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 588 * resulting in stale register contents being returned. 589 */ 590 static inline void cpuid(unsigned int op, 591 unsigned int *eax, unsigned int *ebx, 592 unsigned int *ecx, unsigned int *edx) 593 { 594 *eax = op; 595 *ecx = 0; 596 __cpuid(eax, ebx, ecx, edx); 597 } 598 599 /* Some CPUID calls want 'count' to be placed in ecx */ 600 static inline void cpuid_count(unsigned int op, int count, 601 unsigned int *eax, unsigned int *ebx, 602 unsigned int *ecx, unsigned int *edx) 603 { 604 *eax = op; 605 *ecx = count; 606 __cpuid(eax, ebx, ecx, edx); 607 } 608 609 /* 610 * CPUID functions returning a single datum 611 */ 612 static inline unsigned int cpuid_eax(unsigned int op) 613 { 614 unsigned int eax, ebx, ecx, edx; 615 616 cpuid(op, &eax, &ebx, &ecx, &edx); 617 618 return eax; 619 } 620 621 static inline unsigned int cpuid_ebx(unsigned int op) 622 { 623 unsigned int eax, ebx, ecx, edx; 624 625 cpuid(op, &eax, &ebx, &ecx, &edx); 626 627 return ebx; 628 } 629 630 static inline unsigned int cpuid_ecx(unsigned int op) 631 { 632 unsigned int eax, ebx, ecx, edx; 633 634 cpuid(op, &eax, &ebx, &ecx, &edx); 635 636 return ecx; 637 } 638 639 static inline unsigned int cpuid_edx(unsigned int op) 640 { 641 unsigned int eax, ebx, ecx, edx; 642 643 cpuid(op, &eax, &ebx, &ecx, &edx); 644 645 return edx; 646 } 647 648 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 649 static __always_inline void rep_nop(void) 650 { 651 asm volatile("rep; nop" ::: "memory"); 652 } 653 654 static __always_inline void cpu_relax(void) 655 { 656 rep_nop(); 657 } 658 659 /* 660 * This function forces the icache and prefetched instruction stream to 661 * catch up with reality in two very specific cases: 662 * 663 * a) Text was modified using one virtual address and is about to be executed 664 * from the same physical page at a different virtual address. 665 * 666 * b) Text was modified on a different CPU, may subsequently be 667 * executed on this CPU, and you want to make sure the new version 668 * gets executed. This generally means you're calling this in a IPI. 669 * 670 * If you're calling this for a different reason, you're probably doing 671 * it wrong. 672 */ 673 static inline void sync_core(void) 674 { 675 /* 676 * There are quite a few ways to do this. IRET-to-self is nice 677 * because it works on every CPU, at any CPL (so it's compatible 678 * with paravirtualization), and it never exits to a hypervisor. 679 * The only down sides are that it's a bit slow (it seems to be 680 * a bit more than 2x slower than the fastest options) and that 681 * it unmasks NMIs. The "push %cs" is needed because, in 682 * paravirtual environments, __KERNEL_CS may not be a valid CS 683 * value when we do IRET directly. 684 * 685 * In case NMI unmasking or performance ever becomes a problem, 686 * the next best option appears to be MOV-to-CR2 and an 687 * unconditional jump. That sequence also works on all CPUs, 688 * but it will fault at CPL3 (i.e. Xen PV). 689 * 690 * CPUID is the conventional way, but it's nasty: it doesn't 691 * exist on some 486-like CPUs, and it usually exits to a 692 * hypervisor. 693 * 694 * Like all of Linux's memory ordering operations, this is a 695 * compiler barrier as well. 696 */ 697 #ifdef CONFIG_X86_32 698 asm volatile ( 699 "pushfl\n\t" 700 "pushl %%cs\n\t" 701 "pushl $1f\n\t" 702 "iret\n\t" 703 "1:" 704 : ASM_CALL_CONSTRAINT : : "memory"); 705 #else 706 unsigned int tmp; 707 708 asm volatile ( 709 UNWIND_HINT_SAVE 710 "mov %%ss, %0\n\t" 711 "pushq %q0\n\t" 712 "pushq %%rsp\n\t" 713 "addq $8, (%%rsp)\n\t" 714 "pushfq\n\t" 715 "mov %%cs, %0\n\t" 716 "pushq %q0\n\t" 717 "pushq $1f\n\t" 718 "iretq\n\t" 719 UNWIND_HINT_RESTORE 720 "1:" 721 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 722 #endif 723 } 724 725 extern void select_idle_routine(const struct cpuinfo_x86 *c); 726 extern void amd_e400_c1e_apic_setup(void); 727 728 extern unsigned long boot_option_idle_override; 729 730 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 731 IDLE_POLL}; 732 733 extern void enable_sep_cpu(void); 734 extern int sysenter_setup(void); 735 736 extern void early_trap_init(void); 737 void early_trap_pf_init(void); 738 739 /* Defined in head.S */ 740 extern struct desc_ptr early_gdt_descr; 741 742 extern void cpu_set_gdt(int); 743 extern void switch_to_new_gdt(int); 744 extern void load_direct_gdt(int); 745 extern void load_fixmap_gdt(int); 746 extern void load_percpu_segment(int); 747 extern void cpu_init(void); 748 749 static inline unsigned long get_debugctlmsr(void) 750 { 751 unsigned long debugctlmsr = 0; 752 753 #ifndef CONFIG_X86_DEBUGCTLMSR 754 if (boot_cpu_data.x86 < 6) 755 return 0; 756 #endif 757 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 758 759 return debugctlmsr; 760 } 761 762 static inline void update_debugctlmsr(unsigned long debugctlmsr) 763 { 764 #ifndef CONFIG_X86_DEBUGCTLMSR 765 if (boot_cpu_data.x86 < 6) 766 return; 767 #endif 768 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 769 } 770 771 extern void set_task_blockstep(struct task_struct *task, bool on); 772 773 /* Boot loader type from the setup header: */ 774 extern int bootloader_type; 775 extern int bootloader_version; 776 777 extern char ignore_fpu_irq; 778 779 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 780 #define ARCH_HAS_PREFETCHW 781 #define ARCH_HAS_SPINLOCK_PREFETCH 782 783 #ifdef CONFIG_X86_32 784 # define BASE_PREFETCH "" 785 # define ARCH_HAS_PREFETCH 786 #else 787 # define BASE_PREFETCH "prefetcht0 %P1" 788 #endif 789 790 /* 791 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 792 * 793 * It's not worth to care about 3dnow prefetches for the K6 794 * because they are microcoded there and very slow. 795 */ 796 static inline void prefetch(const void *x) 797 { 798 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 799 X86_FEATURE_XMM, 800 "m" (*(const char *)x)); 801 } 802 803 /* 804 * 3dnow prefetch to get an exclusive cache line. 805 * Useful for spinlocks to avoid one state transition in the 806 * cache coherency protocol: 807 */ 808 static inline void prefetchw(const void *x) 809 { 810 alternative_input(BASE_PREFETCH, "prefetchw %P1", 811 X86_FEATURE_3DNOWPREFETCH, 812 "m" (*(const char *)x)); 813 } 814 815 static inline void spin_lock_prefetch(const void *x) 816 { 817 prefetchw(x); 818 } 819 820 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 821 TOP_OF_KERNEL_STACK_PADDING) 822 823 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 824 825 #define task_pt_regs(task) \ 826 ({ \ 827 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 828 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 829 ((struct pt_regs *)__ptr) - 1; \ 830 }) 831 832 #ifdef CONFIG_X86_32 833 /* 834 * User space process size: 3GB (default). 835 */ 836 #define IA32_PAGE_OFFSET PAGE_OFFSET 837 #define TASK_SIZE PAGE_OFFSET 838 #define TASK_SIZE_LOW TASK_SIZE 839 #define TASK_SIZE_MAX TASK_SIZE 840 #define DEFAULT_MAP_WINDOW TASK_SIZE 841 #define STACK_TOP TASK_SIZE 842 #define STACK_TOP_MAX STACK_TOP 843 844 #define INIT_THREAD { \ 845 .sp0 = TOP_OF_INIT_STACK, \ 846 .sysenter_cs = __KERNEL_CS, \ 847 .io_bitmap_ptr = NULL, \ 848 .addr_limit = KERNEL_DS, \ 849 } 850 851 #define KSTK_ESP(task) (task_pt_regs(task)->sp) 852 853 #else 854 /* 855 * User space process size. This is the first address outside the user range. 856 * There are a few constraints that determine this: 857 * 858 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 859 * address, then that syscall will enter the kernel with a 860 * non-canonical return address, and SYSRET will explode dangerously. 861 * We avoid this particular problem by preventing anything executable 862 * from being mapped at the maximum canonical address. 863 * 864 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 865 * CPUs malfunction if they execute code from the highest canonical page. 866 * They'll speculate right off the end of the canonical space, and 867 * bad things happen. This is worked around in the same way as the 868 * Intel problem. 869 * 870 * With page table isolation enabled, we map the LDT in ... [stay tuned] 871 */ 872 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 873 874 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 875 876 /* This decides where the kernel will search for a free chunk of vm 877 * space during mmap's. 878 */ 879 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 880 0xc0000000 : 0xFFFFe000) 881 882 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 883 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 884 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 885 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 886 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 887 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 888 889 #define STACK_TOP TASK_SIZE_LOW 890 #define STACK_TOP_MAX TASK_SIZE_MAX 891 892 #define INIT_THREAD { \ 893 .addr_limit = KERNEL_DS, \ 894 } 895 896 extern unsigned long KSTK_ESP(struct task_struct *task); 897 898 #endif /* CONFIG_X86_64 */ 899 900 extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 901 unsigned long new_sp); 902 903 /* 904 * This decides where the kernel will search for a free chunk of vm 905 * space during mmap's. 906 */ 907 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 908 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 909 910 #define KSTK_EIP(task) (task_pt_regs(task)->ip) 911 912 /* Get/set a process' ability to use the timestamp counter instruction */ 913 #define GET_TSC_CTL(adr) get_tsc_mode((adr)) 914 #define SET_TSC_CTL(val) set_tsc_mode((val)) 915 916 extern int get_tsc_mode(unsigned long adr); 917 extern int set_tsc_mode(unsigned int val); 918 919 DECLARE_PER_CPU(u64, msr_misc_features_shadow); 920 921 /* Register/unregister a process' MPX related resource */ 922 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 923 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 924 925 #ifdef CONFIG_X86_INTEL_MPX 926 extern int mpx_enable_management(void); 927 extern int mpx_disable_management(void); 928 #else 929 static inline int mpx_enable_management(void) 930 { 931 return -EINVAL; 932 } 933 static inline int mpx_disable_management(void) 934 { 935 return -EINVAL; 936 } 937 #endif /* CONFIG_X86_INTEL_MPX */ 938 939 #ifdef CONFIG_CPU_SUP_AMD 940 extern u16 amd_get_nb_id(int cpu); 941 extern u32 amd_get_nodes_per_socket(void); 942 #else 943 static inline u16 amd_get_nb_id(int cpu) { return 0; } 944 static inline u32 amd_get_nodes_per_socket(void) { return 0; } 945 #endif 946 947 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 948 { 949 uint32_t base, eax, signature[3]; 950 951 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 952 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 953 954 if (!memcmp(sig, signature, 12) && 955 (leaves == 0 || ((eax - base) >= leaves))) 956 return base; 957 } 958 959 return 0; 960 } 961 962 extern unsigned long arch_align_stack(unsigned long sp); 963 extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 964 965 void default_idle(void); 966 #ifdef CONFIG_XEN 967 bool xen_set_default_idle(void); 968 #else 969 #define xen_set_default_idle 0 970 #endif 971 972 void stop_this_cpu(void *dummy); 973 void df_debug(struct pt_regs *regs, long error_code); 974 #endif /* _ASM_X86_PROCESSOR_H */ 975