xref: /openbmc/linux/arch/x86/include/asm/processor.h (revision 55fd7e02)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12 
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/page.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
22 #include <asm/msr.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
30 
31 #include <linux/personality.h>
32 #include <linux/cache.h>
33 #include <linux/threads.h>
34 #include <linux/math64.h>
35 #include <linux/err.h>
36 #include <linux/irqflags.h>
37 #include <linux/mem_encrypt.h>
38 
39 /*
40  * We handle most unaligned accesses in hardware.  On the other hand
41  * unaligned DMA can be quite expensive on some Nehalem processors.
42  *
43  * Based on this we disable the IP header alignment in network drivers.
44  */
45 #define NET_IP_ALIGN	0
46 
47 #define HBP_NUM 4
48 
49 /*
50  * These alignment constraints are for performance in the vSMP case,
51  * but in the task_struct case we must also meet hardware imposed
52  * alignment requirements of the FPU state:
53  */
54 #ifdef CONFIG_X86_VSMP
55 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
56 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
57 #else
58 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
59 # define ARCH_MIN_MMSTRUCT_ALIGN	0
60 #endif
61 
62 enum tlb_infos {
63 	ENTRIES,
64 	NR_INFO
65 };
66 
67 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
71 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
72 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
73 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
74 
75 /*
76  *  CPU type and hardware bug flags. Kept separately for each CPU.
77  *  Members of this structure are referenced in head_32.S, so think twice
78  *  before touching them. [mj]
79  */
80 
81 struct cpuinfo_x86 {
82 	__u8			x86;		/* CPU family */
83 	__u8			x86_vendor;	/* CPU vendor */
84 	__u8			x86_model;
85 	__u8			x86_stepping;
86 #ifdef CONFIG_X86_64
87 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
88 	int			x86_tlbsize;
89 #endif
90 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 	__u32			vmx_capability[NVMXINTS];
92 #endif
93 	__u8			x86_virt_bits;
94 	__u8			x86_phys_bits;
95 	/* CPUID returned core id bits: */
96 	__u8			x86_coreid_bits;
97 	__u8			cu_id;
98 	/* Max extended CPUID function supported: */
99 	__u32			extended_cpuid_level;
100 	/* Maximum supported CPUID level, -1=no CPUID: */
101 	int			cpuid_level;
102 	/*
103 	 * Align to size of unsigned long because the x86_capability array
104 	 * is passed to bitops which require the alignment. Use unnamed
105 	 * union to enforce the array is aligned to size of unsigned long.
106 	 */
107 	union {
108 		__u32		x86_capability[NCAPINTS + NBUGINTS];
109 		unsigned long	x86_capability_alignment;
110 	};
111 	char			x86_vendor_id[16];
112 	char			x86_model_id[64];
113 	/* in KB - valid for CPUS which support this call: */
114 	unsigned int		x86_cache_size;
115 	int			x86_cache_alignment;	/* In bytes */
116 	/* Cache QoS architectural values, valid only on the BSP: */
117 	int			x86_cache_max_rmid;	/* max index */
118 	int			x86_cache_occ_scale;	/* scale to bytes */
119 	int			x86_cache_mbm_width_offset;
120 	int			x86_power;
121 	unsigned long		loops_per_jiffy;
122 	/* cpuid returned max cores value: */
123 	u16			x86_max_cores;
124 	u16			apicid;
125 	u16			initial_apicid;
126 	u16			x86_clflush_size;
127 	/* number of cores as seen by the OS: */
128 	u16			booted_cores;
129 	/* Physical processor id: */
130 	u16			phys_proc_id;
131 	/* Logical processor id: */
132 	u16			logical_proc_id;
133 	/* Core id: */
134 	u16			cpu_core_id;
135 	u16			cpu_die_id;
136 	u16			logical_die_id;
137 	/* Index into per_cpu list: */
138 	u16			cpu_index;
139 	u32			microcode;
140 	/* Address space bits used by the cache internally */
141 	u8			x86_cache_bits;
142 	unsigned		initialized : 1;
143 } __randomize_layout;
144 
145 struct cpuid_regs {
146 	u32 eax, ebx, ecx, edx;
147 };
148 
149 enum cpuid_regs_idx {
150 	CPUID_EAX = 0,
151 	CPUID_EBX,
152 	CPUID_ECX,
153 	CPUID_EDX,
154 };
155 
156 #define X86_VENDOR_INTEL	0
157 #define X86_VENDOR_CYRIX	1
158 #define X86_VENDOR_AMD		2
159 #define X86_VENDOR_UMC		3
160 #define X86_VENDOR_CENTAUR	5
161 #define X86_VENDOR_TRANSMETA	7
162 #define X86_VENDOR_NSC		8
163 #define X86_VENDOR_HYGON	9
164 #define X86_VENDOR_ZHAOXIN	10
165 #define X86_VENDOR_NUM		11
166 
167 #define X86_VENDOR_UNKNOWN	0xff
168 
169 /*
170  * capabilities of CPUs
171  */
172 extern struct cpuinfo_x86	boot_cpu_data;
173 extern struct cpuinfo_x86	new_cpu_data;
174 
175 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
176 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
177 
178 #ifdef CONFIG_SMP
179 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
180 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
181 #else
182 #define cpu_info		boot_cpu_data
183 #define cpu_data(cpu)		boot_cpu_data
184 #endif
185 
186 extern const struct seq_operations cpuinfo_op;
187 
188 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
189 
190 extern void cpu_detect(struct cpuinfo_x86 *c);
191 
192 static inline unsigned long long l1tf_pfn_limit(void)
193 {
194 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
195 }
196 
197 extern void early_cpu_init(void);
198 extern void identify_boot_cpu(void);
199 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
200 extern void print_cpu_info(struct cpuinfo_x86 *);
201 void print_cpu_msr(struct cpuinfo_x86 *);
202 
203 #ifdef CONFIG_X86_32
204 extern int have_cpuid_p(void);
205 #else
206 static inline int have_cpuid_p(void)
207 {
208 	return 1;
209 }
210 #endif
211 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
212 				unsigned int *ecx, unsigned int *edx)
213 {
214 	/* ecx is often an input as well as an output. */
215 	asm volatile("cpuid"
216 	    : "=a" (*eax),
217 	      "=b" (*ebx),
218 	      "=c" (*ecx),
219 	      "=d" (*edx)
220 	    : "0" (*eax), "2" (*ecx)
221 	    : "memory");
222 }
223 
224 #define native_cpuid_reg(reg)					\
225 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
226 {								\
227 	unsigned int eax = op, ebx, ecx = 0, edx;		\
228 								\
229 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
230 								\
231 	return reg;						\
232 }
233 
234 /*
235  * Native CPUID functions returning a single datum.
236  */
237 native_cpuid_reg(eax)
238 native_cpuid_reg(ebx)
239 native_cpuid_reg(ecx)
240 native_cpuid_reg(edx)
241 
242 /*
243  * Friendlier CR3 helpers.
244  */
245 static inline unsigned long read_cr3_pa(void)
246 {
247 	return __read_cr3() & CR3_ADDR_MASK;
248 }
249 
250 static inline unsigned long native_read_cr3_pa(void)
251 {
252 	return __native_read_cr3() & CR3_ADDR_MASK;
253 }
254 
255 static inline void load_cr3(pgd_t *pgdir)
256 {
257 	write_cr3(__sme_pa(pgdir));
258 }
259 
260 /*
261  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
262  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
263  * unrelated to the task-switch mechanism:
264  */
265 #ifdef CONFIG_X86_32
266 /* This is the TSS defined by the hardware. */
267 struct x86_hw_tss {
268 	unsigned short		back_link, __blh;
269 	unsigned long		sp0;
270 	unsigned short		ss0, __ss0h;
271 	unsigned long		sp1;
272 
273 	/*
274 	 * We don't use ring 1, so ss1 is a convenient scratch space in
275 	 * the same cacheline as sp0.  We use ss1 to cache the value in
276 	 * MSR_IA32_SYSENTER_CS.  When we context switch
277 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
278 	 * written matches ss1, and, if it's not, then we wrmsr the new
279 	 * value and update ss1.
280 	 *
281 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
282 	 * that we set it to zero in vm86 tasks to avoid corrupting the
283 	 * stack if we were to go through the sysenter path from vm86
284 	 * mode.
285 	 */
286 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
287 
288 	unsigned short		__ss1h;
289 	unsigned long		sp2;
290 	unsigned short		ss2, __ss2h;
291 	unsigned long		__cr3;
292 	unsigned long		ip;
293 	unsigned long		flags;
294 	unsigned long		ax;
295 	unsigned long		cx;
296 	unsigned long		dx;
297 	unsigned long		bx;
298 	unsigned long		sp;
299 	unsigned long		bp;
300 	unsigned long		si;
301 	unsigned long		di;
302 	unsigned short		es, __esh;
303 	unsigned short		cs, __csh;
304 	unsigned short		ss, __ssh;
305 	unsigned short		ds, __dsh;
306 	unsigned short		fs, __fsh;
307 	unsigned short		gs, __gsh;
308 	unsigned short		ldt, __ldth;
309 	unsigned short		trace;
310 	unsigned short		io_bitmap_base;
311 
312 } __attribute__((packed));
313 #else
314 struct x86_hw_tss {
315 	u32			reserved1;
316 	u64			sp0;
317 
318 	/*
319 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
320 	 * Linux does not use ring 1, so sp1 is not otherwise needed.
321 	 */
322 	u64			sp1;
323 
324 	/*
325 	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
326 	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
327 	 * the user RSP value.
328 	 */
329 	u64			sp2;
330 
331 	u64			reserved2;
332 	u64			ist[7];
333 	u32			reserved3;
334 	u32			reserved4;
335 	u16			reserved5;
336 	u16			io_bitmap_base;
337 
338 } __attribute__((packed));
339 #endif
340 
341 /*
342  * IO-bitmap sizes:
343  */
344 #define IO_BITMAP_BITS			65536
345 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS / BITS_PER_BYTE)
346 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES / sizeof(long))
347 
348 #define IO_BITMAP_OFFSET_VALID_MAP				\
349 	(offsetof(struct tss_struct, io_bitmap.bitmap) -	\
350 	 offsetof(struct tss_struct, x86_tss))
351 
352 #define IO_BITMAP_OFFSET_VALID_ALL				\
353 	(offsetof(struct tss_struct, io_bitmap.mapall) -	\
354 	 offsetof(struct tss_struct, x86_tss))
355 
356 #ifdef CONFIG_X86_IOPL_IOPERM
357 /*
358  * sizeof(unsigned long) coming from an extra "long" at the end of the
359  * iobitmap. The limit is inclusive, i.e. the last valid byte.
360  */
361 # define __KERNEL_TSS_LIMIT	\
362 	(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
363 	 sizeof(unsigned long) - 1)
364 #else
365 # define __KERNEL_TSS_LIMIT	\
366 	(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
367 #endif
368 
369 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
370 #define IO_BITMAP_OFFSET_INVALID	(__KERNEL_TSS_LIMIT + 1)
371 
372 struct entry_stack {
373 	char	stack[PAGE_SIZE];
374 };
375 
376 struct entry_stack_page {
377 	struct entry_stack stack;
378 } __aligned(PAGE_SIZE);
379 
380 /*
381  * All IO bitmap related data stored in the TSS:
382  */
383 struct x86_io_bitmap {
384 	/* The sequence number of the last active bitmap. */
385 	u64			prev_sequence;
386 
387 	/*
388 	 * Store the dirty size of the last io bitmap offender. The next
389 	 * one will have to do the cleanup as the switch out to a non io
390 	 * bitmap user will just set x86_tss.io_bitmap_base to a value
391 	 * outside of the TSS limit. So for sane tasks there is no need to
392 	 * actually touch the io_bitmap at all.
393 	 */
394 	unsigned int		prev_max;
395 
396 	/*
397 	 * The extra 1 is there because the CPU will access an
398 	 * additional byte beyond the end of the IO permission
399 	 * bitmap. The extra byte must be all 1 bits, and must
400 	 * be within the limit.
401 	 */
402 	unsigned long		bitmap[IO_BITMAP_LONGS + 1];
403 
404 	/*
405 	 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
406 	 * except the additional byte at the end.
407 	 */
408 	unsigned long		mapall[IO_BITMAP_LONGS + 1];
409 };
410 
411 struct tss_struct {
412 	/*
413 	 * The fixed hardware portion.  This must not cross a page boundary
414 	 * at risk of violating the SDM's advice and potentially triggering
415 	 * errata.
416 	 */
417 	struct x86_hw_tss	x86_tss;
418 
419 	struct x86_io_bitmap	io_bitmap;
420 } __aligned(PAGE_SIZE);
421 
422 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
423 
424 /* Per CPU interrupt stacks */
425 struct irq_stack {
426 	char		stack[IRQ_STACK_SIZE];
427 } __aligned(IRQ_STACK_SIZE);
428 
429 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
430 
431 #ifdef CONFIG_X86_32
432 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
433 #else
434 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
435 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
436 #endif
437 
438 #ifdef CONFIG_X86_64
439 struct fixed_percpu_data {
440 	/*
441 	 * GCC hardcodes the stack canary as %gs:40.  Since the
442 	 * irq_stack is the object at %gs:0, we reserve the bottom
443 	 * 48 bytes of the irq stack for the canary.
444 	 */
445 	char		gs_base[40];
446 	unsigned long	stack_canary;
447 };
448 
449 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
450 DECLARE_INIT_PER_CPU(fixed_percpu_data);
451 
452 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
453 {
454 	return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
455 }
456 
457 DECLARE_PER_CPU(unsigned int, irq_count);
458 extern asmlinkage void ignore_sysret(void);
459 
460 #if IS_ENABLED(CONFIG_KVM)
461 /* Save actual FS/GS selectors and bases to current->thread */
462 void save_fsgs_for_kvm(void);
463 #endif
464 #else	/* X86_64 */
465 #ifdef CONFIG_STACKPROTECTOR
466 /*
467  * Make sure stack canary segment base is cached-aligned:
468  *   "For Intel Atom processors, avoid non zero segment base address
469  *    that is not aligned to cache line boundary at all cost."
470  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
471  */
472 struct stack_canary {
473 	char __pad[20];		/* canary at %gs:20 */
474 	unsigned long canary;
475 };
476 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
477 #endif
478 /* Per CPU softirq stack pointer */
479 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
480 #endif	/* X86_64 */
481 
482 extern unsigned int fpu_kernel_xstate_size;
483 extern unsigned int fpu_user_xstate_size;
484 
485 struct perf_event;
486 
487 typedef struct {
488 	unsigned long		seg;
489 } mm_segment_t;
490 
491 struct thread_struct {
492 	/* Cached TLS descriptors: */
493 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
494 #ifdef CONFIG_X86_32
495 	unsigned long		sp0;
496 #endif
497 	unsigned long		sp;
498 #ifdef CONFIG_X86_32
499 	unsigned long		sysenter_cs;
500 #else
501 	unsigned short		es;
502 	unsigned short		ds;
503 	unsigned short		fsindex;
504 	unsigned short		gsindex;
505 #endif
506 
507 #ifdef CONFIG_X86_64
508 	unsigned long		fsbase;
509 	unsigned long		gsbase;
510 #else
511 	/*
512 	 * XXX: this could presumably be unsigned short.  Alternatively,
513 	 * 32-bit kernels could be taught to use fsindex instead.
514 	 */
515 	unsigned long fs;
516 	unsigned long gs;
517 #endif
518 
519 	/* Save middle states of ptrace breakpoints */
520 	struct perf_event	*ptrace_bps[HBP_NUM];
521 	/* Debug status used for traps, single steps, etc... */
522 	unsigned long           debugreg6;
523 	/* Keep track of the exact dr7 value set by the user */
524 	unsigned long           ptrace_dr7;
525 	/* Fault info: */
526 	unsigned long		cr2;
527 	unsigned long		trap_nr;
528 	unsigned long		error_code;
529 #ifdef CONFIG_VM86
530 	/* Virtual 86 mode info */
531 	struct vm86		*vm86;
532 #endif
533 	/* IO permissions: */
534 	struct io_bitmap	*io_bitmap;
535 
536 	/*
537 	 * IOPL. Priviledge level dependent I/O permission which is
538 	 * emulated via the I/O bitmap to prevent user space from disabling
539 	 * interrupts.
540 	 */
541 	unsigned long		iopl_emul;
542 
543 	mm_segment_t		addr_limit;
544 
545 	unsigned int		sig_on_uaccess_err:1;
546 
547 	/* Floating point and extended processor state */
548 	struct fpu		fpu;
549 	/*
550 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
551 	 * the end.
552 	 */
553 };
554 
555 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
556 static inline void arch_thread_struct_whitelist(unsigned long *offset,
557 						unsigned long *size)
558 {
559 	*offset = offsetof(struct thread_struct, fpu.state);
560 	*size = fpu_kernel_xstate_size;
561 }
562 
563 /*
564  * Thread-synchronous status.
565  *
566  * This is different from the flags in that nobody else
567  * ever touches our thread-synchronous status, so we don't
568  * have to worry about atomic accesses.
569  */
570 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
571 
572 static inline void
573 native_load_sp0(unsigned long sp0)
574 {
575 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
576 }
577 
578 static inline void native_swapgs(void)
579 {
580 #ifdef CONFIG_X86_64
581 	asm volatile("swapgs" ::: "memory");
582 #endif
583 }
584 
585 static inline unsigned long current_top_of_stack(void)
586 {
587 	/*
588 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
589 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
590 	 *  entry trampoline.
591 	 */
592 	return this_cpu_read_stable(cpu_current_top_of_stack);
593 }
594 
595 static inline bool on_thread_stack(void)
596 {
597 	return (unsigned long)(current_top_of_stack() -
598 			       current_stack_pointer) < THREAD_SIZE;
599 }
600 
601 #ifdef CONFIG_PARAVIRT_XXL
602 #include <asm/paravirt.h>
603 #else
604 #define __cpuid			native_cpuid
605 
606 static inline void load_sp0(unsigned long sp0)
607 {
608 	native_load_sp0(sp0);
609 }
610 
611 #endif /* CONFIG_PARAVIRT_XXL */
612 
613 /* Free all resources held by a thread. */
614 extern void release_thread(struct task_struct *);
615 
616 unsigned long get_wchan(struct task_struct *p);
617 
618 /*
619  * Generic CPUID function
620  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
621  * resulting in stale register contents being returned.
622  */
623 static inline void cpuid(unsigned int op,
624 			 unsigned int *eax, unsigned int *ebx,
625 			 unsigned int *ecx, unsigned int *edx)
626 {
627 	*eax = op;
628 	*ecx = 0;
629 	__cpuid(eax, ebx, ecx, edx);
630 }
631 
632 /* Some CPUID calls want 'count' to be placed in ecx */
633 static inline void cpuid_count(unsigned int op, int count,
634 			       unsigned int *eax, unsigned int *ebx,
635 			       unsigned int *ecx, unsigned int *edx)
636 {
637 	*eax = op;
638 	*ecx = count;
639 	__cpuid(eax, ebx, ecx, edx);
640 }
641 
642 /*
643  * CPUID functions returning a single datum
644  */
645 static inline unsigned int cpuid_eax(unsigned int op)
646 {
647 	unsigned int eax, ebx, ecx, edx;
648 
649 	cpuid(op, &eax, &ebx, &ecx, &edx);
650 
651 	return eax;
652 }
653 
654 static inline unsigned int cpuid_ebx(unsigned int op)
655 {
656 	unsigned int eax, ebx, ecx, edx;
657 
658 	cpuid(op, &eax, &ebx, &ecx, &edx);
659 
660 	return ebx;
661 }
662 
663 static inline unsigned int cpuid_ecx(unsigned int op)
664 {
665 	unsigned int eax, ebx, ecx, edx;
666 
667 	cpuid(op, &eax, &ebx, &ecx, &edx);
668 
669 	return ecx;
670 }
671 
672 static inline unsigned int cpuid_edx(unsigned int op)
673 {
674 	unsigned int eax, ebx, ecx, edx;
675 
676 	cpuid(op, &eax, &ebx, &ecx, &edx);
677 
678 	return edx;
679 }
680 
681 /*
682  * This function forces the icache and prefetched instruction stream to
683  * catch up with reality in two very specific cases:
684  *
685  *  a) Text was modified using one virtual address and is about to be executed
686  *     from the same physical page at a different virtual address.
687  *
688  *  b) Text was modified on a different CPU, may subsequently be
689  *     executed on this CPU, and you want to make sure the new version
690  *     gets executed.  This generally means you're calling this in a IPI.
691  *
692  * If you're calling this for a different reason, you're probably doing
693  * it wrong.
694  */
695 static inline void sync_core(void)
696 {
697 	/*
698 	 * There are quite a few ways to do this.  IRET-to-self is nice
699 	 * because it works on every CPU, at any CPL (so it's compatible
700 	 * with paravirtualization), and it never exits to a hypervisor.
701 	 * The only down sides are that it's a bit slow (it seems to be
702 	 * a bit more than 2x slower than the fastest options) and that
703 	 * it unmasks NMIs.  The "push %cs" is needed because, in
704 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
705 	 * value when we do IRET directly.
706 	 *
707 	 * In case NMI unmasking or performance ever becomes a problem,
708 	 * the next best option appears to be MOV-to-CR2 and an
709 	 * unconditional jump.  That sequence also works on all CPUs,
710 	 * but it will fault at CPL3 (i.e. Xen PV).
711 	 *
712 	 * CPUID is the conventional way, but it's nasty: it doesn't
713 	 * exist on some 486-like CPUs, and it usually exits to a
714 	 * hypervisor.
715 	 *
716 	 * Like all of Linux's memory ordering operations, this is a
717 	 * compiler barrier as well.
718 	 */
719 #ifdef CONFIG_X86_32
720 	asm volatile (
721 		"pushfl\n\t"
722 		"pushl %%cs\n\t"
723 		"pushl $1f\n\t"
724 		"iret\n\t"
725 		"1:"
726 		: ASM_CALL_CONSTRAINT : : "memory");
727 #else
728 	unsigned int tmp;
729 
730 	asm volatile (
731 		"mov %%ss, %0\n\t"
732 		"pushq %q0\n\t"
733 		"pushq %%rsp\n\t"
734 		"addq $8, (%%rsp)\n\t"
735 		"pushfq\n\t"
736 		"mov %%cs, %0\n\t"
737 		"pushq %q0\n\t"
738 		"pushq $1f\n\t"
739 		"iretq\n\t"
740 		"1:"
741 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
742 #endif
743 }
744 
745 extern void select_idle_routine(const struct cpuinfo_x86 *c);
746 extern void amd_e400_c1e_apic_setup(void);
747 
748 extern unsigned long		boot_option_idle_override;
749 
750 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
751 			 IDLE_POLL};
752 
753 extern void enable_sep_cpu(void);
754 extern int sysenter_setup(void);
755 
756 
757 /* Defined in head.S */
758 extern struct desc_ptr		early_gdt_descr;
759 
760 extern void switch_to_new_gdt(int);
761 extern void load_direct_gdt(int);
762 extern void load_fixmap_gdt(int);
763 extern void load_percpu_segment(int);
764 extern void cpu_init(void);
765 extern void cr4_init(void);
766 
767 static inline unsigned long get_debugctlmsr(void)
768 {
769 	unsigned long debugctlmsr = 0;
770 
771 #ifndef CONFIG_X86_DEBUGCTLMSR
772 	if (boot_cpu_data.x86 < 6)
773 		return 0;
774 #endif
775 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
776 
777 	return debugctlmsr;
778 }
779 
780 static inline void update_debugctlmsr(unsigned long debugctlmsr)
781 {
782 #ifndef CONFIG_X86_DEBUGCTLMSR
783 	if (boot_cpu_data.x86 < 6)
784 		return;
785 #endif
786 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
787 }
788 
789 extern void set_task_blockstep(struct task_struct *task, bool on);
790 
791 /* Boot loader type from the setup header: */
792 extern int			bootloader_type;
793 extern int			bootloader_version;
794 
795 extern char			ignore_fpu_irq;
796 
797 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
798 #define ARCH_HAS_PREFETCHW
799 #define ARCH_HAS_SPINLOCK_PREFETCH
800 
801 #ifdef CONFIG_X86_32
802 # define BASE_PREFETCH		""
803 # define ARCH_HAS_PREFETCH
804 #else
805 # define BASE_PREFETCH		"prefetcht0 %P1"
806 #endif
807 
808 /*
809  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
810  *
811  * It's not worth to care about 3dnow prefetches for the K6
812  * because they are microcoded there and very slow.
813  */
814 static inline void prefetch(const void *x)
815 {
816 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
817 			  X86_FEATURE_XMM,
818 			  "m" (*(const char *)x));
819 }
820 
821 /*
822  * 3dnow prefetch to get an exclusive cache line.
823  * Useful for spinlocks to avoid one state transition in the
824  * cache coherency protocol:
825  */
826 static __always_inline void prefetchw(const void *x)
827 {
828 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
829 			  X86_FEATURE_3DNOWPREFETCH,
830 			  "m" (*(const char *)x));
831 }
832 
833 static inline void spin_lock_prefetch(const void *x)
834 {
835 	prefetchw(x);
836 }
837 
838 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
839 			   TOP_OF_KERNEL_STACK_PADDING)
840 
841 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
842 
843 #define task_pt_regs(task) \
844 ({									\
845 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
846 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
847 	((struct pt_regs *)__ptr) - 1;					\
848 })
849 
850 #ifdef CONFIG_X86_32
851 /*
852  * User space process size: 3GB (default).
853  */
854 #define IA32_PAGE_OFFSET	PAGE_OFFSET
855 #define TASK_SIZE		PAGE_OFFSET
856 #define TASK_SIZE_LOW		TASK_SIZE
857 #define TASK_SIZE_MAX		TASK_SIZE
858 #define DEFAULT_MAP_WINDOW	TASK_SIZE
859 #define STACK_TOP		TASK_SIZE
860 #define STACK_TOP_MAX		STACK_TOP
861 
862 #define INIT_THREAD  {							  \
863 	.sp0			= TOP_OF_INIT_STACK,			  \
864 	.sysenter_cs		= __KERNEL_CS,				  \
865 	.addr_limit		= KERNEL_DS,				  \
866 }
867 
868 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
869 
870 #else
871 /*
872  * User space process size.  This is the first address outside the user range.
873  * There are a few constraints that determine this:
874  *
875  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
876  * address, then that syscall will enter the kernel with a
877  * non-canonical return address, and SYSRET will explode dangerously.
878  * We avoid this particular problem by preventing anything executable
879  * from being mapped at the maximum canonical address.
880  *
881  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
882  * CPUs malfunction if they execute code from the highest canonical page.
883  * They'll speculate right off the end of the canonical space, and
884  * bad things happen.  This is worked around in the same way as the
885  * Intel problem.
886  *
887  * With page table isolation enabled, we map the LDT in ... [stay tuned]
888  */
889 #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
890 
891 #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
892 
893 /* This decides where the kernel will search for a free chunk of vm
894  * space during mmap's.
895  */
896 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
897 					0xc0000000 : 0xFFFFe000)
898 
899 #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
900 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
901 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
902 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
903 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
904 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
905 
906 #define STACK_TOP		TASK_SIZE_LOW
907 #define STACK_TOP_MAX		TASK_SIZE_MAX
908 
909 #define INIT_THREAD  {						\
910 	.addr_limit		= KERNEL_DS,			\
911 }
912 
913 extern unsigned long KSTK_ESP(struct task_struct *task);
914 
915 #endif /* CONFIG_X86_64 */
916 
917 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
918 					       unsigned long new_sp);
919 
920 /*
921  * This decides where the kernel will search for a free chunk of vm
922  * space during mmap's.
923  */
924 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
925 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
926 
927 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
928 
929 /* Get/set a process' ability to use the timestamp counter instruction */
930 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
931 #define SET_TSC_CTL(val)	set_tsc_mode((val))
932 
933 extern int get_tsc_mode(unsigned long adr);
934 extern int set_tsc_mode(unsigned int val);
935 
936 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
937 
938 #ifdef CONFIG_CPU_SUP_AMD
939 extern u16 amd_get_nb_id(int cpu);
940 extern u32 amd_get_nodes_per_socket(void);
941 #else
942 static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
943 static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
944 #endif
945 
946 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
947 {
948 	uint32_t base, eax, signature[3];
949 
950 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
951 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
952 
953 		if (!memcmp(sig, signature, 12) &&
954 		    (leaves == 0 || ((eax - base) >= leaves)))
955 			return base;
956 	}
957 
958 	return 0;
959 }
960 
961 extern unsigned long arch_align_stack(unsigned long sp);
962 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
963 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
964 
965 void default_idle(void);
966 #ifdef	CONFIG_XEN
967 bool xen_set_default_idle(void);
968 #else
969 #define xen_set_default_idle 0
970 #endif
971 
972 void stop_this_cpu(void *dummy);
973 void microcode_check(void);
974 
975 enum l1tf_mitigations {
976 	L1TF_MITIGATION_OFF,
977 	L1TF_MITIGATION_FLUSH_NOWARN,
978 	L1TF_MITIGATION_FLUSH,
979 	L1TF_MITIGATION_FLUSH_NOSMT,
980 	L1TF_MITIGATION_FULL,
981 	L1TF_MITIGATION_FULL_FORCE
982 };
983 
984 extern enum l1tf_mitigations l1tf_mitigation;
985 
986 enum mds_mitigations {
987 	MDS_MITIGATION_OFF,
988 	MDS_MITIGATION_FULL,
989 	MDS_MITIGATION_VMWERV,
990 };
991 
992 #endif /* _ASM_X86_PROCESSOR_H */
993