1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PROCESSOR_H 3 #define _ASM_X86_PROCESSOR_H 4 5 #include <asm/processor-flags.h> 6 7 /* Forward declaration, a strange C thing */ 8 struct task_struct; 9 struct mm_struct; 10 struct io_bitmap; 11 struct vm86; 12 13 #include <asm/math_emu.h> 14 #include <asm/segment.h> 15 #include <asm/types.h> 16 #include <uapi/asm/sigcontext.h> 17 #include <asm/current.h> 18 #include <asm/cpufeatures.h> 19 #include <asm/page.h> 20 #include <asm/pgtable_types.h> 21 #include <asm/percpu.h> 22 #include <asm/msr.h> 23 #include <asm/desc_defs.h> 24 #include <asm/nops.h> 25 #include <asm/special_insns.h> 26 #include <asm/fpu/types.h> 27 #include <asm/unwind_hints.h> 28 #include <asm/vmxfeatures.h> 29 #include <asm/vdso/processor.h> 30 31 #include <linux/personality.h> 32 #include <linux/cache.h> 33 #include <linux/threads.h> 34 #include <linux/math64.h> 35 #include <linux/err.h> 36 #include <linux/irqflags.h> 37 #include <linux/mem_encrypt.h> 38 39 /* 40 * We handle most unaligned accesses in hardware. On the other hand 41 * unaligned DMA can be quite expensive on some Nehalem processors. 42 * 43 * Based on this we disable the IP header alignment in network drivers. 44 */ 45 #define NET_IP_ALIGN 0 46 47 #define HBP_NUM 4 48 49 /* 50 * These alignment constraints are for performance in the vSMP case, 51 * but in the task_struct case we must also meet hardware imposed 52 * alignment requirements of the FPU state: 53 */ 54 #ifdef CONFIG_X86_VSMP 55 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 56 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 57 #else 58 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 59 # define ARCH_MIN_MMSTRUCT_ALIGN 0 60 #endif 61 62 enum tlb_infos { 63 ENTRIES, 64 NR_INFO 65 }; 66 67 extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 68 extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 69 extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 70 extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 71 extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 72 extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 73 extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 74 75 /* 76 * CPU type and hardware bug flags. Kept separately for each CPU. 77 * Members of this structure are referenced in head_32.S, so think twice 78 * before touching them. [mj] 79 */ 80 81 struct cpuinfo_x86 { 82 __u8 x86; /* CPU family */ 83 __u8 x86_vendor; /* CPU vendor */ 84 __u8 x86_model; 85 __u8 x86_stepping; 86 #ifdef CONFIG_X86_64 87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 88 int x86_tlbsize; 89 #endif 90 #ifdef CONFIG_X86_VMX_FEATURE_NAMES 91 __u32 vmx_capability[NVMXINTS]; 92 #endif 93 __u8 x86_virt_bits; 94 __u8 x86_phys_bits; 95 /* CPUID returned core id bits: */ 96 __u8 x86_coreid_bits; 97 __u8 cu_id; 98 /* Max extended CPUID function supported: */ 99 __u32 extended_cpuid_level; 100 /* Maximum supported CPUID level, -1=no CPUID: */ 101 int cpuid_level; 102 /* 103 * Align to size of unsigned long because the x86_capability array 104 * is passed to bitops which require the alignment. Use unnamed 105 * union to enforce the array is aligned to size of unsigned long. 106 */ 107 union { 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 unsigned long x86_capability_alignment; 110 }; 111 char x86_vendor_id[16]; 112 char x86_model_id[64]; 113 /* in KB - valid for CPUS which support this call: */ 114 unsigned int x86_cache_size; 115 int x86_cache_alignment; /* In bytes */ 116 /* Cache QoS architectural values, valid only on the BSP: */ 117 int x86_cache_max_rmid; /* max index */ 118 int x86_cache_occ_scale; /* scale to bytes */ 119 int x86_cache_mbm_width_offset; 120 int x86_power; 121 unsigned long loops_per_jiffy; 122 /* cpuid returned max cores value: */ 123 u16 x86_max_cores; 124 u16 apicid; 125 u16 initial_apicid; 126 u16 x86_clflush_size; 127 /* number of cores as seen by the OS: */ 128 u16 booted_cores; 129 /* Physical processor id: */ 130 u16 phys_proc_id; 131 /* Logical processor id: */ 132 u16 logical_proc_id; 133 /* Core id: */ 134 u16 cpu_core_id; 135 u16 cpu_die_id; 136 u16 logical_die_id; 137 /* Index into per_cpu list: */ 138 u16 cpu_index; 139 u32 microcode; 140 /* Address space bits used by the cache internally */ 141 u8 x86_cache_bits; 142 unsigned initialized : 1; 143 } __randomize_layout; 144 145 struct cpuid_regs { 146 u32 eax, ebx, ecx, edx; 147 }; 148 149 enum cpuid_regs_idx { 150 CPUID_EAX = 0, 151 CPUID_EBX, 152 CPUID_ECX, 153 CPUID_EDX, 154 }; 155 156 #define X86_VENDOR_INTEL 0 157 #define X86_VENDOR_CYRIX 1 158 #define X86_VENDOR_AMD 2 159 #define X86_VENDOR_UMC 3 160 #define X86_VENDOR_CENTAUR 5 161 #define X86_VENDOR_TRANSMETA 7 162 #define X86_VENDOR_NSC 8 163 #define X86_VENDOR_HYGON 9 164 #define X86_VENDOR_ZHAOXIN 10 165 #define X86_VENDOR_NUM 11 166 167 #define X86_VENDOR_UNKNOWN 0xff 168 169 /* 170 * capabilities of CPUs 171 */ 172 extern struct cpuinfo_x86 boot_cpu_data; 173 extern struct cpuinfo_x86 new_cpu_data; 174 175 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 176 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 177 178 #ifdef CONFIG_SMP 179 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 180 #define cpu_data(cpu) per_cpu(cpu_info, cpu) 181 #else 182 #define cpu_info boot_cpu_data 183 #define cpu_data(cpu) boot_cpu_data 184 #endif 185 186 extern const struct seq_operations cpuinfo_op; 187 188 #define cache_line_size() (boot_cpu_data.x86_cache_alignment) 189 190 extern void cpu_detect(struct cpuinfo_x86 *c); 191 192 static inline unsigned long long l1tf_pfn_limit(void) 193 { 194 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 195 } 196 197 extern void early_cpu_init(void); 198 extern void identify_boot_cpu(void); 199 extern void identify_secondary_cpu(struct cpuinfo_x86 *); 200 extern void print_cpu_info(struct cpuinfo_x86 *); 201 void print_cpu_msr(struct cpuinfo_x86 *); 202 203 #ifdef CONFIG_X86_32 204 extern int have_cpuid_p(void); 205 #else 206 static inline int have_cpuid_p(void) 207 { 208 return 1; 209 } 210 #endif 211 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 212 unsigned int *ecx, unsigned int *edx) 213 { 214 /* ecx is often an input as well as an output. */ 215 asm volatile("cpuid" 216 : "=a" (*eax), 217 "=b" (*ebx), 218 "=c" (*ecx), 219 "=d" (*edx) 220 : "0" (*eax), "2" (*ecx) 221 : "memory"); 222 } 223 224 #define native_cpuid_reg(reg) \ 225 static inline unsigned int native_cpuid_##reg(unsigned int op) \ 226 { \ 227 unsigned int eax = op, ebx, ecx = 0, edx; \ 228 \ 229 native_cpuid(&eax, &ebx, &ecx, &edx); \ 230 \ 231 return reg; \ 232 } 233 234 /* 235 * Native CPUID functions returning a single datum. 236 */ 237 native_cpuid_reg(eax) 238 native_cpuid_reg(ebx) 239 native_cpuid_reg(ecx) 240 native_cpuid_reg(edx) 241 242 /* 243 * Friendlier CR3 helpers. 244 */ 245 static inline unsigned long read_cr3_pa(void) 246 { 247 return __read_cr3() & CR3_ADDR_MASK; 248 } 249 250 static inline unsigned long native_read_cr3_pa(void) 251 { 252 return __native_read_cr3() & CR3_ADDR_MASK; 253 } 254 255 static inline void load_cr3(pgd_t *pgdir) 256 { 257 write_cr3(__sme_pa(pgdir)); 258 } 259 260 /* 261 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 263 * unrelated to the task-switch mechanism: 264 */ 265 #ifdef CONFIG_X86_32 266 /* This is the TSS defined by the hardware. */ 267 struct x86_hw_tss { 268 unsigned short back_link, __blh; 269 unsigned long sp0; 270 unsigned short ss0, __ss0h; 271 unsigned long sp1; 272 273 /* 274 * We don't use ring 1, so ss1 is a convenient scratch space in 275 * the same cacheline as sp0. We use ss1 to cache the value in 276 * MSR_IA32_SYSENTER_CS. When we context switch 277 * MSR_IA32_SYSENTER_CS, we first check if the new value being 278 * written matches ss1, and, if it's not, then we wrmsr the new 279 * value and update ss1. 280 * 281 * The only reason we context switch MSR_IA32_SYSENTER_CS is 282 * that we set it to zero in vm86 tasks to avoid corrupting the 283 * stack if we were to go through the sysenter path from vm86 284 * mode. 285 */ 286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 287 288 unsigned short __ss1h; 289 unsigned long sp2; 290 unsigned short ss2, __ss2h; 291 unsigned long __cr3; 292 unsigned long ip; 293 unsigned long flags; 294 unsigned long ax; 295 unsigned long cx; 296 unsigned long dx; 297 unsigned long bx; 298 unsigned long sp; 299 unsigned long bp; 300 unsigned long si; 301 unsigned long di; 302 unsigned short es, __esh; 303 unsigned short cs, __csh; 304 unsigned short ss, __ssh; 305 unsigned short ds, __dsh; 306 unsigned short fs, __fsh; 307 unsigned short gs, __gsh; 308 unsigned short ldt, __ldth; 309 unsigned short trace; 310 unsigned short io_bitmap_base; 311 312 } __attribute__((packed)); 313 #else 314 struct x86_hw_tss { 315 u32 reserved1; 316 u64 sp0; 317 318 /* 319 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 320 * Linux does not use ring 1, so sp1 is not otherwise needed. 321 */ 322 u64 sp1; 323 324 /* 325 * Since Linux does not use ring 2, the 'sp2' slot is unused by 326 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 327 * the user RSP value. 328 */ 329 u64 sp2; 330 331 u64 reserved2; 332 u64 ist[7]; 333 u32 reserved3; 334 u32 reserved4; 335 u16 reserved5; 336 u16 io_bitmap_base; 337 338 } __attribute__((packed)); 339 #endif 340 341 /* 342 * IO-bitmap sizes: 343 */ 344 #define IO_BITMAP_BITS 65536 345 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) 346 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) 347 348 #define IO_BITMAP_OFFSET_VALID_MAP \ 349 (offsetof(struct tss_struct, io_bitmap.bitmap) - \ 350 offsetof(struct tss_struct, x86_tss)) 351 352 #define IO_BITMAP_OFFSET_VALID_ALL \ 353 (offsetof(struct tss_struct, io_bitmap.mapall) - \ 354 offsetof(struct tss_struct, x86_tss)) 355 356 #ifdef CONFIG_X86_IOPL_IOPERM 357 /* 358 * sizeof(unsigned long) coming from an extra "long" at the end of the 359 * iobitmap. The limit is inclusive, i.e. the last valid byte. 360 */ 361 # define __KERNEL_TSS_LIMIT \ 362 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ 363 sizeof(unsigned long) - 1) 364 #else 365 # define __KERNEL_TSS_LIMIT \ 366 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) 367 #endif 368 369 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ 370 #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) 371 372 struct entry_stack { 373 char stack[PAGE_SIZE]; 374 }; 375 376 struct entry_stack_page { 377 struct entry_stack stack; 378 } __aligned(PAGE_SIZE); 379 380 /* 381 * All IO bitmap related data stored in the TSS: 382 */ 383 struct x86_io_bitmap { 384 /* The sequence number of the last active bitmap. */ 385 u64 prev_sequence; 386 387 /* 388 * Store the dirty size of the last io bitmap offender. The next 389 * one will have to do the cleanup as the switch out to a non io 390 * bitmap user will just set x86_tss.io_bitmap_base to a value 391 * outside of the TSS limit. So for sane tasks there is no need to 392 * actually touch the io_bitmap at all. 393 */ 394 unsigned int prev_max; 395 396 /* 397 * The extra 1 is there because the CPU will access an 398 * additional byte beyond the end of the IO permission 399 * bitmap. The extra byte must be all 1 bits, and must 400 * be within the limit. 401 */ 402 unsigned long bitmap[IO_BITMAP_LONGS + 1]; 403 404 /* 405 * Special I/O bitmap to emulate IOPL(3). All bytes zero, 406 * except the additional byte at the end. 407 */ 408 unsigned long mapall[IO_BITMAP_LONGS + 1]; 409 }; 410 411 struct tss_struct { 412 /* 413 * The fixed hardware portion. This must not cross a page boundary 414 * at risk of violating the SDM's advice and potentially triggering 415 * errata. 416 */ 417 struct x86_hw_tss x86_tss; 418 419 struct x86_io_bitmap io_bitmap; 420 } __aligned(PAGE_SIZE); 421 422 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 423 424 /* Per CPU interrupt stacks */ 425 struct irq_stack { 426 char stack[IRQ_STACK_SIZE]; 427 } __aligned(IRQ_STACK_SIZE); 428 429 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); 430 431 #ifdef CONFIG_X86_32 432 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 433 #else 434 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 435 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 436 #endif 437 438 #ifdef CONFIG_X86_64 439 struct fixed_percpu_data { 440 /* 441 * GCC hardcodes the stack canary as %gs:40. Since the 442 * irq_stack is the object at %gs:0, we reserve the bottom 443 * 48 bytes of the irq stack for the canary. 444 */ 445 char gs_base[40]; 446 unsigned long stack_canary; 447 }; 448 449 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; 450 DECLARE_INIT_PER_CPU(fixed_percpu_data); 451 452 static inline unsigned long cpu_kernelmode_gs_base(int cpu) 453 { 454 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); 455 } 456 457 DECLARE_PER_CPU(unsigned int, irq_count); 458 extern asmlinkage void ignore_sysret(void); 459 460 #if IS_ENABLED(CONFIG_KVM) 461 /* Save actual FS/GS selectors and bases to current->thread */ 462 void save_fsgs_for_kvm(void); 463 #endif 464 #else /* X86_64 */ 465 #ifdef CONFIG_STACKPROTECTOR 466 /* 467 * Make sure stack canary segment base is cached-aligned: 468 * "For Intel Atom processors, avoid non zero segment base address 469 * that is not aligned to cache line boundary at all cost." 470 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 471 */ 472 struct stack_canary { 473 char __pad[20]; /* canary at %gs:20 */ 474 unsigned long canary; 475 }; 476 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 477 #endif 478 /* Per CPU softirq stack pointer */ 479 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); 480 #endif /* X86_64 */ 481 482 extern unsigned int fpu_kernel_xstate_size; 483 extern unsigned int fpu_user_xstate_size; 484 485 struct perf_event; 486 487 typedef struct { 488 unsigned long seg; 489 } mm_segment_t; 490 491 struct thread_struct { 492 /* Cached TLS descriptors: */ 493 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 494 #ifdef CONFIG_X86_32 495 unsigned long sp0; 496 #endif 497 unsigned long sp; 498 #ifdef CONFIG_X86_32 499 unsigned long sysenter_cs; 500 #else 501 unsigned short es; 502 unsigned short ds; 503 unsigned short fsindex; 504 unsigned short gsindex; 505 #endif 506 507 #ifdef CONFIG_X86_64 508 unsigned long fsbase; 509 unsigned long gsbase; 510 #else 511 /* 512 * XXX: this could presumably be unsigned short. Alternatively, 513 * 32-bit kernels could be taught to use fsindex instead. 514 */ 515 unsigned long fs; 516 unsigned long gs; 517 #endif 518 519 /* Save middle states of ptrace breakpoints */ 520 struct perf_event *ptrace_bps[HBP_NUM]; 521 /* Debug status used for traps, single steps, etc... */ 522 unsigned long debugreg6; 523 /* Keep track of the exact dr7 value set by the user */ 524 unsigned long ptrace_dr7; 525 /* Fault info: */ 526 unsigned long cr2; 527 unsigned long trap_nr; 528 unsigned long error_code; 529 #ifdef CONFIG_VM86 530 /* Virtual 86 mode info */ 531 struct vm86 *vm86; 532 #endif 533 /* IO permissions: */ 534 struct io_bitmap *io_bitmap; 535 536 /* 537 * IOPL. Priviledge level dependent I/O permission which is 538 * emulated via the I/O bitmap to prevent user space from disabling 539 * interrupts. 540 */ 541 unsigned long iopl_emul; 542 543 mm_segment_t addr_limit; 544 545 unsigned int sig_on_uaccess_err:1; 546 547 /* Floating point and extended processor state */ 548 struct fpu fpu; 549 /* 550 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 551 * the end. 552 */ 553 }; 554 555 /* Whitelist the FPU state from the task_struct for hardened usercopy. */ 556 static inline void arch_thread_struct_whitelist(unsigned long *offset, 557 unsigned long *size) 558 { 559 *offset = offsetof(struct thread_struct, fpu.state); 560 *size = fpu_kernel_xstate_size; 561 } 562 563 /* 564 * Thread-synchronous status. 565 * 566 * This is different from the flags in that nobody else 567 * ever touches our thread-synchronous status, so we don't 568 * have to worry about atomic accesses. 569 */ 570 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 571 572 static inline void 573 native_load_sp0(unsigned long sp0) 574 { 575 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 576 } 577 578 static inline void native_swapgs(void) 579 { 580 #ifdef CONFIG_X86_64 581 asm volatile("swapgs" ::: "memory"); 582 #endif 583 } 584 585 static inline unsigned long current_top_of_stack(void) 586 { 587 /* 588 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 589 * and around vm86 mode and sp0 on x86_64 is special because of the 590 * entry trampoline. 591 */ 592 return this_cpu_read_stable(cpu_current_top_of_stack); 593 } 594 595 static inline bool on_thread_stack(void) 596 { 597 return (unsigned long)(current_top_of_stack() - 598 current_stack_pointer) < THREAD_SIZE; 599 } 600 601 #ifdef CONFIG_PARAVIRT_XXL 602 #include <asm/paravirt.h> 603 #else 604 #define __cpuid native_cpuid 605 606 static inline void load_sp0(unsigned long sp0) 607 { 608 native_load_sp0(sp0); 609 } 610 611 #endif /* CONFIG_PARAVIRT_XXL */ 612 613 /* Free all resources held by a thread. */ 614 extern void release_thread(struct task_struct *); 615 616 unsigned long get_wchan(struct task_struct *p); 617 618 /* 619 * Generic CPUID function 620 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 621 * resulting in stale register contents being returned. 622 */ 623 static inline void cpuid(unsigned int op, 624 unsigned int *eax, unsigned int *ebx, 625 unsigned int *ecx, unsigned int *edx) 626 { 627 *eax = op; 628 *ecx = 0; 629 __cpuid(eax, ebx, ecx, edx); 630 } 631 632 /* Some CPUID calls want 'count' to be placed in ecx */ 633 static inline void cpuid_count(unsigned int op, int count, 634 unsigned int *eax, unsigned int *ebx, 635 unsigned int *ecx, unsigned int *edx) 636 { 637 *eax = op; 638 *ecx = count; 639 __cpuid(eax, ebx, ecx, edx); 640 } 641 642 /* 643 * CPUID functions returning a single datum 644 */ 645 static inline unsigned int cpuid_eax(unsigned int op) 646 { 647 unsigned int eax, ebx, ecx, edx; 648 649 cpuid(op, &eax, &ebx, &ecx, &edx); 650 651 return eax; 652 } 653 654 static inline unsigned int cpuid_ebx(unsigned int op) 655 { 656 unsigned int eax, ebx, ecx, edx; 657 658 cpuid(op, &eax, &ebx, &ecx, &edx); 659 660 return ebx; 661 } 662 663 static inline unsigned int cpuid_ecx(unsigned int op) 664 { 665 unsigned int eax, ebx, ecx, edx; 666 667 cpuid(op, &eax, &ebx, &ecx, &edx); 668 669 return ecx; 670 } 671 672 static inline unsigned int cpuid_edx(unsigned int op) 673 { 674 unsigned int eax, ebx, ecx, edx; 675 676 cpuid(op, &eax, &ebx, &ecx, &edx); 677 678 return edx; 679 } 680 681 /* 682 * This function forces the icache and prefetched instruction stream to 683 * catch up with reality in two very specific cases: 684 * 685 * a) Text was modified using one virtual address and is about to be executed 686 * from the same physical page at a different virtual address. 687 * 688 * b) Text was modified on a different CPU, may subsequently be 689 * executed on this CPU, and you want to make sure the new version 690 * gets executed. This generally means you're calling this in a IPI. 691 * 692 * If you're calling this for a different reason, you're probably doing 693 * it wrong. 694 */ 695 static inline void sync_core(void) 696 { 697 /* 698 * There are quite a few ways to do this. IRET-to-self is nice 699 * because it works on every CPU, at any CPL (so it's compatible 700 * with paravirtualization), and it never exits to a hypervisor. 701 * The only down sides are that it's a bit slow (it seems to be 702 * a bit more than 2x slower than the fastest options) and that 703 * it unmasks NMIs. The "push %cs" is needed because, in 704 * paravirtual environments, __KERNEL_CS may not be a valid CS 705 * value when we do IRET directly. 706 * 707 * In case NMI unmasking or performance ever becomes a problem, 708 * the next best option appears to be MOV-to-CR2 and an 709 * unconditional jump. That sequence also works on all CPUs, 710 * but it will fault at CPL3 (i.e. Xen PV). 711 * 712 * CPUID is the conventional way, but it's nasty: it doesn't 713 * exist on some 486-like CPUs, and it usually exits to a 714 * hypervisor. 715 * 716 * Like all of Linux's memory ordering operations, this is a 717 * compiler barrier as well. 718 */ 719 #ifdef CONFIG_X86_32 720 asm volatile ( 721 "pushfl\n\t" 722 "pushl %%cs\n\t" 723 "pushl $1f\n\t" 724 "iret\n\t" 725 "1:" 726 : ASM_CALL_CONSTRAINT : : "memory"); 727 #else 728 unsigned int tmp; 729 730 asm volatile ( 731 "mov %%ss, %0\n\t" 732 "pushq %q0\n\t" 733 "pushq %%rsp\n\t" 734 "addq $8, (%%rsp)\n\t" 735 "pushfq\n\t" 736 "mov %%cs, %0\n\t" 737 "pushq %q0\n\t" 738 "pushq $1f\n\t" 739 "iretq\n\t" 740 "1:" 741 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 742 #endif 743 } 744 745 extern void select_idle_routine(const struct cpuinfo_x86 *c); 746 extern void amd_e400_c1e_apic_setup(void); 747 748 extern unsigned long boot_option_idle_override; 749 750 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 751 IDLE_POLL}; 752 753 extern void enable_sep_cpu(void); 754 extern int sysenter_setup(void); 755 756 757 /* Defined in head.S */ 758 extern struct desc_ptr early_gdt_descr; 759 760 extern void switch_to_new_gdt(int); 761 extern void load_direct_gdt(int); 762 extern void load_fixmap_gdt(int); 763 extern void load_percpu_segment(int); 764 extern void cpu_init(void); 765 extern void cr4_init(void); 766 767 static inline unsigned long get_debugctlmsr(void) 768 { 769 unsigned long debugctlmsr = 0; 770 771 #ifndef CONFIG_X86_DEBUGCTLMSR 772 if (boot_cpu_data.x86 < 6) 773 return 0; 774 #endif 775 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 776 777 return debugctlmsr; 778 } 779 780 static inline void update_debugctlmsr(unsigned long debugctlmsr) 781 { 782 #ifndef CONFIG_X86_DEBUGCTLMSR 783 if (boot_cpu_data.x86 < 6) 784 return; 785 #endif 786 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 787 } 788 789 extern void set_task_blockstep(struct task_struct *task, bool on); 790 791 /* Boot loader type from the setup header: */ 792 extern int bootloader_type; 793 extern int bootloader_version; 794 795 extern char ignore_fpu_irq; 796 797 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 798 #define ARCH_HAS_PREFETCHW 799 #define ARCH_HAS_SPINLOCK_PREFETCH 800 801 #ifdef CONFIG_X86_32 802 # define BASE_PREFETCH "" 803 # define ARCH_HAS_PREFETCH 804 #else 805 # define BASE_PREFETCH "prefetcht0 %P1" 806 #endif 807 808 /* 809 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 810 * 811 * It's not worth to care about 3dnow prefetches for the K6 812 * because they are microcoded there and very slow. 813 */ 814 static inline void prefetch(const void *x) 815 { 816 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 817 X86_FEATURE_XMM, 818 "m" (*(const char *)x)); 819 } 820 821 /* 822 * 3dnow prefetch to get an exclusive cache line. 823 * Useful for spinlocks to avoid one state transition in the 824 * cache coherency protocol: 825 */ 826 static __always_inline void prefetchw(const void *x) 827 { 828 alternative_input(BASE_PREFETCH, "prefetchw %P1", 829 X86_FEATURE_3DNOWPREFETCH, 830 "m" (*(const char *)x)); 831 } 832 833 static inline void spin_lock_prefetch(const void *x) 834 { 835 prefetchw(x); 836 } 837 838 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 839 TOP_OF_KERNEL_STACK_PADDING) 840 841 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 842 843 #define task_pt_regs(task) \ 844 ({ \ 845 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 846 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 847 ((struct pt_regs *)__ptr) - 1; \ 848 }) 849 850 #ifdef CONFIG_X86_32 851 /* 852 * User space process size: 3GB (default). 853 */ 854 #define IA32_PAGE_OFFSET PAGE_OFFSET 855 #define TASK_SIZE PAGE_OFFSET 856 #define TASK_SIZE_LOW TASK_SIZE 857 #define TASK_SIZE_MAX TASK_SIZE 858 #define DEFAULT_MAP_WINDOW TASK_SIZE 859 #define STACK_TOP TASK_SIZE 860 #define STACK_TOP_MAX STACK_TOP 861 862 #define INIT_THREAD { \ 863 .sp0 = TOP_OF_INIT_STACK, \ 864 .sysenter_cs = __KERNEL_CS, \ 865 .addr_limit = KERNEL_DS, \ 866 } 867 868 #define KSTK_ESP(task) (task_pt_regs(task)->sp) 869 870 #else 871 /* 872 * User space process size. This is the first address outside the user range. 873 * There are a few constraints that determine this: 874 * 875 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 876 * address, then that syscall will enter the kernel with a 877 * non-canonical return address, and SYSRET will explode dangerously. 878 * We avoid this particular problem by preventing anything executable 879 * from being mapped at the maximum canonical address. 880 * 881 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 882 * CPUs malfunction if they execute code from the highest canonical page. 883 * They'll speculate right off the end of the canonical space, and 884 * bad things happen. This is worked around in the same way as the 885 * Intel problem. 886 * 887 * With page table isolation enabled, we map the LDT in ... [stay tuned] 888 */ 889 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 890 891 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 892 893 /* This decides where the kernel will search for a free chunk of vm 894 * space during mmap's. 895 */ 896 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 897 0xc0000000 : 0xFFFFe000) 898 899 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 900 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 901 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 902 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 903 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 904 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 905 906 #define STACK_TOP TASK_SIZE_LOW 907 #define STACK_TOP_MAX TASK_SIZE_MAX 908 909 #define INIT_THREAD { \ 910 .addr_limit = KERNEL_DS, \ 911 } 912 913 extern unsigned long KSTK_ESP(struct task_struct *task); 914 915 #endif /* CONFIG_X86_64 */ 916 917 extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 918 unsigned long new_sp); 919 920 /* 921 * This decides where the kernel will search for a free chunk of vm 922 * space during mmap's. 923 */ 924 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 925 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 926 927 #define KSTK_EIP(task) (task_pt_regs(task)->ip) 928 929 /* Get/set a process' ability to use the timestamp counter instruction */ 930 #define GET_TSC_CTL(adr) get_tsc_mode((adr)) 931 #define SET_TSC_CTL(val) set_tsc_mode((val)) 932 933 extern int get_tsc_mode(unsigned long adr); 934 extern int set_tsc_mode(unsigned int val); 935 936 DECLARE_PER_CPU(u64, msr_misc_features_shadow); 937 938 #ifdef CONFIG_CPU_SUP_AMD 939 extern u16 amd_get_nb_id(int cpu); 940 extern u32 amd_get_nodes_per_socket(void); 941 #else 942 static inline u16 amd_get_nb_id(int cpu) { return 0; } 943 static inline u32 amd_get_nodes_per_socket(void) { return 0; } 944 #endif 945 946 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 947 { 948 uint32_t base, eax, signature[3]; 949 950 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 951 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 952 953 if (!memcmp(sig, signature, 12) && 954 (leaves == 0 || ((eax - base) >= leaves))) 955 return base; 956 } 957 958 return 0; 959 } 960 961 extern unsigned long arch_align_stack(unsigned long sp); 962 void free_init_pages(const char *what, unsigned long begin, unsigned long end); 963 extern void free_kernel_image_pages(const char *what, void *begin, void *end); 964 965 void default_idle(void); 966 #ifdef CONFIG_XEN 967 bool xen_set_default_idle(void); 968 #else 969 #define xen_set_default_idle 0 970 #endif 971 972 void stop_this_cpu(void *dummy); 973 void microcode_check(void); 974 975 enum l1tf_mitigations { 976 L1TF_MITIGATION_OFF, 977 L1TF_MITIGATION_FLUSH_NOWARN, 978 L1TF_MITIGATION_FLUSH, 979 L1TF_MITIGATION_FLUSH_NOSMT, 980 L1TF_MITIGATION_FULL, 981 L1TF_MITIGATION_FULL_FORCE 982 }; 983 984 extern enum l1tf_mitigations l1tf_mitigation; 985 986 enum mds_mitigations { 987 MDS_MITIGATION_OFF, 988 MDS_MITIGATION_FULL, 989 MDS_MITIGATION_VMWERV, 990 }; 991 992 #endif /* _ASM_X86_PROCESSOR_H */ 993