xref: /openbmc/linux/arch/x86/include/asm/processor.h (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct vm86;
11 
12 #include <asm/math_emu.h>
13 #include <asm/segment.h>
14 #include <asm/types.h>
15 #include <uapi/asm/sigcontext.h>
16 #include <asm/current.h>
17 #include <asm/cpufeatures.h>
18 #include <asm/page.h>
19 #include <asm/pgtable_types.h>
20 #include <asm/percpu.h>
21 #include <asm/msr.h>
22 #include <asm/desc_defs.h>
23 #include <asm/nops.h>
24 #include <asm/special_insns.h>
25 #include <asm/fpu/types.h>
26 #include <asm/unwind_hints.h>
27 
28 #include <linux/personality.h>
29 #include <linux/cache.h>
30 #include <linux/threads.h>
31 #include <linux/math64.h>
32 #include <linux/err.h>
33 #include <linux/irqflags.h>
34 #include <linux/mem_encrypt.h>
35 
36 /*
37  * We handle most unaligned accesses in hardware.  On the other hand
38  * unaligned DMA can be quite expensive on some Nehalem processors.
39  *
40  * Based on this we disable the IP header alignment in network drivers.
41  */
42 #define NET_IP_ALIGN	0
43 
44 #define HBP_NUM 4
45 /*
46  * Default implementation of macro that returns current
47  * instruction pointer ("program counter").
48  */
49 static inline void *current_text_addr(void)
50 {
51 	void *pc;
52 
53 	asm volatile("mov $1f, %0; 1:":"=r" (pc));
54 
55 	return pc;
56 }
57 
58 /*
59  * These alignment constraints are for performance in the vSMP case,
60  * but in the task_struct case we must also meet hardware imposed
61  * alignment requirements of the FPU state:
62  */
63 #ifdef CONFIG_X86_VSMP
64 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
65 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
66 #else
67 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
68 # define ARCH_MIN_MMSTRUCT_ALIGN	0
69 #endif
70 
71 enum tlb_infos {
72 	ENTRIES,
73 	NR_INFO
74 };
75 
76 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83 
84 /*
85  *  CPU type and hardware bug flags. Kept separately for each CPU.
86  *  Members of this structure are referenced in head_32.S, so think twice
87  *  before touching them. [mj]
88  */
89 
90 struct cpuinfo_x86 {
91 	__u8			x86;		/* CPU family */
92 	__u8			x86_vendor;	/* CPU vendor */
93 	__u8			x86_model;
94 	__u8			x86_stepping;
95 #ifdef CONFIG_X86_64
96 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 	int			x86_tlbsize;
98 #endif
99 	__u8			x86_virt_bits;
100 	__u8			x86_phys_bits;
101 	/* CPUID returned core id bits: */
102 	__u8			x86_coreid_bits;
103 	__u8			cu_id;
104 	/* Max extended CPUID function supported: */
105 	__u32			extended_cpuid_level;
106 	/* Maximum supported CPUID level, -1=no CPUID: */
107 	int			cpuid_level;
108 	__u32			x86_capability[NCAPINTS + NBUGINTS];
109 	char			x86_vendor_id[16];
110 	char			x86_model_id[64];
111 	/* in KB - valid for CPUS which support this call: */
112 	unsigned int		x86_cache_size;
113 	int			x86_cache_alignment;	/* In bytes */
114 	/* Cache QoS architectural values: */
115 	int			x86_cache_max_rmid;	/* max index */
116 	int			x86_cache_occ_scale;	/* scale to bytes */
117 	int			x86_power;
118 	unsigned long		loops_per_jiffy;
119 	/* cpuid returned max cores value: */
120 	u16			 x86_max_cores;
121 	u16			apicid;
122 	u16			initial_apicid;
123 	u16			x86_clflush_size;
124 	/* number of cores as seen by the OS: */
125 	u16			booted_cores;
126 	/* Physical processor id: */
127 	u16			phys_proc_id;
128 	/* Logical processor id: */
129 	u16			logical_proc_id;
130 	/* Core id: */
131 	u16			cpu_core_id;
132 	/* Index into per_cpu list: */
133 	u16			cpu_index;
134 	u32			microcode;
135 	/* Address space bits used by the cache internally */
136 	u8			x86_cache_bits;
137 	unsigned		initialized : 1;
138 } __randomize_layout;
139 
140 struct cpuid_regs {
141 	u32 eax, ebx, ecx, edx;
142 };
143 
144 enum cpuid_regs_idx {
145 	CPUID_EAX = 0,
146 	CPUID_EBX,
147 	CPUID_ECX,
148 	CPUID_EDX,
149 };
150 
151 #define X86_VENDOR_INTEL	0
152 #define X86_VENDOR_CYRIX	1
153 #define X86_VENDOR_AMD		2
154 #define X86_VENDOR_UMC		3
155 #define X86_VENDOR_CENTAUR	5
156 #define X86_VENDOR_TRANSMETA	7
157 #define X86_VENDOR_NSC		8
158 #define X86_VENDOR_NUM		9
159 
160 #define X86_VENDOR_UNKNOWN	0xff
161 
162 /*
163  * capabilities of CPUs
164  */
165 extern struct cpuinfo_x86	boot_cpu_data;
166 extern struct cpuinfo_x86	new_cpu_data;
167 
168 extern struct x86_hw_tss	doublefault_tss;
169 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
170 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
171 
172 #ifdef CONFIG_SMP
173 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
174 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
175 #else
176 #define cpu_info		boot_cpu_data
177 #define cpu_data(cpu)		boot_cpu_data
178 #endif
179 
180 extern const struct seq_operations cpuinfo_op;
181 
182 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
183 
184 extern void cpu_detect(struct cpuinfo_x86 *c);
185 
186 static inline unsigned long long l1tf_pfn_limit(void)
187 {
188 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
189 }
190 
191 extern void early_cpu_init(void);
192 extern void identify_boot_cpu(void);
193 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
194 extern void print_cpu_info(struct cpuinfo_x86 *);
195 void print_cpu_msr(struct cpuinfo_x86 *);
196 
197 #ifdef CONFIG_X86_32
198 extern int have_cpuid_p(void);
199 #else
200 static inline int have_cpuid_p(void)
201 {
202 	return 1;
203 }
204 #endif
205 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
206 				unsigned int *ecx, unsigned int *edx)
207 {
208 	/* ecx is often an input as well as an output. */
209 	asm volatile("cpuid"
210 	    : "=a" (*eax),
211 	      "=b" (*ebx),
212 	      "=c" (*ecx),
213 	      "=d" (*edx)
214 	    : "0" (*eax), "2" (*ecx)
215 	    : "memory");
216 }
217 
218 #define native_cpuid_reg(reg)					\
219 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
220 {								\
221 	unsigned int eax = op, ebx, ecx = 0, edx;		\
222 								\
223 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
224 								\
225 	return reg;						\
226 }
227 
228 /*
229  * Native CPUID functions returning a single datum.
230  */
231 native_cpuid_reg(eax)
232 native_cpuid_reg(ebx)
233 native_cpuid_reg(ecx)
234 native_cpuid_reg(edx)
235 
236 /*
237  * Friendlier CR3 helpers.
238  */
239 static inline unsigned long read_cr3_pa(void)
240 {
241 	return __read_cr3() & CR3_ADDR_MASK;
242 }
243 
244 static inline unsigned long native_read_cr3_pa(void)
245 {
246 	return __native_read_cr3() & CR3_ADDR_MASK;
247 }
248 
249 static inline void load_cr3(pgd_t *pgdir)
250 {
251 	write_cr3(__sme_pa(pgdir));
252 }
253 
254 /*
255  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
256  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
257  * unrelated to the task-switch mechanism:
258  */
259 #ifdef CONFIG_X86_32
260 /* This is the TSS defined by the hardware. */
261 struct x86_hw_tss {
262 	unsigned short		back_link, __blh;
263 	unsigned long		sp0;
264 	unsigned short		ss0, __ss0h;
265 	unsigned long		sp1;
266 
267 	/*
268 	 * We don't use ring 1, so ss1 is a convenient scratch space in
269 	 * the same cacheline as sp0.  We use ss1 to cache the value in
270 	 * MSR_IA32_SYSENTER_CS.  When we context switch
271 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
272 	 * written matches ss1, and, if it's not, then we wrmsr the new
273 	 * value and update ss1.
274 	 *
275 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
276 	 * that we set it to zero in vm86 tasks to avoid corrupting the
277 	 * stack if we were to go through the sysenter path from vm86
278 	 * mode.
279 	 */
280 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
281 
282 	unsigned short		__ss1h;
283 	unsigned long		sp2;
284 	unsigned short		ss2, __ss2h;
285 	unsigned long		__cr3;
286 	unsigned long		ip;
287 	unsigned long		flags;
288 	unsigned long		ax;
289 	unsigned long		cx;
290 	unsigned long		dx;
291 	unsigned long		bx;
292 	unsigned long		sp;
293 	unsigned long		bp;
294 	unsigned long		si;
295 	unsigned long		di;
296 	unsigned short		es, __esh;
297 	unsigned short		cs, __csh;
298 	unsigned short		ss, __ssh;
299 	unsigned short		ds, __dsh;
300 	unsigned short		fs, __fsh;
301 	unsigned short		gs, __gsh;
302 	unsigned short		ldt, __ldth;
303 	unsigned short		trace;
304 	unsigned short		io_bitmap_base;
305 
306 } __attribute__((packed));
307 #else
308 struct x86_hw_tss {
309 	u32			reserved1;
310 	u64			sp0;
311 
312 	/*
313 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
314 	 * Linux does not use ring 1, so sp1 is not otherwise needed.
315 	 */
316 	u64			sp1;
317 
318 	u64			sp2;
319 	u64			reserved2;
320 	u64			ist[7];
321 	u32			reserved3;
322 	u32			reserved4;
323 	u16			reserved5;
324 	u16			io_bitmap_base;
325 
326 } __attribute__((packed));
327 #endif
328 
329 /*
330  * IO-bitmap sizes:
331  */
332 #define IO_BITMAP_BITS			65536
333 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
334 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
335 #define IO_BITMAP_OFFSET		(offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
336 #define INVALID_IO_BITMAP_OFFSET	0x8000
337 
338 struct entry_stack {
339 	unsigned long		words[64];
340 };
341 
342 struct entry_stack_page {
343 	struct entry_stack stack;
344 } __aligned(PAGE_SIZE);
345 
346 struct tss_struct {
347 	/*
348 	 * The fixed hardware portion.  This must not cross a page boundary
349 	 * at risk of violating the SDM's advice and potentially triggering
350 	 * errata.
351 	 */
352 	struct x86_hw_tss	x86_tss;
353 
354 	/*
355 	 * The extra 1 is there because the CPU will access an
356 	 * additional byte beyond the end of the IO permission
357 	 * bitmap. The extra byte must be all 1 bits, and must
358 	 * be within the limit.
359 	 */
360 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
361 } __aligned(PAGE_SIZE);
362 
363 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
364 
365 /*
366  * sizeof(unsigned long) coming from an extra "long" at the end
367  * of the iobitmap.
368  *
369  * -1? seg base+limit should be pointing to the address of the
370  * last valid byte
371  */
372 #define __KERNEL_TSS_LIMIT	\
373 	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
374 
375 #ifdef CONFIG_X86_32
376 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
377 #else
378 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
379 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
380 #endif
381 
382 /*
383  * Save the original ist values for checking stack pointers during debugging
384  */
385 struct orig_ist {
386 	unsigned long		ist[7];
387 };
388 
389 #ifdef CONFIG_X86_64
390 DECLARE_PER_CPU(struct orig_ist, orig_ist);
391 
392 union irq_stack_union {
393 	char irq_stack[IRQ_STACK_SIZE];
394 	/*
395 	 * GCC hardcodes the stack canary as %gs:40.  Since the
396 	 * irq_stack is the object at %gs:0, we reserve the bottom
397 	 * 48 bytes of the irq stack for the canary.
398 	 */
399 	struct {
400 		char gs_base[40];
401 		unsigned long stack_canary;
402 	};
403 };
404 
405 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
406 DECLARE_INIT_PER_CPU(irq_stack_union);
407 
408 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
409 {
410 	return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu);
411 }
412 
413 DECLARE_PER_CPU(char *, irq_stack_ptr);
414 DECLARE_PER_CPU(unsigned int, irq_count);
415 extern asmlinkage void ignore_sysret(void);
416 
417 #if IS_ENABLED(CONFIG_KVM)
418 /* Save actual FS/GS selectors and bases to current->thread */
419 void save_fsgs_for_kvm(void);
420 #endif
421 #else	/* X86_64 */
422 #ifdef CONFIG_STACKPROTECTOR
423 /*
424  * Make sure stack canary segment base is cached-aligned:
425  *   "For Intel Atom processors, avoid non zero segment base address
426  *    that is not aligned to cache line boundary at all cost."
427  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
428  */
429 struct stack_canary {
430 	char __pad[20];		/* canary at %gs:20 */
431 	unsigned long canary;
432 };
433 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
434 #endif
435 /*
436  * per-CPU IRQ handling stacks
437  */
438 struct irq_stack {
439 	u32                     stack[THREAD_SIZE/sizeof(u32)];
440 } __aligned(THREAD_SIZE);
441 
442 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
443 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
444 #endif	/* X86_64 */
445 
446 extern unsigned int fpu_kernel_xstate_size;
447 extern unsigned int fpu_user_xstate_size;
448 
449 struct perf_event;
450 
451 typedef struct {
452 	unsigned long		seg;
453 } mm_segment_t;
454 
455 struct thread_struct {
456 	/* Cached TLS descriptors: */
457 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
458 #ifdef CONFIG_X86_32
459 	unsigned long		sp0;
460 #endif
461 	unsigned long		sp;
462 #ifdef CONFIG_X86_32
463 	unsigned long		sysenter_cs;
464 #else
465 	unsigned short		es;
466 	unsigned short		ds;
467 	unsigned short		fsindex;
468 	unsigned short		gsindex;
469 #endif
470 
471 #ifdef CONFIG_X86_64
472 	unsigned long		fsbase;
473 	unsigned long		gsbase;
474 #else
475 	/*
476 	 * XXX: this could presumably be unsigned short.  Alternatively,
477 	 * 32-bit kernels could be taught to use fsindex instead.
478 	 */
479 	unsigned long fs;
480 	unsigned long gs;
481 #endif
482 
483 	/* Save middle states of ptrace breakpoints */
484 	struct perf_event	*ptrace_bps[HBP_NUM];
485 	/* Debug status used for traps, single steps, etc... */
486 	unsigned long           debugreg6;
487 	/* Keep track of the exact dr7 value set by the user */
488 	unsigned long           ptrace_dr7;
489 	/* Fault info: */
490 	unsigned long		cr2;
491 	unsigned long		trap_nr;
492 	unsigned long		error_code;
493 #ifdef CONFIG_VM86
494 	/* Virtual 86 mode info */
495 	struct vm86		*vm86;
496 #endif
497 	/* IO permissions: */
498 	unsigned long		*io_bitmap_ptr;
499 	unsigned long		iopl;
500 	/* Max allowed port in the bitmap, in bytes: */
501 	unsigned		io_bitmap_max;
502 
503 	mm_segment_t		addr_limit;
504 
505 	unsigned int		sig_on_uaccess_err:1;
506 	unsigned int		uaccess_err:1;	/* uaccess failed */
507 
508 	/* Floating point and extended processor state */
509 	struct fpu		fpu;
510 	/*
511 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
512 	 * the end.
513 	 */
514 };
515 
516 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
517 static inline void arch_thread_struct_whitelist(unsigned long *offset,
518 						unsigned long *size)
519 {
520 	*offset = offsetof(struct thread_struct, fpu.state);
521 	*size = fpu_kernel_xstate_size;
522 }
523 
524 /*
525  * Thread-synchronous status.
526  *
527  * This is different from the flags in that nobody else
528  * ever touches our thread-synchronous status, so we don't
529  * have to worry about atomic accesses.
530  */
531 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
532 
533 /*
534  * Set IOPL bits in EFLAGS from given mask
535  */
536 static inline void native_set_iopl_mask(unsigned mask)
537 {
538 #ifdef CONFIG_X86_32
539 	unsigned int reg;
540 
541 	asm volatile ("pushfl;"
542 		      "popl %0;"
543 		      "andl %1, %0;"
544 		      "orl %2, %0;"
545 		      "pushl %0;"
546 		      "popfl"
547 		      : "=&r" (reg)
548 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
549 #endif
550 }
551 
552 static inline void
553 native_load_sp0(unsigned long sp0)
554 {
555 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
556 }
557 
558 static inline void native_swapgs(void)
559 {
560 #ifdef CONFIG_X86_64
561 	asm volatile("swapgs" ::: "memory");
562 #endif
563 }
564 
565 static inline unsigned long current_top_of_stack(void)
566 {
567 	/*
568 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
569 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
570 	 *  entry trampoline.
571 	 */
572 	return this_cpu_read_stable(cpu_current_top_of_stack);
573 }
574 
575 static inline bool on_thread_stack(void)
576 {
577 	return (unsigned long)(current_top_of_stack() -
578 			       current_stack_pointer) < THREAD_SIZE;
579 }
580 
581 #ifdef CONFIG_PARAVIRT
582 #include <asm/paravirt.h>
583 #else
584 #define __cpuid			native_cpuid
585 
586 static inline void load_sp0(unsigned long sp0)
587 {
588 	native_load_sp0(sp0);
589 }
590 
591 #define set_iopl_mask native_set_iopl_mask
592 #endif /* CONFIG_PARAVIRT */
593 
594 /* Free all resources held by a thread. */
595 extern void release_thread(struct task_struct *);
596 
597 unsigned long get_wchan(struct task_struct *p);
598 
599 /*
600  * Generic CPUID function
601  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
602  * resulting in stale register contents being returned.
603  */
604 static inline void cpuid(unsigned int op,
605 			 unsigned int *eax, unsigned int *ebx,
606 			 unsigned int *ecx, unsigned int *edx)
607 {
608 	*eax = op;
609 	*ecx = 0;
610 	__cpuid(eax, ebx, ecx, edx);
611 }
612 
613 /* Some CPUID calls want 'count' to be placed in ecx */
614 static inline void cpuid_count(unsigned int op, int count,
615 			       unsigned int *eax, unsigned int *ebx,
616 			       unsigned int *ecx, unsigned int *edx)
617 {
618 	*eax = op;
619 	*ecx = count;
620 	__cpuid(eax, ebx, ecx, edx);
621 }
622 
623 /*
624  * CPUID functions returning a single datum
625  */
626 static inline unsigned int cpuid_eax(unsigned int op)
627 {
628 	unsigned int eax, ebx, ecx, edx;
629 
630 	cpuid(op, &eax, &ebx, &ecx, &edx);
631 
632 	return eax;
633 }
634 
635 static inline unsigned int cpuid_ebx(unsigned int op)
636 {
637 	unsigned int eax, ebx, ecx, edx;
638 
639 	cpuid(op, &eax, &ebx, &ecx, &edx);
640 
641 	return ebx;
642 }
643 
644 static inline unsigned int cpuid_ecx(unsigned int op)
645 {
646 	unsigned int eax, ebx, ecx, edx;
647 
648 	cpuid(op, &eax, &ebx, &ecx, &edx);
649 
650 	return ecx;
651 }
652 
653 static inline unsigned int cpuid_edx(unsigned int op)
654 {
655 	unsigned int eax, ebx, ecx, edx;
656 
657 	cpuid(op, &eax, &ebx, &ecx, &edx);
658 
659 	return edx;
660 }
661 
662 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
663 static __always_inline void rep_nop(void)
664 {
665 	asm volatile("rep; nop" ::: "memory");
666 }
667 
668 static __always_inline void cpu_relax(void)
669 {
670 	rep_nop();
671 }
672 
673 /*
674  * This function forces the icache and prefetched instruction stream to
675  * catch up with reality in two very specific cases:
676  *
677  *  a) Text was modified using one virtual address and is about to be executed
678  *     from the same physical page at a different virtual address.
679  *
680  *  b) Text was modified on a different CPU, may subsequently be
681  *     executed on this CPU, and you want to make sure the new version
682  *     gets executed.  This generally means you're calling this in a IPI.
683  *
684  * If you're calling this for a different reason, you're probably doing
685  * it wrong.
686  */
687 static inline void sync_core(void)
688 {
689 	/*
690 	 * There are quite a few ways to do this.  IRET-to-self is nice
691 	 * because it works on every CPU, at any CPL (so it's compatible
692 	 * with paravirtualization), and it never exits to a hypervisor.
693 	 * The only down sides are that it's a bit slow (it seems to be
694 	 * a bit more than 2x slower than the fastest options) and that
695 	 * it unmasks NMIs.  The "push %cs" is needed because, in
696 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
697 	 * value when we do IRET directly.
698 	 *
699 	 * In case NMI unmasking or performance ever becomes a problem,
700 	 * the next best option appears to be MOV-to-CR2 and an
701 	 * unconditional jump.  That sequence also works on all CPUs,
702 	 * but it will fault at CPL3 (i.e. Xen PV).
703 	 *
704 	 * CPUID is the conventional way, but it's nasty: it doesn't
705 	 * exist on some 486-like CPUs, and it usually exits to a
706 	 * hypervisor.
707 	 *
708 	 * Like all of Linux's memory ordering operations, this is a
709 	 * compiler barrier as well.
710 	 */
711 #ifdef CONFIG_X86_32
712 	asm volatile (
713 		"pushfl\n\t"
714 		"pushl %%cs\n\t"
715 		"pushl $1f\n\t"
716 		"iret\n\t"
717 		"1:"
718 		: ASM_CALL_CONSTRAINT : : "memory");
719 #else
720 	unsigned int tmp;
721 
722 	asm volatile (
723 		UNWIND_HINT_SAVE
724 		"mov %%ss, %0\n\t"
725 		"pushq %q0\n\t"
726 		"pushq %%rsp\n\t"
727 		"addq $8, (%%rsp)\n\t"
728 		"pushfq\n\t"
729 		"mov %%cs, %0\n\t"
730 		"pushq %q0\n\t"
731 		"pushq $1f\n\t"
732 		"iretq\n\t"
733 		UNWIND_HINT_RESTORE
734 		"1:"
735 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
736 #endif
737 }
738 
739 extern void select_idle_routine(const struct cpuinfo_x86 *c);
740 extern void amd_e400_c1e_apic_setup(void);
741 
742 extern unsigned long		boot_option_idle_override;
743 
744 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
745 			 IDLE_POLL};
746 
747 extern void enable_sep_cpu(void);
748 extern int sysenter_setup(void);
749 
750 void early_trap_pf_init(void);
751 
752 /* Defined in head.S */
753 extern struct desc_ptr		early_gdt_descr;
754 
755 extern void switch_to_new_gdt(int);
756 extern void load_direct_gdt(int);
757 extern void load_fixmap_gdt(int);
758 extern void load_percpu_segment(int);
759 extern void cpu_init(void);
760 
761 static inline unsigned long get_debugctlmsr(void)
762 {
763 	unsigned long debugctlmsr = 0;
764 
765 #ifndef CONFIG_X86_DEBUGCTLMSR
766 	if (boot_cpu_data.x86 < 6)
767 		return 0;
768 #endif
769 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
770 
771 	return debugctlmsr;
772 }
773 
774 static inline void update_debugctlmsr(unsigned long debugctlmsr)
775 {
776 #ifndef CONFIG_X86_DEBUGCTLMSR
777 	if (boot_cpu_data.x86 < 6)
778 		return;
779 #endif
780 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
781 }
782 
783 extern void set_task_blockstep(struct task_struct *task, bool on);
784 
785 /* Boot loader type from the setup header: */
786 extern int			bootloader_type;
787 extern int			bootloader_version;
788 
789 extern char			ignore_fpu_irq;
790 
791 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
792 #define ARCH_HAS_PREFETCHW
793 #define ARCH_HAS_SPINLOCK_PREFETCH
794 
795 #ifdef CONFIG_X86_32
796 # define BASE_PREFETCH		""
797 # define ARCH_HAS_PREFETCH
798 #else
799 # define BASE_PREFETCH		"prefetcht0 %P1"
800 #endif
801 
802 /*
803  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
804  *
805  * It's not worth to care about 3dnow prefetches for the K6
806  * because they are microcoded there and very slow.
807  */
808 static inline void prefetch(const void *x)
809 {
810 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
811 			  X86_FEATURE_XMM,
812 			  "m" (*(const char *)x));
813 }
814 
815 /*
816  * 3dnow prefetch to get an exclusive cache line.
817  * Useful for spinlocks to avoid one state transition in the
818  * cache coherency protocol:
819  */
820 static inline void prefetchw(const void *x)
821 {
822 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
823 			  X86_FEATURE_3DNOWPREFETCH,
824 			  "m" (*(const char *)x));
825 }
826 
827 static inline void spin_lock_prefetch(const void *x)
828 {
829 	prefetchw(x);
830 }
831 
832 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
833 			   TOP_OF_KERNEL_STACK_PADDING)
834 
835 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
836 
837 #define task_pt_regs(task) \
838 ({									\
839 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
840 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
841 	((struct pt_regs *)__ptr) - 1;					\
842 })
843 
844 #ifdef CONFIG_X86_32
845 /*
846  * User space process size: 3GB (default).
847  */
848 #define IA32_PAGE_OFFSET	PAGE_OFFSET
849 #define TASK_SIZE		PAGE_OFFSET
850 #define TASK_SIZE_LOW		TASK_SIZE
851 #define TASK_SIZE_MAX		TASK_SIZE
852 #define DEFAULT_MAP_WINDOW	TASK_SIZE
853 #define STACK_TOP		TASK_SIZE
854 #define STACK_TOP_MAX		STACK_TOP
855 
856 #define INIT_THREAD  {							  \
857 	.sp0			= TOP_OF_INIT_STACK,			  \
858 	.sysenter_cs		= __KERNEL_CS,				  \
859 	.io_bitmap_ptr		= NULL,					  \
860 	.addr_limit		= KERNEL_DS,				  \
861 }
862 
863 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
864 
865 #else
866 /*
867  * User space process size.  This is the first address outside the user range.
868  * There are a few constraints that determine this:
869  *
870  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
871  * address, then that syscall will enter the kernel with a
872  * non-canonical return address, and SYSRET will explode dangerously.
873  * We avoid this particular problem by preventing anything executable
874  * from being mapped at the maximum canonical address.
875  *
876  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
877  * CPUs malfunction if they execute code from the highest canonical page.
878  * They'll speculate right off the end of the canonical space, and
879  * bad things happen.  This is worked around in the same way as the
880  * Intel problem.
881  *
882  * With page table isolation enabled, we map the LDT in ... [stay tuned]
883  */
884 #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
885 
886 #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
887 
888 /* This decides where the kernel will search for a free chunk of vm
889  * space during mmap's.
890  */
891 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
892 					0xc0000000 : 0xFFFFe000)
893 
894 #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
895 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
896 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
897 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
898 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
899 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
900 
901 #define STACK_TOP		TASK_SIZE_LOW
902 #define STACK_TOP_MAX		TASK_SIZE_MAX
903 
904 #define INIT_THREAD  {						\
905 	.addr_limit		= KERNEL_DS,			\
906 }
907 
908 extern unsigned long KSTK_ESP(struct task_struct *task);
909 
910 #endif /* CONFIG_X86_64 */
911 
912 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
913 					       unsigned long new_sp);
914 
915 /*
916  * This decides where the kernel will search for a free chunk of vm
917  * space during mmap's.
918  */
919 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
920 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
921 
922 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
923 
924 /* Get/set a process' ability to use the timestamp counter instruction */
925 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
926 #define SET_TSC_CTL(val)	set_tsc_mode((val))
927 
928 extern int get_tsc_mode(unsigned long adr);
929 extern int set_tsc_mode(unsigned int val);
930 
931 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
932 
933 /* Register/unregister a process' MPX related resource */
934 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
935 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
936 
937 #ifdef CONFIG_X86_INTEL_MPX
938 extern int mpx_enable_management(void);
939 extern int mpx_disable_management(void);
940 #else
941 static inline int mpx_enable_management(void)
942 {
943 	return -EINVAL;
944 }
945 static inline int mpx_disable_management(void)
946 {
947 	return -EINVAL;
948 }
949 #endif /* CONFIG_X86_INTEL_MPX */
950 
951 #ifdef CONFIG_CPU_SUP_AMD
952 extern u16 amd_get_nb_id(int cpu);
953 extern u32 amd_get_nodes_per_socket(void);
954 #else
955 static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
956 static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
957 #endif
958 
959 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
960 {
961 	uint32_t base, eax, signature[3];
962 
963 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
964 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
965 
966 		if (!memcmp(sig, signature, 12) &&
967 		    (leaves == 0 || ((eax - base) >= leaves)))
968 			return base;
969 	}
970 
971 	return 0;
972 }
973 
974 extern unsigned long arch_align_stack(unsigned long sp);
975 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
976 extern void free_kernel_image_pages(void *begin, void *end);
977 
978 void default_idle(void);
979 #ifdef	CONFIG_XEN
980 bool xen_set_default_idle(void);
981 #else
982 #define xen_set_default_idle 0
983 #endif
984 
985 void stop_this_cpu(void *dummy);
986 void df_debug(struct pt_regs *regs, long error_code);
987 void microcode_check(void);
988 
989 enum l1tf_mitigations {
990 	L1TF_MITIGATION_OFF,
991 	L1TF_MITIGATION_FLUSH_NOWARN,
992 	L1TF_MITIGATION_FLUSH,
993 	L1TF_MITIGATION_FLUSH_NOSMT,
994 	L1TF_MITIGATION_FULL,
995 	L1TF_MITIGATION_FULL_FORCE
996 };
997 
998 extern enum l1tf_mitigations l1tf_mitigation;
999 
1000 #endif /* _ASM_X86_PROCESSOR_H */
1001