xref: /openbmc/linux/arch/x86/include/asm/processor.h (revision 2e35facf82bcdd9b9eb9129f4fb31127b79249ec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct vm86;
11 
12 #include <asm/math_emu.h>
13 #include <asm/segment.h>
14 #include <asm/types.h>
15 #include <uapi/asm/sigcontext.h>
16 #include <asm/current.h>
17 #include <asm/cpufeatures.h>
18 #include <asm/page.h>
19 #include <asm/pgtable_types.h>
20 #include <asm/percpu.h>
21 #include <asm/msr.h>
22 #include <asm/desc_defs.h>
23 #include <asm/nops.h>
24 #include <asm/special_insns.h>
25 #include <asm/fpu/types.h>
26 #include <asm/unwind_hints.h>
27 
28 #include <linux/personality.h>
29 #include <linux/cache.h>
30 #include <linux/threads.h>
31 #include <linux/math64.h>
32 #include <linux/err.h>
33 #include <linux/irqflags.h>
34 #include <linux/mem_encrypt.h>
35 
36 /*
37  * We handle most unaligned accesses in hardware.  On the other hand
38  * unaligned DMA can be quite expensive on some Nehalem processors.
39  *
40  * Based on this we disable the IP header alignment in network drivers.
41  */
42 #define NET_IP_ALIGN	0
43 
44 #define HBP_NUM 4
45 
46 /*
47  * These alignment constraints are for performance in the vSMP case,
48  * but in the task_struct case we must also meet hardware imposed
49  * alignment requirements of the FPU state:
50  */
51 #ifdef CONFIG_X86_VSMP
52 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
53 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
54 #else
55 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
56 # define ARCH_MIN_MMSTRUCT_ALIGN	0
57 #endif
58 
59 enum tlb_infos {
60 	ENTRIES,
61 	NR_INFO
62 };
63 
64 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
65 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
66 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
67 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
71 
72 /*
73  *  CPU type and hardware bug flags. Kept separately for each CPU.
74  *  Members of this structure are referenced in head_32.S, so think twice
75  *  before touching them. [mj]
76  */
77 
78 struct cpuinfo_x86 {
79 	__u8			x86;		/* CPU family */
80 	__u8			x86_vendor;	/* CPU vendor */
81 	__u8			x86_model;
82 	__u8			x86_stepping;
83 #ifdef CONFIG_X86_64
84 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
85 	int			x86_tlbsize;
86 #endif
87 	__u8			x86_virt_bits;
88 	__u8			x86_phys_bits;
89 	/* CPUID returned core id bits: */
90 	__u8			x86_coreid_bits;
91 	__u8			cu_id;
92 	/* Max extended CPUID function supported: */
93 	__u32			extended_cpuid_level;
94 	/* Maximum supported CPUID level, -1=no CPUID: */
95 	int			cpuid_level;
96 	__u32			x86_capability[NCAPINTS + NBUGINTS];
97 	char			x86_vendor_id[16];
98 	char			x86_model_id[64];
99 	/* in KB - valid for CPUS which support this call: */
100 	unsigned int		x86_cache_size;
101 	int			x86_cache_alignment;	/* In bytes */
102 	/* Cache QoS architectural values: */
103 	int			x86_cache_max_rmid;	/* max index */
104 	int			x86_cache_occ_scale;	/* scale to bytes */
105 	int			x86_power;
106 	unsigned long		loops_per_jiffy;
107 	/* cpuid returned max cores value: */
108 	u16			 x86_max_cores;
109 	u16			apicid;
110 	u16			initial_apicid;
111 	u16			x86_clflush_size;
112 	/* number of cores as seen by the OS: */
113 	u16			booted_cores;
114 	/* Physical processor id: */
115 	u16			phys_proc_id;
116 	/* Logical processor id: */
117 	u16			logical_proc_id;
118 	/* Core id: */
119 	u16			cpu_core_id;
120 	/* Index into per_cpu list: */
121 	u16			cpu_index;
122 	u32			microcode;
123 	/* Address space bits used by the cache internally */
124 	u8			x86_cache_bits;
125 	unsigned		initialized : 1;
126 } __randomize_layout;
127 
128 struct cpuid_regs {
129 	u32 eax, ebx, ecx, edx;
130 };
131 
132 enum cpuid_regs_idx {
133 	CPUID_EAX = 0,
134 	CPUID_EBX,
135 	CPUID_ECX,
136 	CPUID_EDX,
137 };
138 
139 #define X86_VENDOR_INTEL	0
140 #define X86_VENDOR_CYRIX	1
141 #define X86_VENDOR_AMD		2
142 #define X86_VENDOR_UMC		3
143 #define X86_VENDOR_CENTAUR	5
144 #define X86_VENDOR_TRANSMETA	7
145 #define X86_VENDOR_NSC		8
146 #define X86_VENDOR_HYGON	9
147 #define X86_VENDOR_NUM		10
148 
149 #define X86_VENDOR_UNKNOWN	0xff
150 
151 /*
152  * capabilities of CPUs
153  */
154 extern struct cpuinfo_x86	boot_cpu_data;
155 extern struct cpuinfo_x86	new_cpu_data;
156 
157 extern struct x86_hw_tss	doublefault_tss;
158 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
159 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
160 
161 #ifdef CONFIG_SMP
162 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
163 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
164 #else
165 #define cpu_info		boot_cpu_data
166 #define cpu_data(cpu)		boot_cpu_data
167 #endif
168 
169 extern const struct seq_operations cpuinfo_op;
170 
171 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
172 
173 extern void cpu_detect(struct cpuinfo_x86 *c);
174 
175 static inline unsigned long long l1tf_pfn_limit(void)
176 {
177 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
178 }
179 
180 extern void early_cpu_init(void);
181 extern void identify_boot_cpu(void);
182 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183 extern void print_cpu_info(struct cpuinfo_x86 *);
184 void print_cpu_msr(struct cpuinfo_x86 *);
185 
186 #ifdef CONFIG_X86_32
187 extern int have_cpuid_p(void);
188 #else
189 static inline int have_cpuid_p(void)
190 {
191 	return 1;
192 }
193 #endif
194 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
195 				unsigned int *ecx, unsigned int *edx)
196 {
197 	/* ecx is often an input as well as an output. */
198 	asm volatile("cpuid"
199 	    : "=a" (*eax),
200 	      "=b" (*ebx),
201 	      "=c" (*ecx),
202 	      "=d" (*edx)
203 	    : "0" (*eax), "2" (*ecx)
204 	    : "memory");
205 }
206 
207 #define native_cpuid_reg(reg)					\
208 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
209 {								\
210 	unsigned int eax = op, ebx, ecx = 0, edx;		\
211 								\
212 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
213 								\
214 	return reg;						\
215 }
216 
217 /*
218  * Native CPUID functions returning a single datum.
219  */
220 native_cpuid_reg(eax)
221 native_cpuid_reg(ebx)
222 native_cpuid_reg(ecx)
223 native_cpuid_reg(edx)
224 
225 /*
226  * Friendlier CR3 helpers.
227  */
228 static inline unsigned long read_cr3_pa(void)
229 {
230 	return __read_cr3() & CR3_ADDR_MASK;
231 }
232 
233 static inline unsigned long native_read_cr3_pa(void)
234 {
235 	return __native_read_cr3() & CR3_ADDR_MASK;
236 }
237 
238 static inline void load_cr3(pgd_t *pgdir)
239 {
240 	write_cr3(__sme_pa(pgdir));
241 }
242 
243 /*
244  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
245  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
246  * unrelated to the task-switch mechanism:
247  */
248 #ifdef CONFIG_X86_32
249 /* This is the TSS defined by the hardware. */
250 struct x86_hw_tss {
251 	unsigned short		back_link, __blh;
252 	unsigned long		sp0;
253 	unsigned short		ss0, __ss0h;
254 	unsigned long		sp1;
255 
256 	/*
257 	 * We don't use ring 1, so ss1 is a convenient scratch space in
258 	 * the same cacheline as sp0.  We use ss1 to cache the value in
259 	 * MSR_IA32_SYSENTER_CS.  When we context switch
260 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
261 	 * written matches ss1, and, if it's not, then we wrmsr the new
262 	 * value and update ss1.
263 	 *
264 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
265 	 * that we set it to zero in vm86 tasks to avoid corrupting the
266 	 * stack if we were to go through the sysenter path from vm86
267 	 * mode.
268 	 */
269 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
270 
271 	unsigned short		__ss1h;
272 	unsigned long		sp2;
273 	unsigned short		ss2, __ss2h;
274 	unsigned long		__cr3;
275 	unsigned long		ip;
276 	unsigned long		flags;
277 	unsigned long		ax;
278 	unsigned long		cx;
279 	unsigned long		dx;
280 	unsigned long		bx;
281 	unsigned long		sp;
282 	unsigned long		bp;
283 	unsigned long		si;
284 	unsigned long		di;
285 	unsigned short		es, __esh;
286 	unsigned short		cs, __csh;
287 	unsigned short		ss, __ssh;
288 	unsigned short		ds, __dsh;
289 	unsigned short		fs, __fsh;
290 	unsigned short		gs, __gsh;
291 	unsigned short		ldt, __ldth;
292 	unsigned short		trace;
293 	unsigned short		io_bitmap_base;
294 
295 } __attribute__((packed));
296 #else
297 struct x86_hw_tss {
298 	u32			reserved1;
299 	u64			sp0;
300 
301 	/*
302 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
303 	 * Linux does not use ring 1, so sp1 is not otherwise needed.
304 	 */
305 	u64			sp1;
306 
307 	/*
308 	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
309 	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
310 	 * the user RSP value.
311 	 */
312 	u64			sp2;
313 
314 	u64			reserved2;
315 	u64			ist[7];
316 	u32			reserved3;
317 	u32			reserved4;
318 	u16			reserved5;
319 	u16			io_bitmap_base;
320 
321 } __attribute__((packed));
322 #endif
323 
324 /*
325  * IO-bitmap sizes:
326  */
327 #define IO_BITMAP_BITS			65536
328 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
329 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
330 #define IO_BITMAP_OFFSET		(offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
331 #define INVALID_IO_BITMAP_OFFSET	0x8000
332 
333 struct entry_stack {
334 	unsigned long		words[64];
335 };
336 
337 struct entry_stack_page {
338 	struct entry_stack stack;
339 } __aligned(PAGE_SIZE);
340 
341 struct tss_struct {
342 	/*
343 	 * The fixed hardware portion.  This must not cross a page boundary
344 	 * at risk of violating the SDM's advice and potentially triggering
345 	 * errata.
346 	 */
347 	struct x86_hw_tss	x86_tss;
348 
349 	/*
350 	 * The extra 1 is there because the CPU will access an
351 	 * additional byte beyond the end of the IO permission
352 	 * bitmap. The extra byte must be all 1 bits, and must
353 	 * be within the limit.
354 	 */
355 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
356 } __aligned(PAGE_SIZE);
357 
358 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
359 
360 /*
361  * sizeof(unsigned long) coming from an extra "long" at the end
362  * of the iobitmap.
363  *
364  * -1? seg base+limit should be pointing to the address of the
365  * last valid byte
366  */
367 #define __KERNEL_TSS_LIMIT	\
368 	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
369 
370 /* Per CPU interrupt stacks */
371 struct irq_stack {
372 	char		stack[IRQ_STACK_SIZE];
373 } __aligned(IRQ_STACK_SIZE);
374 
375 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
376 
377 #ifdef CONFIG_X86_32
378 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
379 #else
380 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
381 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
382 #endif
383 
384 #ifdef CONFIG_X86_64
385 struct fixed_percpu_data {
386 	/*
387 	 * GCC hardcodes the stack canary as %gs:40.  Since the
388 	 * irq_stack is the object at %gs:0, we reserve the bottom
389 	 * 48 bytes of the irq stack for the canary.
390 	 */
391 	char		gs_base[40];
392 	unsigned long	stack_canary;
393 };
394 
395 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
396 DECLARE_INIT_PER_CPU(fixed_percpu_data);
397 
398 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
399 {
400 	return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
401 }
402 
403 DECLARE_PER_CPU(unsigned int, irq_count);
404 extern asmlinkage void ignore_sysret(void);
405 
406 #if IS_ENABLED(CONFIG_KVM)
407 /* Save actual FS/GS selectors and bases to current->thread */
408 void save_fsgs_for_kvm(void);
409 #endif
410 #else	/* X86_64 */
411 #ifdef CONFIG_STACKPROTECTOR
412 /*
413  * Make sure stack canary segment base is cached-aligned:
414  *   "For Intel Atom processors, avoid non zero segment base address
415  *    that is not aligned to cache line boundary at all cost."
416  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
417  */
418 struct stack_canary {
419 	char __pad[20];		/* canary at %gs:20 */
420 	unsigned long canary;
421 };
422 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
423 #endif
424 /* Per CPU softirq stack pointer */
425 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
426 #endif	/* X86_64 */
427 
428 extern unsigned int fpu_kernel_xstate_size;
429 extern unsigned int fpu_user_xstate_size;
430 
431 struct perf_event;
432 
433 typedef struct {
434 	unsigned long		seg;
435 } mm_segment_t;
436 
437 struct thread_struct {
438 	/* Cached TLS descriptors: */
439 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
440 #ifdef CONFIG_X86_32
441 	unsigned long		sp0;
442 #endif
443 	unsigned long		sp;
444 #ifdef CONFIG_X86_32
445 	unsigned long		sysenter_cs;
446 #else
447 	unsigned short		es;
448 	unsigned short		ds;
449 	unsigned short		fsindex;
450 	unsigned short		gsindex;
451 #endif
452 
453 #ifdef CONFIG_X86_64
454 	unsigned long		fsbase;
455 	unsigned long		gsbase;
456 #else
457 	/*
458 	 * XXX: this could presumably be unsigned short.  Alternatively,
459 	 * 32-bit kernels could be taught to use fsindex instead.
460 	 */
461 	unsigned long fs;
462 	unsigned long gs;
463 #endif
464 
465 	/* Save middle states of ptrace breakpoints */
466 	struct perf_event	*ptrace_bps[HBP_NUM];
467 	/* Debug status used for traps, single steps, etc... */
468 	unsigned long           debugreg6;
469 	/* Keep track of the exact dr7 value set by the user */
470 	unsigned long           ptrace_dr7;
471 	/* Fault info: */
472 	unsigned long		cr2;
473 	unsigned long		trap_nr;
474 	unsigned long		error_code;
475 #ifdef CONFIG_VM86
476 	/* Virtual 86 mode info */
477 	struct vm86		*vm86;
478 #endif
479 	/* IO permissions: */
480 	unsigned long		*io_bitmap_ptr;
481 	unsigned long		iopl;
482 	/* Max allowed port in the bitmap, in bytes: */
483 	unsigned		io_bitmap_max;
484 
485 	mm_segment_t		addr_limit;
486 
487 	unsigned int		sig_on_uaccess_err:1;
488 	unsigned int		uaccess_err:1;	/* uaccess failed */
489 
490 	/* Floating point and extended processor state */
491 	struct fpu		fpu;
492 	/*
493 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
494 	 * the end.
495 	 */
496 };
497 
498 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
499 static inline void arch_thread_struct_whitelist(unsigned long *offset,
500 						unsigned long *size)
501 {
502 	*offset = offsetof(struct thread_struct, fpu.state);
503 	*size = fpu_kernel_xstate_size;
504 }
505 
506 /*
507  * Thread-synchronous status.
508  *
509  * This is different from the flags in that nobody else
510  * ever touches our thread-synchronous status, so we don't
511  * have to worry about atomic accesses.
512  */
513 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
514 
515 /*
516  * Set IOPL bits in EFLAGS from given mask
517  */
518 static inline void native_set_iopl_mask(unsigned mask)
519 {
520 #ifdef CONFIG_X86_32
521 	unsigned int reg;
522 
523 	asm volatile ("pushfl;"
524 		      "popl %0;"
525 		      "andl %1, %0;"
526 		      "orl %2, %0;"
527 		      "pushl %0;"
528 		      "popfl"
529 		      : "=&r" (reg)
530 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
531 #endif
532 }
533 
534 static inline void
535 native_load_sp0(unsigned long sp0)
536 {
537 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
538 }
539 
540 static inline void native_swapgs(void)
541 {
542 #ifdef CONFIG_X86_64
543 	asm volatile("swapgs" ::: "memory");
544 #endif
545 }
546 
547 static inline unsigned long current_top_of_stack(void)
548 {
549 	/*
550 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
551 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
552 	 *  entry trampoline.
553 	 */
554 	return this_cpu_read_stable(cpu_current_top_of_stack);
555 }
556 
557 static inline bool on_thread_stack(void)
558 {
559 	return (unsigned long)(current_top_of_stack() -
560 			       current_stack_pointer) < THREAD_SIZE;
561 }
562 
563 #ifdef CONFIG_PARAVIRT_XXL
564 #include <asm/paravirt.h>
565 #else
566 #define __cpuid			native_cpuid
567 
568 static inline void load_sp0(unsigned long sp0)
569 {
570 	native_load_sp0(sp0);
571 }
572 
573 #define set_iopl_mask native_set_iopl_mask
574 #endif /* CONFIG_PARAVIRT_XXL */
575 
576 /* Free all resources held by a thread. */
577 extern void release_thread(struct task_struct *);
578 
579 unsigned long get_wchan(struct task_struct *p);
580 
581 /*
582  * Generic CPUID function
583  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
584  * resulting in stale register contents being returned.
585  */
586 static inline void cpuid(unsigned int op,
587 			 unsigned int *eax, unsigned int *ebx,
588 			 unsigned int *ecx, unsigned int *edx)
589 {
590 	*eax = op;
591 	*ecx = 0;
592 	__cpuid(eax, ebx, ecx, edx);
593 }
594 
595 /* Some CPUID calls want 'count' to be placed in ecx */
596 static inline void cpuid_count(unsigned int op, int count,
597 			       unsigned int *eax, unsigned int *ebx,
598 			       unsigned int *ecx, unsigned int *edx)
599 {
600 	*eax = op;
601 	*ecx = count;
602 	__cpuid(eax, ebx, ecx, edx);
603 }
604 
605 /*
606  * CPUID functions returning a single datum
607  */
608 static inline unsigned int cpuid_eax(unsigned int op)
609 {
610 	unsigned int eax, ebx, ecx, edx;
611 
612 	cpuid(op, &eax, &ebx, &ecx, &edx);
613 
614 	return eax;
615 }
616 
617 static inline unsigned int cpuid_ebx(unsigned int op)
618 {
619 	unsigned int eax, ebx, ecx, edx;
620 
621 	cpuid(op, &eax, &ebx, &ecx, &edx);
622 
623 	return ebx;
624 }
625 
626 static inline unsigned int cpuid_ecx(unsigned int op)
627 {
628 	unsigned int eax, ebx, ecx, edx;
629 
630 	cpuid(op, &eax, &ebx, &ecx, &edx);
631 
632 	return ecx;
633 }
634 
635 static inline unsigned int cpuid_edx(unsigned int op)
636 {
637 	unsigned int eax, ebx, ecx, edx;
638 
639 	cpuid(op, &eax, &ebx, &ecx, &edx);
640 
641 	return edx;
642 }
643 
644 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
645 static __always_inline void rep_nop(void)
646 {
647 	asm volatile("rep; nop" ::: "memory");
648 }
649 
650 static __always_inline void cpu_relax(void)
651 {
652 	rep_nop();
653 }
654 
655 /*
656  * This function forces the icache and prefetched instruction stream to
657  * catch up with reality in two very specific cases:
658  *
659  *  a) Text was modified using one virtual address and is about to be executed
660  *     from the same physical page at a different virtual address.
661  *
662  *  b) Text was modified on a different CPU, may subsequently be
663  *     executed on this CPU, and you want to make sure the new version
664  *     gets executed.  This generally means you're calling this in a IPI.
665  *
666  * If you're calling this for a different reason, you're probably doing
667  * it wrong.
668  */
669 static inline void sync_core(void)
670 {
671 	/*
672 	 * There are quite a few ways to do this.  IRET-to-self is nice
673 	 * because it works on every CPU, at any CPL (so it's compatible
674 	 * with paravirtualization), and it never exits to a hypervisor.
675 	 * The only down sides are that it's a bit slow (it seems to be
676 	 * a bit more than 2x slower than the fastest options) and that
677 	 * it unmasks NMIs.  The "push %cs" is needed because, in
678 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
679 	 * value when we do IRET directly.
680 	 *
681 	 * In case NMI unmasking or performance ever becomes a problem,
682 	 * the next best option appears to be MOV-to-CR2 and an
683 	 * unconditional jump.  That sequence also works on all CPUs,
684 	 * but it will fault at CPL3 (i.e. Xen PV).
685 	 *
686 	 * CPUID is the conventional way, but it's nasty: it doesn't
687 	 * exist on some 486-like CPUs, and it usually exits to a
688 	 * hypervisor.
689 	 *
690 	 * Like all of Linux's memory ordering operations, this is a
691 	 * compiler barrier as well.
692 	 */
693 #ifdef CONFIG_X86_32
694 	asm volatile (
695 		"pushfl\n\t"
696 		"pushl %%cs\n\t"
697 		"pushl $1f\n\t"
698 		"iret\n\t"
699 		"1:"
700 		: ASM_CALL_CONSTRAINT : : "memory");
701 #else
702 	unsigned int tmp;
703 
704 	asm volatile (
705 		UNWIND_HINT_SAVE
706 		"mov %%ss, %0\n\t"
707 		"pushq %q0\n\t"
708 		"pushq %%rsp\n\t"
709 		"addq $8, (%%rsp)\n\t"
710 		"pushfq\n\t"
711 		"mov %%cs, %0\n\t"
712 		"pushq %q0\n\t"
713 		"pushq $1f\n\t"
714 		"iretq\n\t"
715 		UNWIND_HINT_RESTORE
716 		"1:"
717 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
718 #endif
719 }
720 
721 extern void select_idle_routine(const struct cpuinfo_x86 *c);
722 extern void amd_e400_c1e_apic_setup(void);
723 
724 extern unsigned long		boot_option_idle_override;
725 
726 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
727 			 IDLE_POLL};
728 
729 extern void enable_sep_cpu(void);
730 extern int sysenter_setup(void);
731 
732 
733 /* Defined in head.S */
734 extern struct desc_ptr		early_gdt_descr;
735 
736 extern void switch_to_new_gdt(int);
737 extern void load_direct_gdt(int);
738 extern void load_fixmap_gdt(int);
739 extern void load_percpu_segment(int);
740 extern void cpu_init(void);
741 
742 static inline unsigned long get_debugctlmsr(void)
743 {
744 	unsigned long debugctlmsr = 0;
745 
746 #ifndef CONFIG_X86_DEBUGCTLMSR
747 	if (boot_cpu_data.x86 < 6)
748 		return 0;
749 #endif
750 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
751 
752 	return debugctlmsr;
753 }
754 
755 static inline void update_debugctlmsr(unsigned long debugctlmsr)
756 {
757 #ifndef CONFIG_X86_DEBUGCTLMSR
758 	if (boot_cpu_data.x86 < 6)
759 		return;
760 #endif
761 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
762 }
763 
764 extern void set_task_blockstep(struct task_struct *task, bool on);
765 
766 /* Boot loader type from the setup header: */
767 extern int			bootloader_type;
768 extern int			bootloader_version;
769 
770 extern char			ignore_fpu_irq;
771 
772 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
773 #define ARCH_HAS_PREFETCHW
774 #define ARCH_HAS_SPINLOCK_PREFETCH
775 
776 #ifdef CONFIG_X86_32
777 # define BASE_PREFETCH		""
778 # define ARCH_HAS_PREFETCH
779 #else
780 # define BASE_PREFETCH		"prefetcht0 %P1"
781 #endif
782 
783 /*
784  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
785  *
786  * It's not worth to care about 3dnow prefetches for the K6
787  * because they are microcoded there and very slow.
788  */
789 static inline void prefetch(const void *x)
790 {
791 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
792 			  X86_FEATURE_XMM,
793 			  "m" (*(const char *)x));
794 }
795 
796 /*
797  * 3dnow prefetch to get an exclusive cache line.
798  * Useful for spinlocks to avoid one state transition in the
799  * cache coherency protocol:
800  */
801 static inline void prefetchw(const void *x)
802 {
803 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
804 			  X86_FEATURE_3DNOWPREFETCH,
805 			  "m" (*(const char *)x));
806 }
807 
808 static inline void spin_lock_prefetch(const void *x)
809 {
810 	prefetchw(x);
811 }
812 
813 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
814 			   TOP_OF_KERNEL_STACK_PADDING)
815 
816 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
817 
818 #define task_pt_regs(task) \
819 ({									\
820 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
821 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
822 	((struct pt_regs *)__ptr) - 1;					\
823 })
824 
825 #ifdef CONFIG_X86_32
826 /*
827  * User space process size: 3GB (default).
828  */
829 #define IA32_PAGE_OFFSET	PAGE_OFFSET
830 #define TASK_SIZE		PAGE_OFFSET
831 #define TASK_SIZE_LOW		TASK_SIZE
832 #define TASK_SIZE_MAX		TASK_SIZE
833 #define DEFAULT_MAP_WINDOW	TASK_SIZE
834 #define STACK_TOP		TASK_SIZE
835 #define STACK_TOP_MAX		STACK_TOP
836 
837 #define INIT_THREAD  {							  \
838 	.sp0			= TOP_OF_INIT_STACK,			  \
839 	.sysenter_cs		= __KERNEL_CS,				  \
840 	.io_bitmap_ptr		= NULL,					  \
841 	.addr_limit		= KERNEL_DS,				  \
842 }
843 
844 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
845 
846 #else
847 /*
848  * User space process size.  This is the first address outside the user range.
849  * There are a few constraints that determine this:
850  *
851  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
852  * address, then that syscall will enter the kernel with a
853  * non-canonical return address, and SYSRET will explode dangerously.
854  * We avoid this particular problem by preventing anything executable
855  * from being mapped at the maximum canonical address.
856  *
857  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
858  * CPUs malfunction if they execute code from the highest canonical page.
859  * They'll speculate right off the end of the canonical space, and
860  * bad things happen.  This is worked around in the same way as the
861  * Intel problem.
862  *
863  * With page table isolation enabled, we map the LDT in ... [stay tuned]
864  */
865 #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
866 
867 #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
868 
869 /* This decides where the kernel will search for a free chunk of vm
870  * space during mmap's.
871  */
872 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
873 					0xc0000000 : 0xFFFFe000)
874 
875 #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
876 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
877 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
878 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
879 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
880 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
881 
882 #define STACK_TOP		TASK_SIZE_LOW
883 #define STACK_TOP_MAX		TASK_SIZE_MAX
884 
885 #define INIT_THREAD  {						\
886 	.addr_limit		= KERNEL_DS,			\
887 }
888 
889 extern unsigned long KSTK_ESP(struct task_struct *task);
890 
891 #endif /* CONFIG_X86_64 */
892 
893 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
894 					       unsigned long new_sp);
895 
896 /*
897  * This decides where the kernel will search for a free chunk of vm
898  * space during mmap's.
899  */
900 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
901 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
902 
903 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
904 
905 /* Get/set a process' ability to use the timestamp counter instruction */
906 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
907 #define SET_TSC_CTL(val)	set_tsc_mode((val))
908 
909 extern int get_tsc_mode(unsigned long adr);
910 extern int set_tsc_mode(unsigned int val);
911 
912 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
913 
914 /* Register/unregister a process' MPX related resource */
915 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
916 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
917 
918 #ifdef CONFIG_X86_INTEL_MPX
919 extern int mpx_enable_management(void);
920 extern int mpx_disable_management(void);
921 #else
922 static inline int mpx_enable_management(void)
923 {
924 	return -EINVAL;
925 }
926 static inline int mpx_disable_management(void)
927 {
928 	return -EINVAL;
929 }
930 #endif /* CONFIG_X86_INTEL_MPX */
931 
932 #ifdef CONFIG_CPU_SUP_AMD
933 extern u16 amd_get_nb_id(int cpu);
934 extern u32 amd_get_nodes_per_socket(void);
935 #else
936 static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
937 static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
938 #endif
939 
940 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
941 {
942 	uint32_t base, eax, signature[3];
943 
944 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
945 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
946 
947 		if (!memcmp(sig, signature, 12) &&
948 		    (leaves == 0 || ((eax - base) >= leaves)))
949 			return base;
950 	}
951 
952 	return 0;
953 }
954 
955 extern unsigned long arch_align_stack(unsigned long sp);
956 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
957 extern void free_kernel_image_pages(void *begin, void *end);
958 
959 void default_idle(void);
960 #ifdef	CONFIG_XEN
961 bool xen_set_default_idle(void);
962 #else
963 #define xen_set_default_idle 0
964 #endif
965 
966 void stop_this_cpu(void *dummy);
967 void df_debug(struct pt_regs *regs, long error_code);
968 void microcode_check(void);
969 
970 enum l1tf_mitigations {
971 	L1TF_MITIGATION_OFF,
972 	L1TF_MITIGATION_FLUSH_NOWARN,
973 	L1TF_MITIGATION_FLUSH,
974 	L1TF_MITIGATION_FLUSH_NOSMT,
975 	L1TF_MITIGATION_FULL,
976 	L1TF_MITIGATION_FULL_FORCE
977 };
978 
979 extern enum l1tf_mitigations l1tf_mitigation;
980 
981 enum mds_mitigations {
982 	MDS_MITIGATION_OFF,
983 	MDS_MITIGATION_FULL,
984 	MDS_MITIGATION_VMWERV,
985 };
986 
987 #endif /* _ASM_X86_PROCESSOR_H */
988