xref: /openbmc/linux/arch/x86/include/asm/processor.h (revision 15e3ae36)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4 
5 #include <asm/processor-flags.h>
6 
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12 
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/page.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
22 #include <asm/msr.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
30 
31 #include <linux/personality.h>
32 #include <linux/cache.h>
33 #include <linux/threads.h>
34 #include <linux/math64.h>
35 #include <linux/err.h>
36 #include <linux/irqflags.h>
37 #include <linux/mem_encrypt.h>
38 
39 /*
40  * We handle most unaligned accesses in hardware.  On the other hand
41  * unaligned DMA can be quite expensive on some Nehalem processors.
42  *
43  * Based on this we disable the IP header alignment in network drivers.
44  */
45 #define NET_IP_ALIGN	0
46 
47 #define HBP_NUM 4
48 
49 /*
50  * These alignment constraints are for performance in the vSMP case,
51  * but in the task_struct case we must also meet hardware imposed
52  * alignment requirements of the FPU state:
53  */
54 #ifdef CONFIG_X86_VSMP
55 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
56 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
57 #else
58 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
59 # define ARCH_MIN_MMSTRUCT_ALIGN	0
60 #endif
61 
62 enum tlb_infos {
63 	ENTRIES,
64 	NR_INFO
65 };
66 
67 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
71 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
72 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
73 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
74 
75 /*
76  *  CPU type and hardware bug flags. Kept separately for each CPU.
77  *  Members of this structure are referenced in head_32.S, so think twice
78  *  before touching them. [mj]
79  */
80 
81 struct cpuinfo_x86 {
82 	__u8			x86;		/* CPU family */
83 	__u8			x86_vendor;	/* CPU vendor */
84 	__u8			x86_model;
85 	__u8			x86_stepping;
86 #ifdef CONFIG_X86_64
87 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
88 	int			x86_tlbsize;
89 #endif
90 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 	__u32			vmx_capability[NVMXINTS];
92 #endif
93 	__u8			x86_virt_bits;
94 	__u8			x86_phys_bits;
95 	/* CPUID returned core id bits: */
96 	__u8			x86_coreid_bits;
97 	__u8			cu_id;
98 	/* Max extended CPUID function supported: */
99 	__u32			extended_cpuid_level;
100 	/* Maximum supported CPUID level, -1=no CPUID: */
101 	int			cpuid_level;
102 	/*
103 	 * Align to size of unsigned long because the x86_capability array
104 	 * is passed to bitops which require the alignment. Use unnamed
105 	 * union to enforce the array is aligned to size of unsigned long.
106 	 */
107 	union {
108 		__u32		x86_capability[NCAPINTS + NBUGINTS];
109 		unsigned long	x86_capability_alignment;
110 	};
111 	char			x86_vendor_id[16];
112 	char			x86_model_id[64];
113 	/* in KB - valid for CPUS which support this call: */
114 	unsigned int		x86_cache_size;
115 	int			x86_cache_alignment;	/* In bytes */
116 	/* Cache QoS architectural values: */
117 	int			x86_cache_max_rmid;	/* max index */
118 	int			x86_cache_occ_scale;	/* scale to bytes */
119 	int			x86_power;
120 	unsigned long		loops_per_jiffy;
121 	/* cpuid returned max cores value: */
122 	u16			x86_max_cores;
123 	u16			apicid;
124 	u16			initial_apicid;
125 	u16			x86_clflush_size;
126 	/* number of cores as seen by the OS: */
127 	u16			booted_cores;
128 	/* Physical processor id: */
129 	u16			phys_proc_id;
130 	/* Logical processor id: */
131 	u16			logical_proc_id;
132 	/* Core id: */
133 	u16			cpu_core_id;
134 	u16			cpu_die_id;
135 	u16			logical_die_id;
136 	/* Index into per_cpu list: */
137 	u16			cpu_index;
138 	u32			microcode;
139 	/* Address space bits used by the cache internally */
140 	u8			x86_cache_bits;
141 	unsigned		initialized : 1;
142 } __randomize_layout;
143 
144 struct cpuid_regs {
145 	u32 eax, ebx, ecx, edx;
146 };
147 
148 enum cpuid_regs_idx {
149 	CPUID_EAX = 0,
150 	CPUID_EBX,
151 	CPUID_ECX,
152 	CPUID_EDX,
153 };
154 
155 #define X86_VENDOR_INTEL	0
156 #define X86_VENDOR_CYRIX	1
157 #define X86_VENDOR_AMD		2
158 #define X86_VENDOR_UMC		3
159 #define X86_VENDOR_CENTAUR	5
160 #define X86_VENDOR_TRANSMETA	7
161 #define X86_VENDOR_NSC		8
162 #define X86_VENDOR_HYGON	9
163 #define X86_VENDOR_ZHAOXIN	10
164 #define X86_VENDOR_NUM		11
165 
166 #define X86_VENDOR_UNKNOWN	0xff
167 
168 /*
169  * capabilities of CPUs
170  */
171 extern struct cpuinfo_x86	boot_cpu_data;
172 extern struct cpuinfo_x86	new_cpu_data;
173 
174 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
175 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
176 
177 #ifdef CONFIG_SMP
178 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
179 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
180 #else
181 #define cpu_info		boot_cpu_data
182 #define cpu_data(cpu)		boot_cpu_data
183 #endif
184 
185 extern const struct seq_operations cpuinfo_op;
186 
187 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
188 
189 extern void cpu_detect(struct cpuinfo_x86 *c);
190 
191 static inline unsigned long long l1tf_pfn_limit(void)
192 {
193 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
194 }
195 
196 extern void early_cpu_init(void);
197 extern void identify_boot_cpu(void);
198 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
199 extern void print_cpu_info(struct cpuinfo_x86 *);
200 void print_cpu_msr(struct cpuinfo_x86 *);
201 
202 #ifdef CONFIG_X86_32
203 extern int have_cpuid_p(void);
204 #else
205 static inline int have_cpuid_p(void)
206 {
207 	return 1;
208 }
209 #endif
210 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
211 				unsigned int *ecx, unsigned int *edx)
212 {
213 	/* ecx is often an input as well as an output. */
214 	asm volatile("cpuid"
215 	    : "=a" (*eax),
216 	      "=b" (*ebx),
217 	      "=c" (*ecx),
218 	      "=d" (*edx)
219 	    : "0" (*eax), "2" (*ecx)
220 	    : "memory");
221 }
222 
223 #define native_cpuid_reg(reg)					\
224 static inline unsigned int native_cpuid_##reg(unsigned int op)	\
225 {								\
226 	unsigned int eax = op, ebx, ecx = 0, edx;		\
227 								\
228 	native_cpuid(&eax, &ebx, &ecx, &edx);			\
229 								\
230 	return reg;						\
231 }
232 
233 /*
234  * Native CPUID functions returning a single datum.
235  */
236 native_cpuid_reg(eax)
237 native_cpuid_reg(ebx)
238 native_cpuid_reg(ecx)
239 native_cpuid_reg(edx)
240 
241 /*
242  * Friendlier CR3 helpers.
243  */
244 static inline unsigned long read_cr3_pa(void)
245 {
246 	return __read_cr3() & CR3_ADDR_MASK;
247 }
248 
249 static inline unsigned long native_read_cr3_pa(void)
250 {
251 	return __native_read_cr3() & CR3_ADDR_MASK;
252 }
253 
254 static inline void load_cr3(pgd_t *pgdir)
255 {
256 	write_cr3(__sme_pa(pgdir));
257 }
258 
259 /*
260  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
261  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
262  * unrelated to the task-switch mechanism:
263  */
264 #ifdef CONFIG_X86_32
265 /* This is the TSS defined by the hardware. */
266 struct x86_hw_tss {
267 	unsigned short		back_link, __blh;
268 	unsigned long		sp0;
269 	unsigned short		ss0, __ss0h;
270 	unsigned long		sp1;
271 
272 	/*
273 	 * We don't use ring 1, so ss1 is a convenient scratch space in
274 	 * the same cacheline as sp0.  We use ss1 to cache the value in
275 	 * MSR_IA32_SYSENTER_CS.  When we context switch
276 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
277 	 * written matches ss1, and, if it's not, then we wrmsr the new
278 	 * value and update ss1.
279 	 *
280 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
281 	 * that we set it to zero in vm86 tasks to avoid corrupting the
282 	 * stack if we were to go through the sysenter path from vm86
283 	 * mode.
284 	 */
285 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
286 
287 	unsigned short		__ss1h;
288 	unsigned long		sp2;
289 	unsigned short		ss2, __ss2h;
290 	unsigned long		__cr3;
291 	unsigned long		ip;
292 	unsigned long		flags;
293 	unsigned long		ax;
294 	unsigned long		cx;
295 	unsigned long		dx;
296 	unsigned long		bx;
297 	unsigned long		sp;
298 	unsigned long		bp;
299 	unsigned long		si;
300 	unsigned long		di;
301 	unsigned short		es, __esh;
302 	unsigned short		cs, __csh;
303 	unsigned short		ss, __ssh;
304 	unsigned short		ds, __dsh;
305 	unsigned short		fs, __fsh;
306 	unsigned short		gs, __gsh;
307 	unsigned short		ldt, __ldth;
308 	unsigned short		trace;
309 	unsigned short		io_bitmap_base;
310 
311 } __attribute__((packed));
312 #else
313 struct x86_hw_tss {
314 	u32			reserved1;
315 	u64			sp0;
316 
317 	/*
318 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
319 	 * Linux does not use ring 1, so sp1 is not otherwise needed.
320 	 */
321 	u64			sp1;
322 
323 	/*
324 	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
325 	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
326 	 * the user RSP value.
327 	 */
328 	u64			sp2;
329 
330 	u64			reserved2;
331 	u64			ist[7];
332 	u32			reserved3;
333 	u32			reserved4;
334 	u16			reserved5;
335 	u16			io_bitmap_base;
336 
337 } __attribute__((packed));
338 #endif
339 
340 /*
341  * IO-bitmap sizes:
342  */
343 #define IO_BITMAP_BITS			65536
344 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS / BITS_PER_BYTE)
345 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES / sizeof(long))
346 
347 #define IO_BITMAP_OFFSET_VALID_MAP				\
348 	(offsetof(struct tss_struct, io_bitmap.bitmap) -	\
349 	 offsetof(struct tss_struct, x86_tss))
350 
351 #define IO_BITMAP_OFFSET_VALID_ALL				\
352 	(offsetof(struct tss_struct, io_bitmap.mapall) -	\
353 	 offsetof(struct tss_struct, x86_tss))
354 
355 #ifdef CONFIG_X86_IOPL_IOPERM
356 /*
357  * sizeof(unsigned long) coming from an extra "long" at the end of the
358  * iobitmap. The limit is inclusive, i.e. the last valid byte.
359  */
360 # define __KERNEL_TSS_LIMIT	\
361 	(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
362 	 sizeof(unsigned long) - 1)
363 #else
364 # define __KERNEL_TSS_LIMIT	\
365 	(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
366 #endif
367 
368 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
369 #define IO_BITMAP_OFFSET_INVALID	(__KERNEL_TSS_LIMIT + 1)
370 
371 struct entry_stack {
372 	unsigned long		words[64];
373 };
374 
375 struct entry_stack_page {
376 	struct entry_stack stack;
377 } __aligned(PAGE_SIZE);
378 
379 /*
380  * All IO bitmap related data stored in the TSS:
381  */
382 struct x86_io_bitmap {
383 	/* The sequence number of the last active bitmap. */
384 	u64			prev_sequence;
385 
386 	/*
387 	 * Store the dirty size of the last io bitmap offender. The next
388 	 * one will have to do the cleanup as the switch out to a non io
389 	 * bitmap user will just set x86_tss.io_bitmap_base to a value
390 	 * outside of the TSS limit. So for sane tasks there is no need to
391 	 * actually touch the io_bitmap at all.
392 	 */
393 	unsigned int		prev_max;
394 
395 	/*
396 	 * The extra 1 is there because the CPU will access an
397 	 * additional byte beyond the end of the IO permission
398 	 * bitmap. The extra byte must be all 1 bits, and must
399 	 * be within the limit.
400 	 */
401 	unsigned long		bitmap[IO_BITMAP_LONGS + 1];
402 
403 	/*
404 	 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
405 	 * except the additional byte at the end.
406 	 */
407 	unsigned long		mapall[IO_BITMAP_LONGS + 1];
408 };
409 
410 struct tss_struct {
411 	/*
412 	 * The fixed hardware portion.  This must not cross a page boundary
413 	 * at risk of violating the SDM's advice and potentially triggering
414 	 * errata.
415 	 */
416 	struct x86_hw_tss	x86_tss;
417 
418 	struct x86_io_bitmap	io_bitmap;
419 } __aligned(PAGE_SIZE);
420 
421 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
422 
423 /* Per CPU interrupt stacks */
424 struct irq_stack {
425 	char		stack[IRQ_STACK_SIZE];
426 } __aligned(IRQ_STACK_SIZE);
427 
428 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
429 
430 #ifdef CONFIG_X86_32
431 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
432 #else
433 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
434 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
435 #endif
436 
437 #ifdef CONFIG_X86_64
438 struct fixed_percpu_data {
439 	/*
440 	 * GCC hardcodes the stack canary as %gs:40.  Since the
441 	 * irq_stack is the object at %gs:0, we reserve the bottom
442 	 * 48 bytes of the irq stack for the canary.
443 	 */
444 	char		gs_base[40];
445 	unsigned long	stack_canary;
446 };
447 
448 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
449 DECLARE_INIT_PER_CPU(fixed_percpu_data);
450 
451 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
452 {
453 	return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
454 }
455 
456 DECLARE_PER_CPU(unsigned int, irq_count);
457 extern asmlinkage void ignore_sysret(void);
458 
459 #if IS_ENABLED(CONFIG_KVM)
460 /* Save actual FS/GS selectors and bases to current->thread */
461 void save_fsgs_for_kvm(void);
462 #endif
463 #else	/* X86_64 */
464 #ifdef CONFIG_STACKPROTECTOR
465 /*
466  * Make sure stack canary segment base is cached-aligned:
467  *   "For Intel Atom processors, avoid non zero segment base address
468  *    that is not aligned to cache line boundary at all cost."
469  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
470  */
471 struct stack_canary {
472 	char __pad[20];		/* canary at %gs:20 */
473 	unsigned long canary;
474 };
475 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
476 #endif
477 /* Per CPU softirq stack pointer */
478 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
479 #endif	/* X86_64 */
480 
481 extern unsigned int fpu_kernel_xstate_size;
482 extern unsigned int fpu_user_xstate_size;
483 
484 struct perf_event;
485 
486 typedef struct {
487 	unsigned long		seg;
488 } mm_segment_t;
489 
490 struct thread_struct {
491 	/* Cached TLS descriptors: */
492 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
493 #ifdef CONFIG_X86_32
494 	unsigned long		sp0;
495 #endif
496 	unsigned long		sp;
497 #ifdef CONFIG_X86_32
498 	unsigned long		sysenter_cs;
499 #else
500 	unsigned short		es;
501 	unsigned short		ds;
502 	unsigned short		fsindex;
503 	unsigned short		gsindex;
504 #endif
505 
506 #ifdef CONFIG_X86_64
507 	unsigned long		fsbase;
508 	unsigned long		gsbase;
509 #else
510 	/*
511 	 * XXX: this could presumably be unsigned short.  Alternatively,
512 	 * 32-bit kernels could be taught to use fsindex instead.
513 	 */
514 	unsigned long fs;
515 	unsigned long gs;
516 #endif
517 
518 	/* Save middle states of ptrace breakpoints */
519 	struct perf_event	*ptrace_bps[HBP_NUM];
520 	/* Debug status used for traps, single steps, etc... */
521 	unsigned long           debugreg6;
522 	/* Keep track of the exact dr7 value set by the user */
523 	unsigned long           ptrace_dr7;
524 	/* Fault info: */
525 	unsigned long		cr2;
526 	unsigned long		trap_nr;
527 	unsigned long		error_code;
528 #ifdef CONFIG_VM86
529 	/* Virtual 86 mode info */
530 	struct vm86		*vm86;
531 #endif
532 	/* IO permissions: */
533 	struct io_bitmap	*io_bitmap;
534 
535 	/*
536 	 * IOPL. Priviledge level dependent I/O permission which is
537 	 * emulated via the I/O bitmap to prevent user space from disabling
538 	 * interrupts.
539 	 */
540 	unsigned long		iopl_emul;
541 
542 	mm_segment_t		addr_limit;
543 
544 	unsigned int		sig_on_uaccess_err:1;
545 
546 	/* Floating point and extended processor state */
547 	struct fpu		fpu;
548 	/*
549 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
550 	 * the end.
551 	 */
552 };
553 
554 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
555 static inline void arch_thread_struct_whitelist(unsigned long *offset,
556 						unsigned long *size)
557 {
558 	*offset = offsetof(struct thread_struct, fpu.state);
559 	*size = fpu_kernel_xstate_size;
560 }
561 
562 /*
563  * Thread-synchronous status.
564  *
565  * This is different from the flags in that nobody else
566  * ever touches our thread-synchronous status, so we don't
567  * have to worry about atomic accesses.
568  */
569 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
570 
571 static inline void
572 native_load_sp0(unsigned long sp0)
573 {
574 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
575 }
576 
577 static inline void native_swapgs(void)
578 {
579 #ifdef CONFIG_X86_64
580 	asm volatile("swapgs" ::: "memory");
581 #endif
582 }
583 
584 static inline unsigned long current_top_of_stack(void)
585 {
586 	/*
587 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
588 	 *  and around vm86 mode and sp0 on x86_64 is special because of the
589 	 *  entry trampoline.
590 	 */
591 	return this_cpu_read_stable(cpu_current_top_of_stack);
592 }
593 
594 static inline bool on_thread_stack(void)
595 {
596 	return (unsigned long)(current_top_of_stack() -
597 			       current_stack_pointer) < THREAD_SIZE;
598 }
599 
600 #ifdef CONFIG_PARAVIRT_XXL
601 #include <asm/paravirt.h>
602 #else
603 #define __cpuid			native_cpuid
604 
605 static inline void load_sp0(unsigned long sp0)
606 {
607 	native_load_sp0(sp0);
608 }
609 
610 #endif /* CONFIG_PARAVIRT_XXL */
611 
612 /* Free all resources held by a thread. */
613 extern void release_thread(struct task_struct *);
614 
615 unsigned long get_wchan(struct task_struct *p);
616 
617 /*
618  * Generic CPUID function
619  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
620  * resulting in stale register contents being returned.
621  */
622 static inline void cpuid(unsigned int op,
623 			 unsigned int *eax, unsigned int *ebx,
624 			 unsigned int *ecx, unsigned int *edx)
625 {
626 	*eax = op;
627 	*ecx = 0;
628 	__cpuid(eax, ebx, ecx, edx);
629 }
630 
631 /* Some CPUID calls want 'count' to be placed in ecx */
632 static inline void cpuid_count(unsigned int op, int count,
633 			       unsigned int *eax, unsigned int *ebx,
634 			       unsigned int *ecx, unsigned int *edx)
635 {
636 	*eax = op;
637 	*ecx = count;
638 	__cpuid(eax, ebx, ecx, edx);
639 }
640 
641 /*
642  * CPUID functions returning a single datum
643  */
644 static inline unsigned int cpuid_eax(unsigned int op)
645 {
646 	unsigned int eax, ebx, ecx, edx;
647 
648 	cpuid(op, &eax, &ebx, &ecx, &edx);
649 
650 	return eax;
651 }
652 
653 static inline unsigned int cpuid_ebx(unsigned int op)
654 {
655 	unsigned int eax, ebx, ecx, edx;
656 
657 	cpuid(op, &eax, &ebx, &ecx, &edx);
658 
659 	return ebx;
660 }
661 
662 static inline unsigned int cpuid_ecx(unsigned int op)
663 {
664 	unsigned int eax, ebx, ecx, edx;
665 
666 	cpuid(op, &eax, &ebx, &ecx, &edx);
667 
668 	return ecx;
669 }
670 
671 static inline unsigned int cpuid_edx(unsigned int op)
672 {
673 	unsigned int eax, ebx, ecx, edx;
674 
675 	cpuid(op, &eax, &ebx, &ecx, &edx);
676 
677 	return edx;
678 }
679 
680 /*
681  * This function forces the icache and prefetched instruction stream to
682  * catch up with reality in two very specific cases:
683  *
684  *  a) Text was modified using one virtual address and is about to be executed
685  *     from the same physical page at a different virtual address.
686  *
687  *  b) Text was modified on a different CPU, may subsequently be
688  *     executed on this CPU, and you want to make sure the new version
689  *     gets executed.  This generally means you're calling this in a IPI.
690  *
691  * If you're calling this for a different reason, you're probably doing
692  * it wrong.
693  */
694 static inline void sync_core(void)
695 {
696 	/*
697 	 * There are quite a few ways to do this.  IRET-to-self is nice
698 	 * because it works on every CPU, at any CPL (so it's compatible
699 	 * with paravirtualization), and it never exits to a hypervisor.
700 	 * The only down sides are that it's a bit slow (it seems to be
701 	 * a bit more than 2x slower than the fastest options) and that
702 	 * it unmasks NMIs.  The "push %cs" is needed because, in
703 	 * paravirtual environments, __KERNEL_CS may not be a valid CS
704 	 * value when we do IRET directly.
705 	 *
706 	 * In case NMI unmasking or performance ever becomes a problem,
707 	 * the next best option appears to be MOV-to-CR2 and an
708 	 * unconditional jump.  That sequence also works on all CPUs,
709 	 * but it will fault at CPL3 (i.e. Xen PV).
710 	 *
711 	 * CPUID is the conventional way, but it's nasty: it doesn't
712 	 * exist on some 486-like CPUs, and it usually exits to a
713 	 * hypervisor.
714 	 *
715 	 * Like all of Linux's memory ordering operations, this is a
716 	 * compiler barrier as well.
717 	 */
718 #ifdef CONFIG_X86_32
719 	asm volatile (
720 		"pushfl\n\t"
721 		"pushl %%cs\n\t"
722 		"pushl $1f\n\t"
723 		"iret\n\t"
724 		"1:"
725 		: ASM_CALL_CONSTRAINT : : "memory");
726 #else
727 	unsigned int tmp;
728 
729 	asm volatile (
730 		UNWIND_HINT_SAVE
731 		"mov %%ss, %0\n\t"
732 		"pushq %q0\n\t"
733 		"pushq %%rsp\n\t"
734 		"addq $8, (%%rsp)\n\t"
735 		"pushfq\n\t"
736 		"mov %%cs, %0\n\t"
737 		"pushq %q0\n\t"
738 		"pushq $1f\n\t"
739 		"iretq\n\t"
740 		UNWIND_HINT_RESTORE
741 		"1:"
742 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
743 #endif
744 }
745 
746 extern void select_idle_routine(const struct cpuinfo_x86 *c);
747 extern void amd_e400_c1e_apic_setup(void);
748 
749 extern unsigned long		boot_option_idle_override;
750 
751 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
752 			 IDLE_POLL};
753 
754 extern void enable_sep_cpu(void);
755 extern int sysenter_setup(void);
756 
757 
758 /* Defined in head.S */
759 extern struct desc_ptr		early_gdt_descr;
760 
761 extern void switch_to_new_gdt(int);
762 extern void load_direct_gdt(int);
763 extern void load_fixmap_gdt(int);
764 extern void load_percpu_segment(int);
765 extern void cpu_init(void);
766 extern void cr4_init(void);
767 
768 static inline unsigned long get_debugctlmsr(void)
769 {
770 	unsigned long debugctlmsr = 0;
771 
772 #ifndef CONFIG_X86_DEBUGCTLMSR
773 	if (boot_cpu_data.x86 < 6)
774 		return 0;
775 #endif
776 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
777 
778 	return debugctlmsr;
779 }
780 
781 static inline void update_debugctlmsr(unsigned long debugctlmsr)
782 {
783 #ifndef CONFIG_X86_DEBUGCTLMSR
784 	if (boot_cpu_data.x86 < 6)
785 		return;
786 #endif
787 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
788 }
789 
790 extern void set_task_blockstep(struct task_struct *task, bool on);
791 
792 /* Boot loader type from the setup header: */
793 extern int			bootloader_type;
794 extern int			bootloader_version;
795 
796 extern char			ignore_fpu_irq;
797 
798 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
799 #define ARCH_HAS_PREFETCHW
800 #define ARCH_HAS_SPINLOCK_PREFETCH
801 
802 #ifdef CONFIG_X86_32
803 # define BASE_PREFETCH		""
804 # define ARCH_HAS_PREFETCH
805 #else
806 # define BASE_PREFETCH		"prefetcht0 %P1"
807 #endif
808 
809 /*
810  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
811  *
812  * It's not worth to care about 3dnow prefetches for the K6
813  * because they are microcoded there and very slow.
814  */
815 static inline void prefetch(const void *x)
816 {
817 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
818 			  X86_FEATURE_XMM,
819 			  "m" (*(const char *)x));
820 }
821 
822 /*
823  * 3dnow prefetch to get an exclusive cache line.
824  * Useful for spinlocks to avoid one state transition in the
825  * cache coherency protocol:
826  */
827 static inline void prefetchw(const void *x)
828 {
829 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
830 			  X86_FEATURE_3DNOWPREFETCH,
831 			  "m" (*(const char *)x));
832 }
833 
834 static inline void spin_lock_prefetch(const void *x)
835 {
836 	prefetchw(x);
837 }
838 
839 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
840 			   TOP_OF_KERNEL_STACK_PADDING)
841 
842 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
843 
844 #define task_pt_regs(task) \
845 ({									\
846 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
847 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
848 	((struct pt_regs *)__ptr) - 1;					\
849 })
850 
851 #ifdef CONFIG_X86_32
852 /*
853  * User space process size: 3GB (default).
854  */
855 #define IA32_PAGE_OFFSET	PAGE_OFFSET
856 #define TASK_SIZE		PAGE_OFFSET
857 #define TASK_SIZE_LOW		TASK_SIZE
858 #define TASK_SIZE_MAX		TASK_SIZE
859 #define DEFAULT_MAP_WINDOW	TASK_SIZE
860 #define STACK_TOP		TASK_SIZE
861 #define STACK_TOP_MAX		STACK_TOP
862 
863 #define INIT_THREAD  {							  \
864 	.sp0			= TOP_OF_INIT_STACK,			  \
865 	.sysenter_cs		= __KERNEL_CS,				  \
866 	.addr_limit		= KERNEL_DS,				  \
867 }
868 
869 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
870 
871 #else
872 /*
873  * User space process size.  This is the first address outside the user range.
874  * There are a few constraints that determine this:
875  *
876  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
877  * address, then that syscall will enter the kernel with a
878  * non-canonical return address, and SYSRET will explode dangerously.
879  * We avoid this particular problem by preventing anything executable
880  * from being mapped at the maximum canonical address.
881  *
882  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
883  * CPUs malfunction if they execute code from the highest canonical page.
884  * They'll speculate right off the end of the canonical space, and
885  * bad things happen.  This is worked around in the same way as the
886  * Intel problem.
887  *
888  * With page table isolation enabled, we map the LDT in ... [stay tuned]
889  */
890 #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
891 
892 #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
893 
894 /* This decides where the kernel will search for a free chunk of vm
895  * space during mmap's.
896  */
897 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
898 					0xc0000000 : 0xFFFFe000)
899 
900 #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
901 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
902 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
903 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
904 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
905 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
906 
907 #define STACK_TOP		TASK_SIZE_LOW
908 #define STACK_TOP_MAX		TASK_SIZE_MAX
909 
910 #define INIT_THREAD  {						\
911 	.addr_limit		= KERNEL_DS,			\
912 }
913 
914 extern unsigned long KSTK_ESP(struct task_struct *task);
915 
916 #endif /* CONFIG_X86_64 */
917 
918 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
919 					       unsigned long new_sp);
920 
921 /*
922  * This decides where the kernel will search for a free chunk of vm
923  * space during mmap's.
924  */
925 #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
926 #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
927 
928 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
929 
930 /* Get/set a process' ability to use the timestamp counter instruction */
931 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
932 #define SET_TSC_CTL(val)	set_tsc_mode((val))
933 
934 extern int get_tsc_mode(unsigned long adr);
935 extern int set_tsc_mode(unsigned int val);
936 
937 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
938 
939 #ifdef CONFIG_CPU_SUP_AMD
940 extern u16 amd_get_nb_id(int cpu);
941 extern u32 amd_get_nodes_per_socket(void);
942 #else
943 static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
944 static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
945 #endif
946 
947 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
948 {
949 	uint32_t base, eax, signature[3];
950 
951 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
952 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
953 
954 		if (!memcmp(sig, signature, 12) &&
955 		    (leaves == 0 || ((eax - base) >= leaves)))
956 			return base;
957 	}
958 
959 	return 0;
960 }
961 
962 extern unsigned long arch_align_stack(unsigned long sp);
963 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
964 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
965 
966 void default_idle(void);
967 #ifdef	CONFIG_XEN
968 bool xen_set_default_idle(void);
969 #else
970 #define xen_set_default_idle 0
971 #endif
972 
973 void stop_this_cpu(void *dummy);
974 void microcode_check(void);
975 
976 enum l1tf_mitigations {
977 	L1TF_MITIGATION_OFF,
978 	L1TF_MITIGATION_FLUSH_NOWARN,
979 	L1TF_MITIGATION_FLUSH,
980 	L1TF_MITIGATION_FLUSH_NOSMT,
981 	L1TF_MITIGATION_FULL,
982 	L1TF_MITIGATION_FULL_FORCE
983 };
984 
985 extern enum l1tf_mitigations l1tf_mitigation;
986 
987 enum mds_mitigations {
988 	MDS_MITIGATION_OFF,
989 	MDS_MITIGATION_FULL,
990 	MDS_MITIGATION_VMWERV,
991 };
992 
993 #endif /* _ASM_X86_PROCESSOR_H */
994