1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 #ifndef __ASSEMBLY__ 19 #include <linux/spinlock.h> 20 #include <asm/x86_init.h> 21 #include <asm/pkru.h> 22 #include <asm/fpu/api.h> 23 #include <asm/coco.h> 24 #include <asm-generic/pgtable_uffd.h> 25 #include <linux/page_table_check.h> 26 27 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 29 30 struct seq_file; 31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); 32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, 33 bool user); 34 void ptdump_walk_pgd_level_checkwx(void); 35 void ptdump_walk_user_pgd_level_checkwx(void); 36 37 /* 38 * Macros to add or remove encryption attribute 39 */ 40 #define pgprot_encrypted(prot) __pgprot(cc_mkenc(pgprot_val(prot))) 41 #define pgprot_decrypted(prot) __pgprot(cc_mkdec(pgprot_val(prot))) 42 43 #ifdef CONFIG_DEBUG_WX 44 #define debug_checkwx() ptdump_walk_pgd_level_checkwx() 45 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() 46 #else 47 #define debug_checkwx() do { } while (0) 48 #define debug_checkwx_user() do { } while (0) 49 #endif 50 51 /* 52 * ZERO_PAGE is a global shared page that is always zero: used 53 * for zero-mapped memory areas etc.. 54 */ 55 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 56 __visible; 57 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) 58 59 extern spinlock_t pgd_lock; 60 extern struct list_head pgd_list; 61 62 extern struct mm_struct *pgd_page_get_mm(struct page *page); 63 64 extern pmdval_t early_pmd_flags; 65 66 #ifdef CONFIG_PARAVIRT_XXL 67 #include <asm/paravirt.h> 68 #else /* !CONFIG_PARAVIRT_XXL */ 69 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 70 71 #define set_pte_atomic(ptep, pte) \ 72 native_set_pte_atomic(ptep, pte) 73 74 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 75 76 #ifndef __PAGETABLE_P4D_FOLDED 77 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 78 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) 79 #endif 80 81 #ifndef set_p4d 82 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 83 #endif 84 85 #ifndef __PAGETABLE_PUD_FOLDED 86 #define p4d_clear(p4d) native_p4d_clear(p4d) 87 #endif 88 89 #ifndef set_pud 90 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 91 #endif 92 93 #ifndef __PAGETABLE_PUD_FOLDED 94 #define pud_clear(pud) native_pud_clear(pud) 95 #endif 96 97 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 98 #define pmd_clear(pmd) native_pmd_clear(pmd) 99 100 #define pgd_val(x) native_pgd_val(x) 101 #define __pgd(x) native_make_pgd(x) 102 103 #ifndef __PAGETABLE_P4D_FOLDED 104 #define p4d_val(x) native_p4d_val(x) 105 #define __p4d(x) native_make_p4d(x) 106 #endif 107 108 #ifndef __PAGETABLE_PUD_FOLDED 109 #define pud_val(x) native_pud_val(x) 110 #define __pud(x) native_make_pud(x) 111 #endif 112 113 #ifndef __PAGETABLE_PMD_FOLDED 114 #define pmd_val(x) native_pmd_val(x) 115 #define __pmd(x) native_make_pmd(x) 116 #endif 117 118 #define pte_val(x) native_pte_val(x) 119 #define __pte(x) native_make_pte(x) 120 121 #define arch_end_context_switch(prev) do {} while(0) 122 #endif /* CONFIG_PARAVIRT_XXL */ 123 124 /* 125 * The following only work if pte_present() is true. 126 * Undefined behaviour if not.. 127 */ 128 static inline bool pte_dirty(pte_t pte) 129 { 130 return pte_flags(pte) & _PAGE_DIRTY_BITS; 131 } 132 133 static inline bool pte_shstk(pte_t pte) 134 { 135 return cpu_feature_enabled(X86_FEATURE_SHSTK) && 136 (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY; 137 } 138 139 static inline int pte_young(pte_t pte) 140 { 141 return pte_flags(pte) & _PAGE_ACCESSED; 142 } 143 144 static inline bool pmd_dirty(pmd_t pmd) 145 { 146 return pmd_flags(pmd) & _PAGE_DIRTY_BITS; 147 } 148 149 static inline bool pmd_shstk(pmd_t pmd) 150 { 151 return cpu_feature_enabled(X86_FEATURE_SHSTK) && 152 (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) == 153 (_PAGE_DIRTY | _PAGE_PSE); 154 } 155 156 #define pmd_young pmd_young 157 static inline int pmd_young(pmd_t pmd) 158 { 159 return pmd_flags(pmd) & _PAGE_ACCESSED; 160 } 161 162 static inline bool pud_dirty(pud_t pud) 163 { 164 return pud_flags(pud) & _PAGE_DIRTY_BITS; 165 } 166 167 static inline int pud_young(pud_t pud) 168 { 169 return pud_flags(pud) & _PAGE_ACCESSED; 170 } 171 172 static inline int pte_write(pte_t pte) 173 { 174 /* 175 * Shadow stack pages are logically writable, but do not have 176 * _PAGE_RW. Check for them separately from _PAGE_RW itself. 177 */ 178 return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte); 179 } 180 181 #define pmd_write pmd_write 182 static inline int pmd_write(pmd_t pmd) 183 { 184 /* 185 * Shadow stack pages are logically writable, but do not have 186 * _PAGE_RW. Check for them separately from _PAGE_RW itself. 187 */ 188 return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd); 189 } 190 191 #define pud_write pud_write 192 static inline int pud_write(pud_t pud) 193 { 194 return pud_flags(pud) & _PAGE_RW; 195 } 196 197 static inline int pte_huge(pte_t pte) 198 { 199 return pte_flags(pte) & _PAGE_PSE; 200 } 201 202 static inline int pte_global(pte_t pte) 203 { 204 return pte_flags(pte) & _PAGE_GLOBAL; 205 } 206 207 static inline int pte_exec(pte_t pte) 208 { 209 return !(pte_flags(pte) & _PAGE_NX); 210 } 211 212 static inline int pte_special(pte_t pte) 213 { 214 return pte_flags(pte) & _PAGE_SPECIAL; 215 } 216 217 /* Entries that were set to PROT_NONE are inverted */ 218 219 static inline u64 protnone_mask(u64 val); 220 221 #define PFN_PTE_SHIFT PAGE_SHIFT 222 223 static inline unsigned long pte_pfn(pte_t pte) 224 { 225 phys_addr_t pfn = pte_val(pte); 226 pfn ^= protnone_mask(pfn); 227 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; 228 } 229 230 static inline unsigned long pmd_pfn(pmd_t pmd) 231 { 232 phys_addr_t pfn = pmd_val(pmd); 233 pfn ^= protnone_mask(pfn); 234 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 235 } 236 237 static inline unsigned long pud_pfn(pud_t pud) 238 { 239 phys_addr_t pfn = pud_val(pud); 240 pfn ^= protnone_mask(pfn); 241 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; 242 } 243 244 static inline unsigned long p4d_pfn(p4d_t p4d) 245 { 246 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 247 } 248 249 static inline unsigned long pgd_pfn(pgd_t pgd) 250 { 251 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 252 } 253 254 #define p4d_leaf p4d_large 255 static inline int p4d_large(p4d_t p4d) 256 { 257 /* No 512 GiB pages yet */ 258 return 0; 259 } 260 261 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 262 263 #define pmd_leaf pmd_large 264 static inline int pmd_large(pmd_t pte) 265 { 266 return pmd_flags(pte) & _PAGE_PSE; 267 } 268 269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 270 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */ 271 static inline int pmd_trans_huge(pmd_t pmd) 272 { 273 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 274 } 275 276 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 277 static inline int pud_trans_huge(pud_t pud) 278 { 279 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 280 } 281 #endif 282 283 #define has_transparent_hugepage has_transparent_hugepage 284 static inline int has_transparent_hugepage(void) 285 { 286 return boot_cpu_has(X86_FEATURE_PSE); 287 } 288 289 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 290 static inline int pmd_devmap(pmd_t pmd) 291 { 292 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 293 } 294 295 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 296 static inline int pud_devmap(pud_t pud) 297 { 298 return !!(pud_val(pud) & _PAGE_DEVMAP); 299 } 300 #else 301 static inline int pud_devmap(pud_t pud) 302 { 303 return 0; 304 } 305 #endif 306 307 static inline int pgd_devmap(pgd_t pgd) 308 { 309 return 0; 310 } 311 #endif 312 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 313 314 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 315 { 316 pteval_t v = native_pte_val(pte); 317 318 return native_make_pte(v | set); 319 } 320 321 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 322 { 323 pteval_t v = native_pte_val(pte); 324 325 return native_make_pte(v & ~clear); 326 } 327 328 /* 329 * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the 330 * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So 331 * when creating dirty, write-protected memory, a software bit is used: 332 * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the 333 * Dirty bit to SavedDirty, and vice-vesra. 334 * 335 * This shifting is only done if needed. In the case of shifting 336 * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of 337 * shifting SavedDirty->Dirty, the condition is Write=1. 338 */ 339 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v) 340 { 341 pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1; 342 343 v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY; 344 v &= ~(cond << _PAGE_BIT_DIRTY); 345 346 return v; 347 } 348 349 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v) 350 { 351 pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1; 352 353 v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY; 354 v &= ~(cond << _PAGE_BIT_SAVED_DIRTY); 355 356 return v; 357 } 358 359 static inline pte_t pte_mksaveddirty(pte_t pte) 360 { 361 pteval_t v = native_pte_val(pte); 362 363 v = mksaveddirty_shift(v); 364 return native_make_pte(v); 365 } 366 367 static inline pte_t pte_clear_saveddirty(pte_t pte) 368 { 369 pteval_t v = native_pte_val(pte); 370 371 v = clear_saveddirty_shift(v); 372 return native_make_pte(v); 373 } 374 375 static inline pte_t pte_wrprotect(pte_t pte) 376 { 377 pte = pte_clear_flags(pte, _PAGE_RW); 378 379 /* 380 * Blindly clearing _PAGE_RW might accidentally create 381 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware 382 * dirty value to the software bit, if present. 383 */ 384 return pte_mksaveddirty(pte); 385 } 386 387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 388 static inline int pte_uffd_wp(pte_t pte) 389 { 390 bool wp = pte_flags(pte) & _PAGE_UFFD_WP; 391 392 #ifdef CONFIG_DEBUG_VM 393 /* 394 * Having write bit for wr-protect-marked present ptes is fatal, 395 * because it means the uffd-wp bit will be ignored and write will 396 * just go through. 397 * 398 * Use any chance of pgtable walking to verify this (e.g., when 399 * page swapped out or being migrated for all purposes). It means 400 * something is already wrong. Tell the admin even before the 401 * process crashes. We also nail it with wrong pgtable setup. 402 */ 403 WARN_ON_ONCE(wp && pte_write(pte)); 404 #endif 405 406 return wp; 407 } 408 409 static inline pte_t pte_mkuffd_wp(pte_t pte) 410 { 411 return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP)); 412 } 413 414 static inline pte_t pte_clear_uffd_wp(pte_t pte) 415 { 416 return pte_clear_flags(pte, _PAGE_UFFD_WP); 417 } 418 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 419 420 static inline pte_t pte_mkclean(pte_t pte) 421 { 422 return pte_clear_flags(pte, _PAGE_DIRTY_BITS); 423 } 424 425 static inline pte_t pte_mkold(pte_t pte) 426 { 427 return pte_clear_flags(pte, _PAGE_ACCESSED); 428 } 429 430 static inline pte_t pte_mkexec(pte_t pte) 431 { 432 return pte_clear_flags(pte, _PAGE_NX); 433 } 434 435 static inline pte_t pte_mkdirty(pte_t pte) 436 { 437 pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 438 439 return pte_mksaveddirty(pte); 440 } 441 442 static inline pte_t pte_mkwrite_shstk(pte_t pte) 443 { 444 pte = pte_clear_flags(pte, _PAGE_RW); 445 446 return pte_set_flags(pte, _PAGE_DIRTY); 447 } 448 449 static inline pte_t pte_mkyoung(pte_t pte) 450 { 451 return pte_set_flags(pte, _PAGE_ACCESSED); 452 } 453 454 static inline pte_t pte_mkwrite_novma(pte_t pte) 455 { 456 return pte_set_flags(pte, _PAGE_RW); 457 } 458 459 struct vm_area_struct; 460 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma); 461 #define pte_mkwrite pte_mkwrite 462 463 static inline pte_t pte_mkhuge(pte_t pte) 464 { 465 return pte_set_flags(pte, _PAGE_PSE); 466 } 467 468 static inline pte_t pte_clrhuge(pte_t pte) 469 { 470 return pte_clear_flags(pte, _PAGE_PSE); 471 } 472 473 static inline pte_t pte_mkglobal(pte_t pte) 474 { 475 return pte_set_flags(pte, _PAGE_GLOBAL); 476 } 477 478 static inline pte_t pte_clrglobal(pte_t pte) 479 { 480 return pte_clear_flags(pte, _PAGE_GLOBAL); 481 } 482 483 static inline pte_t pte_mkspecial(pte_t pte) 484 { 485 return pte_set_flags(pte, _PAGE_SPECIAL); 486 } 487 488 static inline pte_t pte_mkdevmap(pte_t pte) 489 { 490 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 491 } 492 493 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 494 { 495 pmdval_t v = native_pmd_val(pmd); 496 497 return native_make_pmd(v | set); 498 } 499 500 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 501 { 502 pmdval_t v = native_pmd_val(pmd); 503 504 return native_make_pmd(v & ~clear); 505 } 506 507 /* See comments above mksaveddirty_shift() */ 508 static inline pmd_t pmd_mksaveddirty(pmd_t pmd) 509 { 510 pmdval_t v = native_pmd_val(pmd); 511 512 v = mksaveddirty_shift(v); 513 return native_make_pmd(v); 514 } 515 516 /* See comments above mksaveddirty_shift() */ 517 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd) 518 { 519 pmdval_t v = native_pmd_val(pmd); 520 521 v = clear_saveddirty_shift(v); 522 return native_make_pmd(v); 523 } 524 525 static inline pmd_t pmd_wrprotect(pmd_t pmd) 526 { 527 pmd = pmd_clear_flags(pmd, _PAGE_RW); 528 529 /* 530 * Blindly clearing _PAGE_RW might accidentally create 531 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware 532 * dirty value to the software bit. 533 */ 534 return pmd_mksaveddirty(pmd); 535 } 536 537 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 538 static inline int pmd_uffd_wp(pmd_t pmd) 539 { 540 return pmd_flags(pmd) & _PAGE_UFFD_WP; 541 } 542 543 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) 544 { 545 return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP)); 546 } 547 548 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) 549 { 550 return pmd_clear_flags(pmd, _PAGE_UFFD_WP); 551 } 552 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 553 554 static inline pmd_t pmd_mkold(pmd_t pmd) 555 { 556 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 557 } 558 559 static inline pmd_t pmd_mkclean(pmd_t pmd) 560 { 561 return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS); 562 } 563 564 static inline pmd_t pmd_mkdirty(pmd_t pmd) 565 { 566 pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 567 568 return pmd_mksaveddirty(pmd); 569 } 570 571 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd) 572 { 573 pmd = pmd_clear_flags(pmd, _PAGE_RW); 574 575 return pmd_set_flags(pmd, _PAGE_DIRTY); 576 } 577 578 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 579 { 580 return pmd_set_flags(pmd, _PAGE_DEVMAP); 581 } 582 583 static inline pmd_t pmd_mkhuge(pmd_t pmd) 584 { 585 return pmd_set_flags(pmd, _PAGE_PSE); 586 } 587 588 static inline pmd_t pmd_mkyoung(pmd_t pmd) 589 { 590 return pmd_set_flags(pmd, _PAGE_ACCESSED); 591 } 592 593 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 594 { 595 return pmd_set_flags(pmd, _PAGE_RW); 596 } 597 598 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 599 #define pmd_mkwrite pmd_mkwrite 600 601 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 602 { 603 pudval_t v = native_pud_val(pud); 604 605 return native_make_pud(v | set); 606 } 607 608 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 609 { 610 pudval_t v = native_pud_val(pud); 611 612 return native_make_pud(v & ~clear); 613 } 614 615 /* See comments above mksaveddirty_shift() */ 616 static inline pud_t pud_mksaveddirty(pud_t pud) 617 { 618 pudval_t v = native_pud_val(pud); 619 620 v = mksaveddirty_shift(v); 621 return native_make_pud(v); 622 } 623 624 /* See comments above mksaveddirty_shift() */ 625 static inline pud_t pud_clear_saveddirty(pud_t pud) 626 { 627 pudval_t v = native_pud_val(pud); 628 629 v = clear_saveddirty_shift(v); 630 return native_make_pud(v); 631 } 632 633 static inline pud_t pud_mkold(pud_t pud) 634 { 635 return pud_clear_flags(pud, _PAGE_ACCESSED); 636 } 637 638 static inline pud_t pud_mkclean(pud_t pud) 639 { 640 return pud_clear_flags(pud, _PAGE_DIRTY_BITS); 641 } 642 643 static inline pud_t pud_wrprotect(pud_t pud) 644 { 645 pud = pud_clear_flags(pud, _PAGE_RW); 646 647 /* 648 * Blindly clearing _PAGE_RW might accidentally create 649 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware 650 * dirty value to the software bit. 651 */ 652 return pud_mksaveddirty(pud); 653 } 654 655 static inline pud_t pud_mkdirty(pud_t pud) 656 { 657 pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 658 659 return pud_mksaveddirty(pud); 660 } 661 662 static inline pud_t pud_mkdevmap(pud_t pud) 663 { 664 return pud_set_flags(pud, _PAGE_DEVMAP); 665 } 666 667 static inline pud_t pud_mkhuge(pud_t pud) 668 { 669 return pud_set_flags(pud, _PAGE_PSE); 670 } 671 672 static inline pud_t pud_mkyoung(pud_t pud) 673 { 674 return pud_set_flags(pud, _PAGE_ACCESSED); 675 } 676 677 static inline pud_t pud_mkwrite(pud_t pud) 678 { 679 pud = pud_set_flags(pud, _PAGE_RW); 680 681 return pud_clear_saveddirty(pud); 682 } 683 684 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 685 static inline int pte_soft_dirty(pte_t pte) 686 { 687 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 688 } 689 690 static inline int pmd_soft_dirty(pmd_t pmd) 691 { 692 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 693 } 694 695 static inline int pud_soft_dirty(pud_t pud) 696 { 697 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 698 } 699 700 static inline pte_t pte_mksoft_dirty(pte_t pte) 701 { 702 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 703 } 704 705 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 706 { 707 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 708 } 709 710 static inline pud_t pud_mksoft_dirty(pud_t pud) 711 { 712 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 713 } 714 715 static inline pte_t pte_clear_soft_dirty(pte_t pte) 716 { 717 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 718 } 719 720 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 721 { 722 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 723 } 724 725 static inline pud_t pud_clear_soft_dirty(pud_t pud) 726 { 727 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 728 } 729 730 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 731 732 /* 733 * Mask out unsupported bits in a present pgprot. Non-present pgprots 734 * can use those bits for other purposes, so leave them be. 735 */ 736 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 737 { 738 pgprotval_t protval = pgprot_val(pgprot); 739 740 if (protval & _PAGE_PRESENT) 741 protval &= __supported_pte_mask; 742 743 return protval; 744 } 745 746 static inline pgprotval_t check_pgprot(pgprot_t pgprot) 747 { 748 pgprotval_t massaged_val = massage_pgprot(pgprot); 749 750 /* mmdebug.h can not be included here because of dependencies */ 751 #ifdef CONFIG_DEBUG_VM 752 WARN_ONCE(pgprot_val(pgprot) != massaged_val, 753 "attempted to set unsupported pgprot: %016llx " 754 "bits: %016llx supported: %016llx\n", 755 (u64)pgprot_val(pgprot), 756 (u64)pgprot_val(pgprot) ^ massaged_val, 757 (u64)__supported_pte_mask); 758 #endif 759 760 return massaged_val; 761 } 762 763 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 764 { 765 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 766 pfn ^= protnone_mask(pgprot_val(pgprot)); 767 pfn &= PTE_PFN_MASK; 768 return __pte(pfn | check_pgprot(pgprot)); 769 } 770 771 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 772 { 773 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 774 pfn ^= protnone_mask(pgprot_val(pgprot)); 775 pfn &= PHYSICAL_PMD_PAGE_MASK; 776 return __pmd(pfn | check_pgprot(pgprot)); 777 } 778 779 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 780 { 781 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 782 pfn ^= protnone_mask(pgprot_val(pgprot)); 783 pfn &= PHYSICAL_PUD_PAGE_MASK; 784 return __pud(pfn | check_pgprot(pgprot)); 785 } 786 787 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 788 { 789 return pfn_pmd(pmd_pfn(pmd), 790 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 791 } 792 793 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); 794 795 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 796 { 797 pteval_t val = pte_val(pte), oldval = val; 798 pte_t pte_result; 799 800 /* 801 * Chop off the NX bit (if present), and add the NX portion of 802 * the newprot (if present): 803 */ 804 val &= _PAGE_CHG_MASK; 805 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; 806 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); 807 808 pte_result = __pte(val); 809 810 /* 811 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid: 812 * 1. Marking Write=0 PTEs Dirty=1 813 * 2. Marking Dirty=1 PTEs Write=0 814 * 815 * The first case cannot happen because the _PAGE_CHG_MASK will filter 816 * out any Dirty bit passed in newprot. Handle the second case by 817 * going through the mksaveddirty exercise. Only do this if the old 818 * value was Write=1 to avoid doing this on Shadow Stack PTEs. 819 */ 820 if (oldval & _PAGE_RW) 821 pte_result = pte_mksaveddirty(pte_result); 822 else 823 pte_result = pte_clear_saveddirty(pte_result); 824 825 return pte_result; 826 } 827 828 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 829 { 830 pmdval_t val = pmd_val(pmd), oldval = val; 831 pmd_t pmd_result; 832 833 val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY); 834 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 835 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); 836 837 pmd_result = __pmd(val); 838 839 /* 840 * To avoid creating Write=0,Dirty=1 PMDs, pte_modify() needs to avoid: 841 * 1. Marking Write=0 PMDs Dirty=1 842 * 2. Marking Dirty=1 PMDs Write=0 843 * 844 * The first case cannot happen because the _PAGE_CHG_MASK will filter 845 * out any Dirty bit passed in newprot. Handle the second case by 846 * going through the mksaveddirty exercise. Only do this if the old 847 * value was Write=1 to avoid doing this on Shadow Stack PTEs. 848 */ 849 if (oldval & _PAGE_RW) 850 pmd_result = pmd_mksaveddirty(pmd_result); 851 else 852 pmd_result = pmd_clear_saveddirty(pmd_result); 853 854 return pmd_result; 855 } 856 857 /* 858 * mprotect needs to preserve PAT and encryption bits when updating 859 * vm_page_prot 860 */ 861 #define pgprot_modify pgprot_modify 862 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 863 { 864 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 865 pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; 866 return __pgprot(preservebits | addbits); 867 } 868 869 #define pte_pgprot(x) __pgprot(pte_flags(x)) 870 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 871 #define pud_pgprot(x) __pgprot(pud_flags(x)) 872 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 873 874 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 875 876 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 877 enum page_cache_mode pcm, 878 enum page_cache_mode new_pcm) 879 { 880 /* 881 * PAT type is always WB for untracked ranges, so no need to check. 882 */ 883 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 884 return 1; 885 886 /* 887 * Certain new memtypes are not allowed with certain 888 * requested memtype: 889 * - request is uncached, return cannot be write-back 890 * - request is write-combine, return cannot be write-back 891 * - request is write-through, return cannot be write-back 892 * - request is write-through, return cannot be write-combine 893 */ 894 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 895 new_pcm == _PAGE_CACHE_MODE_WB) || 896 (pcm == _PAGE_CACHE_MODE_WC && 897 new_pcm == _PAGE_CACHE_MODE_WB) || 898 (pcm == _PAGE_CACHE_MODE_WT && 899 new_pcm == _PAGE_CACHE_MODE_WB) || 900 (pcm == _PAGE_CACHE_MODE_WT && 901 new_pcm == _PAGE_CACHE_MODE_WC)) { 902 return 0; 903 } 904 905 return 1; 906 } 907 908 pmd_t *populate_extra_pmd(unsigned long vaddr); 909 pte_t *populate_extra_pte(unsigned long vaddr); 910 911 #ifdef CONFIG_PAGE_TABLE_ISOLATION 912 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); 913 914 /* 915 * Take a PGD location (pgdp) and a pgd value that needs to be set there. 916 * Populates the user and returns the resulting PGD that must be set in 917 * the kernel copy of the page tables. 918 */ 919 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 920 { 921 if (!static_cpu_has(X86_FEATURE_PTI)) 922 return pgd; 923 return __pti_set_user_pgtbl(pgdp, pgd); 924 } 925 #else /* CONFIG_PAGE_TABLE_ISOLATION */ 926 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 927 { 928 return pgd; 929 } 930 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 931 932 #endif /* __ASSEMBLY__ */ 933 934 935 #ifdef CONFIG_X86_32 936 # include <asm/pgtable_32.h> 937 #else 938 # include <asm/pgtable_64.h> 939 #endif 940 941 #ifndef __ASSEMBLY__ 942 #include <linux/mm_types.h> 943 #include <linux/mmdebug.h> 944 #include <linux/log2.h> 945 #include <asm/fixmap.h> 946 947 static inline int pte_none(pte_t pte) 948 { 949 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 950 } 951 952 #define __HAVE_ARCH_PTE_SAME 953 static inline int pte_same(pte_t a, pte_t b) 954 { 955 return a.pte == b.pte; 956 } 957 958 static inline pte_t pte_next_pfn(pte_t pte) 959 { 960 if (__pte_needs_invert(pte_val(pte))) 961 return __pte(pte_val(pte) - (1UL << PFN_PTE_SHIFT)); 962 return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT)); 963 } 964 #define pte_next_pfn pte_next_pfn 965 966 static inline int pte_present(pte_t a) 967 { 968 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 969 } 970 971 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 972 static inline int pte_devmap(pte_t a) 973 { 974 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 975 } 976 #endif 977 978 #define pte_accessible pte_accessible 979 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 980 { 981 if (pte_flags(a) & _PAGE_PRESENT) 982 return true; 983 984 if ((pte_flags(a) & _PAGE_PROTNONE) && 985 atomic_read(&mm->tlb_flush_pending)) 986 return true; 987 988 return false; 989 } 990 991 static inline int pmd_present(pmd_t pmd) 992 { 993 /* 994 * Checking for _PAGE_PSE is needed too because 995 * split_huge_page will temporarily clear the present bit (but 996 * the _PAGE_PSE flag will remain set at all times while the 997 * _PAGE_PRESENT bit is clear). 998 */ 999 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 1000 } 1001 1002 #ifdef CONFIG_NUMA_BALANCING 1003 /* 1004 * These work without NUMA balancing but the kernel does not care. See the 1005 * comment in include/linux/pgtable.h 1006 */ 1007 static inline int pte_protnone(pte_t pte) 1008 { 1009 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 1010 == _PAGE_PROTNONE; 1011 } 1012 1013 static inline int pmd_protnone(pmd_t pmd) 1014 { 1015 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 1016 == _PAGE_PROTNONE; 1017 } 1018 #endif /* CONFIG_NUMA_BALANCING */ 1019 1020 static inline int pmd_none(pmd_t pmd) 1021 { 1022 /* Only check low word on 32-bit platforms, since it might be 1023 out of sync with upper half. */ 1024 unsigned long val = native_pmd_val(pmd); 1025 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 1026 } 1027 1028 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 1029 { 1030 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 1031 } 1032 1033 /* 1034 * Currently stuck as a macro due to indirect forward reference to 1035 * linux/mmzone.h's __section_mem_map_addr() definition: 1036 */ 1037 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1038 1039 /* 1040 * Conversion functions: convert a page and protection to a page entry, 1041 * and a page entry and page directory to the page they refer to. 1042 * 1043 * (Currently stuck as a macro because of indirect forward reference 1044 * to linux/mm.h:page_to_nid()) 1045 */ 1046 #define mk_pte(page, pgprot) \ 1047 ({ \ 1048 pgprot_t __pgprot = pgprot; \ 1049 \ 1050 WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \ 1051 _PAGE_DIRTY); \ 1052 pfn_pte(page_to_pfn(page), __pgprot); \ 1053 }) 1054 1055 static inline int pmd_bad(pmd_t pmd) 1056 { 1057 return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) != 1058 (_KERNPG_TABLE & ~_PAGE_ACCESSED); 1059 } 1060 1061 static inline unsigned long pages_to_mb(unsigned long npg) 1062 { 1063 return npg >> (20 - PAGE_SHIFT); 1064 } 1065 1066 #if CONFIG_PGTABLE_LEVELS > 2 1067 static inline int pud_none(pud_t pud) 1068 { 1069 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 1070 } 1071 1072 static inline int pud_present(pud_t pud) 1073 { 1074 return pud_flags(pud) & _PAGE_PRESENT; 1075 } 1076 1077 static inline pmd_t *pud_pgtable(pud_t pud) 1078 { 1079 return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud)); 1080 } 1081 1082 /* 1083 * Currently stuck as a macro due to indirect forward reference to 1084 * linux/mmzone.h's __section_mem_map_addr() definition: 1085 */ 1086 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1087 1088 #define pud_leaf pud_large 1089 static inline int pud_large(pud_t pud) 1090 { 1091 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 1092 (_PAGE_PSE | _PAGE_PRESENT); 1093 } 1094 1095 static inline int pud_bad(pud_t pud) 1096 { 1097 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 1098 } 1099 #else 1100 #define pud_leaf pud_large 1101 static inline int pud_large(pud_t pud) 1102 { 1103 return 0; 1104 } 1105 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 1106 1107 #if CONFIG_PGTABLE_LEVELS > 3 1108 static inline int p4d_none(p4d_t p4d) 1109 { 1110 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 1111 } 1112 1113 static inline int p4d_present(p4d_t p4d) 1114 { 1115 return p4d_flags(p4d) & _PAGE_PRESENT; 1116 } 1117 1118 static inline pud_t *p4d_pgtable(p4d_t p4d) 1119 { 1120 return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 1121 } 1122 1123 /* 1124 * Currently stuck as a macro due to indirect forward reference to 1125 * linux/mmzone.h's __section_mem_map_addr() definition: 1126 */ 1127 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1128 1129 static inline int p4d_bad(p4d_t p4d) 1130 { 1131 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 1132 1133 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 1134 ignore_flags |= _PAGE_NX; 1135 1136 return (p4d_flags(p4d) & ~ignore_flags) != 0; 1137 } 1138 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 1139 1140 static inline unsigned long p4d_index(unsigned long address) 1141 { 1142 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 1143 } 1144 1145 #if CONFIG_PGTABLE_LEVELS > 4 1146 static inline int pgd_present(pgd_t pgd) 1147 { 1148 if (!pgtable_l5_enabled()) 1149 return 1; 1150 return pgd_flags(pgd) & _PAGE_PRESENT; 1151 } 1152 1153 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 1154 { 1155 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 1156 } 1157 1158 /* 1159 * Currently stuck as a macro due to indirect forward reference to 1160 * linux/mmzone.h's __section_mem_map_addr() definition: 1161 */ 1162 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1163 1164 /* to find an entry in a page-table-directory. */ 1165 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1166 { 1167 if (!pgtable_l5_enabled()) 1168 return (p4d_t *)pgd; 1169 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 1170 } 1171 1172 static inline int pgd_bad(pgd_t pgd) 1173 { 1174 unsigned long ignore_flags = _PAGE_USER; 1175 1176 if (!pgtable_l5_enabled()) 1177 return 0; 1178 1179 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 1180 ignore_flags |= _PAGE_NX; 1181 1182 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 1183 } 1184 1185 static inline int pgd_none(pgd_t pgd) 1186 { 1187 if (!pgtable_l5_enabled()) 1188 return 0; 1189 /* 1190 * There is no need to do a workaround for the KNL stray 1191 * A/D bit erratum here. PGDs only point to page tables 1192 * except on 32-bit non-PAE which is not supported on 1193 * KNL. 1194 */ 1195 return !native_pgd_val(pgd); 1196 } 1197 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1198 1199 #endif /* __ASSEMBLY__ */ 1200 1201 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 1202 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 1203 1204 #ifndef __ASSEMBLY__ 1205 1206 extern int direct_gbpages; 1207 void init_mem_mapping(void); 1208 void early_alloc_pgt_buf(void); 1209 extern void memblock_find_dma_reserve(void); 1210 void __init poking_init(void); 1211 unsigned long init_memory_mapping(unsigned long start, 1212 unsigned long end, pgprot_t prot); 1213 1214 #ifdef CONFIG_X86_64 1215 extern pgd_t trampoline_pgd_entry; 1216 #endif 1217 1218 /* local pte updates need not use xchg for locking */ 1219 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 1220 { 1221 pte_t res = *ptep; 1222 1223 /* Pure native function needs no input for mm, addr */ 1224 native_pte_clear(NULL, 0, ptep); 1225 return res; 1226 } 1227 1228 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 1229 { 1230 pmd_t res = *pmdp; 1231 1232 native_pmd_clear(pmdp); 1233 return res; 1234 } 1235 1236 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 1237 { 1238 pud_t res = *pudp; 1239 1240 native_pud_clear(pudp); 1241 return res; 1242 } 1243 1244 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1245 pmd_t *pmdp, pmd_t pmd) 1246 { 1247 page_table_check_pmd_set(mm, pmdp, pmd); 1248 set_pmd(pmdp, pmd); 1249 } 1250 1251 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 1252 pud_t *pudp, pud_t pud) 1253 { 1254 page_table_check_pud_set(mm, pudp, pud); 1255 native_set_pud(pudp, pud); 1256 } 1257 1258 /* 1259 * We only update the dirty/accessed state if we set 1260 * the dirty bit by hand in the kernel, since the hardware 1261 * will do the accessed bit for us, and we don't want to 1262 * race with other CPU's that might be updating the dirty 1263 * bit at the same time. 1264 */ 1265 struct vm_area_struct; 1266 1267 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1268 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1269 unsigned long address, pte_t *ptep, 1270 pte_t entry, int dirty); 1271 1272 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1273 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1274 unsigned long addr, pte_t *ptep); 1275 1276 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1277 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1278 unsigned long address, pte_t *ptep); 1279 1280 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1281 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1282 pte_t *ptep) 1283 { 1284 pte_t pte = native_ptep_get_and_clear(ptep); 1285 page_table_check_pte_clear(mm, pte); 1286 return pte; 1287 } 1288 1289 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1290 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1291 unsigned long addr, pte_t *ptep, 1292 int full) 1293 { 1294 pte_t pte; 1295 if (full) { 1296 /* 1297 * Full address destruction in progress; paravirt does not 1298 * care about updates and native needs no locking 1299 */ 1300 pte = native_local_ptep_get_and_clear(ptep); 1301 page_table_check_pte_clear(mm, pte); 1302 } else { 1303 pte = ptep_get_and_clear(mm, addr, ptep); 1304 } 1305 return pte; 1306 } 1307 1308 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1309 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1310 unsigned long addr, pte_t *ptep) 1311 { 1312 /* 1313 * Avoid accidentally creating shadow stack PTEs 1314 * (Write=0,Dirty=1). Use cmpxchg() to prevent races with 1315 * the hardware setting Dirty=1. 1316 */ 1317 pte_t old_pte, new_pte; 1318 1319 old_pte = READ_ONCE(*ptep); 1320 do { 1321 new_pte = pte_wrprotect(old_pte); 1322 } while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte)); 1323 } 1324 1325 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0) 1326 1327 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1328 1329 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1330 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1331 unsigned long address, pmd_t *pmdp, 1332 pmd_t entry, int dirty); 1333 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1334 unsigned long address, pud_t *pudp, 1335 pud_t entry, int dirty); 1336 1337 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1338 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1339 unsigned long addr, pmd_t *pmdp); 1340 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1341 unsigned long addr, pud_t *pudp); 1342 1343 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1344 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1345 unsigned long address, pmd_t *pmdp); 1346 1347 1348 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1349 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1350 pmd_t *pmdp) 1351 { 1352 pmd_t pmd = native_pmdp_get_and_clear(pmdp); 1353 1354 page_table_check_pmd_clear(mm, pmd); 1355 1356 return pmd; 1357 } 1358 1359 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1360 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1361 unsigned long addr, pud_t *pudp) 1362 { 1363 pud_t pud = native_pudp_get_and_clear(pudp); 1364 1365 page_table_check_pud_clear(mm, pud); 1366 1367 return pud; 1368 } 1369 1370 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1371 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1372 unsigned long addr, pmd_t *pmdp) 1373 { 1374 /* 1375 * Avoid accidentally creating shadow stack PTEs 1376 * (Write=0,Dirty=1). Use cmpxchg() to prevent races with 1377 * the hardware setting Dirty=1. 1378 */ 1379 pmd_t old_pmd, new_pmd; 1380 1381 old_pmd = READ_ONCE(*pmdp); 1382 do { 1383 new_pmd = pmd_wrprotect(old_pmd); 1384 } while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd)); 1385 } 1386 1387 #ifndef pmdp_establish 1388 #define pmdp_establish pmdp_establish 1389 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1390 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1391 { 1392 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 1393 if (IS_ENABLED(CONFIG_SMP)) { 1394 return xchg(pmdp, pmd); 1395 } else { 1396 pmd_t old = *pmdp; 1397 WRITE_ONCE(*pmdp, pmd); 1398 return old; 1399 } 1400 } 1401 #endif 1402 1403 #define __HAVE_ARCH_PMDP_INVALIDATE_AD 1404 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 1405 unsigned long address, pmd_t *pmdp); 1406 1407 /* 1408 * Page table pages are page-aligned. The lower half of the top 1409 * level is used for userspace and the top half for the kernel. 1410 * 1411 * Returns true for parts of the PGD that map userspace and 1412 * false for the parts that map the kernel. 1413 */ 1414 static inline bool pgdp_maps_userspace(void *__ptr) 1415 { 1416 unsigned long ptr = (unsigned long)__ptr; 1417 1418 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); 1419 } 1420 1421 #define pgd_leaf pgd_large 1422 static inline int pgd_large(pgd_t pgd) { return 0; } 1423 1424 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1425 /* 1426 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages 1427 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and 1428 * the user one is in the last 4k. To switch between them, you 1429 * just need to flip the 12th bit in their addresses. 1430 */ 1431 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT 1432 1433 /* 1434 * This generates better code than the inline assembly in 1435 * __set_bit(). 1436 */ 1437 static inline void *ptr_set_bit(void *ptr, int bit) 1438 { 1439 unsigned long __ptr = (unsigned long)ptr; 1440 1441 __ptr |= BIT(bit); 1442 return (void *)__ptr; 1443 } 1444 static inline void *ptr_clear_bit(void *ptr, int bit) 1445 { 1446 unsigned long __ptr = (unsigned long)ptr; 1447 1448 __ptr &= ~BIT(bit); 1449 return (void *)__ptr; 1450 } 1451 1452 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) 1453 { 1454 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1455 } 1456 1457 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) 1458 { 1459 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1460 } 1461 1462 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) 1463 { 1464 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1465 } 1466 1467 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) 1468 { 1469 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1470 } 1471 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 1472 1473 /* 1474 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1475 * 1476 * dst - pointer to pgd range anywhere on a pgd page 1477 * src - "" 1478 * count - the number of pgds to copy. 1479 * 1480 * dst and src can be on the same page, but the range must not overlap, 1481 * and must not cross a page boundary. 1482 */ 1483 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1484 { 1485 memcpy(dst, src, count * sizeof(pgd_t)); 1486 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1487 if (!static_cpu_has(X86_FEATURE_PTI)) 1488 return; 1489 /* Clone the user space pgd as well */ 1490 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1491 count * sizeof(pgd_t)); 1492 #endif 1493 } 1494 1495 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1496 static inline int page_level_shift(enum pg_level level) 1497 { 1498 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1499 } 1500 static inline unsigned long page_level_size(enum pg_level level) 1501 { 1502 return 1UL << page_level_shift(level); 1503 } 1504 static inline unsigned long page_level_mask(enum pg_level level) 1505 { 1506 return ~(page_level_size(level) - 1); 1507 } 1508 1509 /* 1510 * The x86 doesn't have any external MMU info: the kernel page 1511 * tables contain all the necessary information. 1512 */ 1513 static inline void update_mmu_cache(struct vm_area_struct *vma, 1514 unsigned long addr, pte_t *ptep) 1515 { 1516 } 1517 static inline void update_mmu_cache_range(struct vm_fault *vmf, 1518 struct vm_area_struct *vma, unsigned long addr, 1519 pte_t *ptep, unsigned int nr) 1520 { 1521 } 1522 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1523 unsigned long addr, pmd_t *pmd) 1524 { 1525 } 1526 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1527 unsigned long addr, pud_t *pud) 1528 { 1529 } 1530 static inline pte_t pte_swp_mkexclusive(pte_t pte) 1531 { 1532 return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE); 1533 } 1534 1535 static inline int pte_swp_exclusive(pte_t pte) 1536 { 1537 return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE; 1538 } 1539 1540 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 1541 { 1542 return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE); 1543 } 1544 1545 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1546 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1547 { 1548 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1549 } 1550 1551 static inline int pte_swp_soft_dirty(pte_t pte) 1552 { 1553 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1554 } 1555 1556 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1557 { 1558 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1559 } 1560 1561 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1562 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1563 { 1564 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1565 } 1566 1567 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1568 { 1569 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1570 } 1571 1572 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1573 { 1574 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1575 } 1576 #endif 1577 #endif 1578 1579 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1580 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 1581 { 1582 return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); 1583 } 1584 1585 static inline int pte_swp_uffd_wp(pte_t pte) 1586 { 1587 return pte_flags(pte) & _PAGE_SWP_UFFD_WP; 1588 } 1589 1590 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 1591 { 1592 return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); 1593 } 1594 1595 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) 1596 { 1597 return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); 1598 } 1599 1600 static inline int pmd_swp_uffd_wp(pmd_t pmd) 1601 { 1602 return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; 1603 } 1604 1605 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) 1606 { 1607 return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); 1608 } 1609 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 1610 1611 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1612 { 1613 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1614 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1615 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1616 #else 1617 return 0; 1618 #endif 1619 } 1620 1621 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1622 { 1623 u32 pkru = read_pkru(); 1624 1625 if (!__pkru_allows_read(pkru, pkey)) 1626 return false; 1627 if (write && !__pkru_allows_write(pkru, pkey)) 1628 return false; 1629 1630 return true; 1631 } 1632 1633 /* 1634 * 'pteval' can come from a PTE, PMD or PUD. We only check 1635 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1636 * same value on all 3 types. 1637 */ 1638 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1639 { 1640 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1641 1642 /* 1643 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel 1644 * shouldn't generally allow access to, but since they 1645 * are already Write=0, the below logic covers both cases. 1646 */ 1647 if (write) 1648 need_pte_bits |= _PAGE_RW; 1649 1650 if ((pteval & need_pte_bits) != need_pte_bits) 1651 return 0; 1652 1653 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1654 } 1655 1656 #define pte_access_permitted pte_access_permitted 1657 static inline bool pte_access_permitted(pte_t pte, bool write) 1658 { 1659 return __pte_access_permitted(pte_val(pte), write); 1660 } 1661 1662 #define pmd_access_permitted pmd_access_permitted 1663 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1664 { 1665 return __pte_access_permitted(pmd_val(pmd), write); 1666 } 1667 1668 #define pud_access_permitted pud_access_permitted 1669 static inline bool pud_access_permitted(pud_t pud, bool write) 1670 { 1671 return __pte_access_permitted(pud_val(pud), write); 1672 } 1673 1674 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 1675 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); 1676 1677 static inline bool arch_has_pfn_modify_check(void) 1678 { 1679 return boot_cpu_has_bug(X86_BUG_L1TF); 1680 } 1681 1682 #define arch_has_hw_pte_young arch_has_hw_pte_young 1683 static inline bool arch_has_hw_pte_young(void) 1684 { 1685 return true; 1686 } 1687 1688 #define arch_check_zapped_pte arch_check_zapped_pte 1689 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte); 1690 1691 #define arch_check_zapped_pmd arch_check_zapped_pmd 1692 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd); 1693 1694 #ifdef CONFIG_XEN_PV 1695 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young 1696 static inline bool arch_has_hw_nonleaf_pmd_young(void) 1697 { 1698 return !cpu_feature_enabled(X86_FEATURE_XENPV); 1699 } 1700 #endif 1701 1702 #ifdef CONFIG_PAGE_TABLE_CHECK 1703 static inline bool pte_user_accessible_page(pte_t pte) 1704 { 1705 return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER); 1706 } 1707 1708 static inline bool pmd_user_accessible_page(pmd_t pmd) 1709 { 1710 return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER); 1711 } 1712 1713 static inline bool pud_user_accessible_page(pud_t pud) 1714 { 1715 return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER); 1716 } 1717 #endif 1718 1719 #endif /* __ASSEMBLY__ */ 1720 1721 #endif /* _ASM_X86_PGTABLE_H */ 1722