1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 /* 19 * Macros to add or remove encryption attribute 20 */ 21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) 22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) 23 24 #ifndef __ASSEMBLY__ 25 #include <asm/x86_init.h> 26 #include <asm/fpu/xstate.h> 27 #include <asm/fpu/api.h> 28 29 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 30 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 31 32 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); 33 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, 34 bool user); 35 void ptdump_walk_pgd_level_checkwx(void); 36 void ptdump_walk_user_pgd_level_checkwx(void); 37 38 #ifdef CONFIG_DEBUG_WX 39 #define debug_checkwx() ptdump_walk_pgd_level_checkwx() 40 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() 41 #else 42 #define debug_checkwx() do { } while (0) 43 #define debug_checkwx_user() do { } while (0) 44 #endif 45 46 /* 47 * ZERO_PAGE is a global shared page that is always zero: used 48 * for zero-mapped memory areas etc.. 49 */ 50 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 51 __visible; 52 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) 53 54 extern spinlock_t pgd_lock; 55 extern struct list_head pgd_list; 56 57 extern struct mm_struct *pgd_page_get_mm(struct page *page); 58 59 extern pmdval_t early_pmd_flags; 60 61 #ifdef CONFIG_PARAVIRT_XXL 62 #include <asm/paravirt.h> 63 #else /* !CONFIG_PARAVIRT_XXL */ 64 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 65 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 66 67 #define set_pte_atomic(ptep, pte) \ 68 native_set_pte_atomic(ptep, pte) 69 70 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 71 72 #ifndef __PAGETABLE_P4D_FOLDED 73 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 74 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) 75 #endif 76 77 #ifndef set_p4d 78 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 79 #endif 80 81 #ifndef __PAGETABLE_PUD_FOLDED 82 #define p4d_clear(p4d) native_p4d_clear(p4d) 83 #endif 84 85 #ifndef set_pud 86 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 87 #endif 88 89 #ifndef __PAGETABLE_PUD_FOLDED 90 #define pud_clear(pud) native_pud_clear(pud) 91 #endif 92 93 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 94 #define pmd_clear(pmd) native_pmd_clear(pmd) 95 96 #define pgd_val(x) native_pgd_val(x) 97 #define __pgd(x) native_make_pgd(x) 98 99 #ifndef __PAGETABLE_P4D_FOLDED 100 #define p4d_val(x) native_p4d_val(x) 101 #define __p4d(x) native_make_p4d(x) 102 #endif 103 104 #ifndef __PAGETABLE_PUD_FOLDED 105 #define pud_val(x) native_pud_val(x) 106 #define __pud(x) native_make_pud(x) 107 #endif 108 109 #ifndef __PAGETABLE_PMD_FOLDED 110 #define pmd_val(x) native_pmd_val(x) 111 #define __pmd(x) native_make_pmd(x) 112 #endif 113 114 #define pte_val(x) native_pte_val(x) 115 #define __pte(x) native_make_pte(x) 116 117 #define arch_end_context_switch(prev) do {} while(0) 118 #endif /* CONFIG_PARAVIRT_XXL */ 119 120 /* 121 * The following only work if pte_present() is true. 122 * Undefined behaviour if not.. 123 */ 124 static inline int pte_dirty(pte_t pte) 125 { 126 return pte_flags(pte) & _PAGE_DIRTY; 127 } 128 129 130 static inline u32 read_pkru(void) 131 { 132 if (boot_cpu_has(X86_FEATURE_OSPKE)) 133 return rdpkru(); 134 return 0; 135 } 136 137 static inline void write_pkru(u32 pkru) 138 { 139 struct pkru_state *pk; 140 141 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 142 return; 143 144 pk = get_xsave_addr(¤t->thread.fpu.state.xsave, XFEATURE_PKRU); 145 146 /* 147 * The PKRU value in xstate needs to be in sync with the value that is 148 * written to the CPU. The FPU restore on return to userland would 149 * otherwise load the previous value again. 150 */ 151 fpregs_lock(); 152 if (pk) 153 pk->pkru = pkru; 154 __write_pkru(pkru); 155 fpregs_unlock(); 156 } 157 158 static inline int pte_young(pte_t pte) 159 { 160 return pte_flags(pte) & _PAGE_ACCESSED; 161 } 162 163 static inline int pmd_dirty(pmd_t pmd) 164 { 165 return pmd_flags(pmd) & _PAGE_DIRTY; 166 } 167 168 static inline int pmd_young(pmd_t pmd) 169 { 170 return pmd_flags(pmd) & _PAGE_ACCESSED; 171 } 172 173 static inline int pud_dirty(pud_t pud) 174 { 175 return pud_flags(pud) & _PAGE_DIRTY; 176 } 177 178 static inline int pud_young(pud_t pud) 179 { 180 return pud_flags(pud) & _PAGE_ACCESSED; 181 } 182 183 static inline int pte_write(pte_t pte) 184 { 185 return pte_flags(pte) & _PAGE_RW; 186 } 187 188 static inline int pte_huge(pte_t pte) 189 { 190 return pte_flags(pte) & _PAGE_PSE; 191 } 192 193 static inline int pte_global(pte_t pte) 194 { 195 return pte_flags(pte) & _PAGE_GLOBAL; 196 } 197 198 static inline int pte_exec(pte_t pte) 199 { 200 return !(pte_flags(pte) & _PAGE_NX); 201 } 202 203 static inline int pte_special(pte_t pte) 204 { 205 return pte_flags(pte) & _PAGE_SPECIAL; 206 } 207 208 /* Entries that were set to PROT_NONE are inverted */ 209 210 static inline u64 protnone_mask(u64 val); 211 212 static inline unsigned long pte_pfn(pte_t pte) 213 { 214 phys_addr_t pfn = pte_val(pte); 215 pfn ^= protnone_mask(pfn); 216 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; 217 } 218 219 static inline unsigned long pmd_pfn(pmd_t pmd) 220 { 221 phys_addr_t pfn = pmd_val(pmd); 222 pfn ^= protnone_mask(pfn); 223 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 224 } 225 226 static inline unsigned long pud_pfn(pud_t pud) 227 { 228 phys_addr_t pfn = pud_val(pud); 229 pfn ^= protnone_mask(pfn); 230 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; 231 } 232 233 static inline unsigned long p4d_pfn(p4d_t p4d) 234 { 235 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 236 } 237 238 static inline unsigned long pgd_pfn(pgd_t pgd) 239 { 240 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 241 } 242 243 #define p4d_leaf p4d_large 244 static inline int p4d_large(p4d_t p4d) 245 { 246 /* No 512 GiB pages yet */ 247 return 0; 248 } 249 250 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 251 252 #define pmd_leaf pmd_large 253 static inline int pmd_large(pmd_t pte) 254 { 255 return pmd_flags(pte) & _PAGE_PSE; 256 } 257 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 static inline int pmd_trans_huge(pmd_t pmd) 260 { 261 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 262 } 263 264 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 265 static inline int pud_trans_huge(pud_t pud) 266 { 267 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 268 } 269 #endif 270 271 #define has_transparent_hugepage has_transparent_hugepage 272 static inline int has_transparent_hugepage(void) 273 { 274 return boot_cpu_has(X86_FEATURE_PSE); 275 } 276 277 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 278 static inline int pmd_devmap(pmd_t pmd) 279 { 280 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 281 } 282 283 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 284 static inline int pud_devmap(pud_t pud) 285 { 286 return !!(pud_val(pud) & _PAGE_DEVMAP); 287 } 288 #else 289 static inline int pud_devmap(pud_t pud) 290 { 291 return 0; 292 } 293 #endif 294 295 static inline int pgd_devmap(pgd_t pgd) 296 { 297 return 0; 298 } 299 #endif 300 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 301 302 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 303 { 304 pteval_t v = native_pte_val(pte); 305 306 return native_make_pte(v | set); 307 } 308 309 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 310 { 311 pteval_t v = native_pte_val(pte); 312 313 return native_make_pte(v & ~clear); 314 } 315 316 static inline pte_t pte_mkclean(pte_t pte) 317 { 318 return pte_clear_flags(pte, _PAGE_DIRTY); 319 } 320 321 static inline pte_t pte_mkold(pte_t pte) 322 { 323 return pte_clear_flags(pte, _PAGE_ACCESSED); 324 } 325 326 static inline pte_t pte_wrprotect(pte_t pte) 327 { 328 return pte_clear_flags(pte, _PAGE_RW); 329 } 330 331 static inline pte_t pte_mkexec(pte_t pte) 332 { 333 return pte_clear_flags(pte, _PAGE_NX); 334 } 335 336 static inline pte_t pte_mkdirty(pte_t pte) 337 { 338 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 339 } 340 341 static inline pte_t pte_mkyoung(pte_t pte) 342 { 343 return pte_set_flags(pte, _PAGE_ACCESSED); 344 } 345 346 static inline pte_t pte_mkwrite(pte_t pte) 347 { 348 return pte_set_flags(pte, _PAGE_RW); 349 } 350 351 static inline pte_t pte_mkhuge(pte_t pte) 352 { 353 return pte_set_flags(pte, _PAGE_PSE); 354 } 355 356 static inline pte_t pte_clrhuge(pte_t pte) 357 { 358 return pte_clear_flags(pte, _PAGE_PSE); 359 } 360 361 static inline pte_t pte_mkglobal(pte_t pte) 362 { 363 return pte_set_flags(pte, _PAGE_GLOBAL); 364 } 365 366 static inline pte_t pte_clrglobal(pte_t pte) 367 { 368 return pte_clear_flags(pte, _PAGE_GLOBAL); 369 } 370 371 static inline pte_t pte_mkspecial(pte_t pte) 372 { 373 return pte_set_flags(pte, _PAGE_SPECIAL); 374 } 375 376 static inline pte_t pte_mkdevmap(pte_t pte) 377 { 378 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 379 } 380 381 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 382 { 383 pmdval_t v = native_pmd_val(pmd); 384 385 return native_make_pmd(v | set); 386 } 387 388 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 389 { 390 pmdval_t v = native_pmd_val(pmd); 391 392 return native_make_pmd(v & ~clear); 393 } 394 395 static inline pmd_t pmd_mkold(pmd_t pmd) 396 { 397 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 398 } 399 400 static inline pmd_t pmd_mkclean(pmd_t pmd) 401 { 402 return pmd_clear_flags(pmd, _PAGE_DIRTY); 403 } 404 405 static inline pmd_t pmd_wrprotect(pmd_t pmd) 406 { 407 return pmd_clear_flags(pmd, _PAGE_RW); 408 } 409 410 static inline pmd_t pmd_mkdirty(pmd_t pmd) 411 { 412 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 413 } 414 415 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 416 { 417 return pmd_set_flags(pmd, _PAGE_DEVMAP); 418 } 419 420 static inline pmd_t pmd_mkhuge(pmd_t pmd) 421 { 422 return pmd_set_flags(pmd, _PAGE_PSE); 423 } 424 425 static inline pmd_t pmd_mkyoung(pmd_t pmd) 426 { 427 return pmd_set_flags(pmd, _PAGE_ACCESSED); 428 } 429 430 static inline pmd_t pmd_mkwrite(pmd_t pmd) 431 { 432 return pmd_set_flags(pmd, _PAGE_RW); 433 } 434 435 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 436 { 437 pudval_t v = native_pud_val(pud); 438 439 return native_make_pud(v | set); 440 } 441 442 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 443 { 444 pudval_t v = native_pud_val(pud); 445 446 return native_make_pud(v & ~clear); 447 } 448 449 static inline pud_t pud_mkold(pud_t pud) 450 { 451 return pud_clear_flags(pud, _PAGE_ACCESSED); 452 } 453 454 static inline pud_t pud_mkclean(pud_t pud) 455 { 456 return pud_clear_flags(pud, _PAGE_DIRTY); 457 } 458 459 static inline pud_t pud_wrprotect(pud_t pud) 460 { 461 return pud_clear_flags(pud, _PAGE_RW); 462 } 463 464 static inline pud_t pud_mkdirty(pud_t pud) 465 { 466 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 467 } 468 469 static inline pud_t pud_mkdevmap(pud_t pud) 470 { 471 return pud_set_flags(pud, _PAGE_DEVMAP); 472 } 473 474 static inline pud_t pud_mkhuge(pud_t pud) 475 { 476 return pud_set_flags(pud, _PAGE_PSE); 477 } 478 479 static inline pud_t pud_mkyoung(pud_t pud) 480 { 481 return pud_set_flags(pud, _PAGE_ACCESSED); 482 } 483 484 static inline pud_t pud_mkwrite(pud_t pud) 485 { 486 return pud_set_flags(pud, _PAGE_RW); 487 } 488 489 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 490 static inline int pte_soft_dirty(pte_t pte) 491 { 492 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 493 } 494 495 static inline int pmd_soft_dirty(pmd_t pmd) 496 { 497 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 498 } 499 500 static inline int pud_soft_dirty(pud_t pud) 501 { 502 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 503 } 504 505 static inline pte_t pte_mksoft_dirty(pte_t pte) 506 { 507 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 508 } 509 510 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 511 { 512 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 513 } 514 515 static inline pud_t pud_mksoft_dirty(pud_t pud) 516 { 517 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 518 } 519 520 static inline pte_t pte_clear_soft_dirty(pte_t pte) 521 { 522 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 523 } 524 525 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 526 { 527 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 528 } 529 530 static inline pud_t pud_clear_soft_dirty(pud_t pud) 531 { 532 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 533 } 534 535 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 536 537 /* 538 * Mask out unsupported bits in a present pgprot. Non-present pgprots 539 * can use those bits for other purposes, so leave them be. 540 */ 541 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 542 { 543 pgprotval_t protval = pgprot_val(pgprot); 544 545 if (protval & _PAGE_PRESENT) 546 protval &= __supported_pte_mask; 547 548 return protval; 549 } 550 551 static inline pgprotval_t check_pgprot(pgprot_t pgprot) 552 { 553 pgprotval_t massaged_val = massage_pgprot(pgprot); 554 555 /* mmdebug.h can not be included here because of dependencies */ 556 #ifdef CONFIG_DEBUG_VM 557 WARN_ONCE(pgprot_val(pgprot) != massaged_val, 558 "attempted to set unsupported pgprot: %016llx " 559 "bits: %016llx supported: %016llx\n", 560 (u64)pgprot_val(pgprot), 561 (u64)pgprot_val(pgprot) ^ massaged_val, 562 (u64)__supported_pte_mask); 563 #endif 564 565 return massaged_val; 566 } 567 568 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 569 { 570 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 571 pfn ^= protnone_mask(pgprot_val(pgprot)); 572 pfn &= PTE_PFN_MASK; 573 return __pte(pfn | check_pgprot(pgprot)); 574 } 575 576 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 577 { 578 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 579 pfn ^= protnone_mask(pgprot_val(pgprot)); 580 pfn &= PHYSICAL_PMD_PAGE_MASK; 581 return __pmd(pfn | check_pgprot(pgprot)); 582 } 583 584 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 585 { 586 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 587 pfn ^= protnone_mask(pgprot_val(pgprot)); 588 pfn &= PHYSICAL_PUD_PAGE_MASK; 589 return __pud(pfn | check_pgprot(pgprot)); 590 } 591 592 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 593 { 594 return pfn_pmd(pmd_pfn(pmd), 595 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 596 } 597 598 static inline pud_t pud_mknotpresent(pud_t pud) 599 { 600 return pfn_pud(pud_pfn(pud), 601 __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 602 } 603 604 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); 605 606 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 607 { 608 pteval_t val = pte_val(pte), oldval = val; 609 610 /* 611 * Chop off the NX bit (if present), and add the NX portion of 612 * the newprot (if present): 613 */ 614 val &= _PAGE_CHG_MASK; 615 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; 616 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); 617 return __pte(val); 618 } 619 620 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 621 { 622 pmdval_t val = pmd_val(pmd), oldval = val; 623 624 val &= _HPAGE_CHG_MASK; 625 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 626 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); 627 return __pmd(val); 628 } 629 630 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 631 #define pgprot_modify pgprot_modify 632 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 633 { 634 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 635 pgprotval_t addbits = pgprot_val(newprot); 636 return __pgprot(preservebits | addbits); 637 } 638 639 #define pte_pgprot(x) __pgprot(pte_flags(x)) 640 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 641 #define pud_pgprot(x) __pgprot(pud_flags(x)) 642 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 643 644 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 645 646 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 647 { 648 return canon_pgprot(prot); 649 } 650 651 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 652 enum page_cache_mode pcm, 653 enum page_cache_mode new_pcm) 654 { 655 /* 656 * PAT type is always WB for untracked ranges, so no need to check. 657 */ 658 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 659 return 1; 660 661 /* 662 * Certain new memtypes are not allowed with certain 663 * requested memtype: 664 * - request is uncached, return cannot be write-back 665 * - request is write-combine, return cannot be write-back 666 * - request is write-through, return cannot be write-back 667 * - request is write-through, return cannot be write-combine 668 */ 669 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 670 new_pcm == _PAGE_CACHE_MODE_WB) || 671 (pcm == _PAGE_CACHE_MODE_WC && 672 new_pcm == _PAGE_CACHE_MODE_WB) || 673 (pcm == _PAGE_CACHE_MODE_WT && 674 new_pcm == _PAGE_CACHE_MODE_WB) || 675 (pcm == _PAGE_CACHE_MODE_WT && 676 new_pcm == _PAGE_CACHE_MODE_WC)) { 677 return 0; 678 } 679 680 return 1; 681 } 682 683 pmd_t *populate_extra_pmd(unsigned long vaddr); 684 pte_t *populate_extra_pte(unsigned long vaddr); 685 686 #ifdef CONFIG_PAGE_TABLE_ISOLATION 687 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); 688 689 /* 690 * Take a PGD location (pgdp) and a pgd value that needs to be set there. 691 * Populates the user and returns the resulting PGD that must be set in 692 * the kernel copy of the page tables. 693 */ 694 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 695 { 696 if (!static_cpu_has(X86_FEATURE_PTI)) 697 return pgd; 698 return __pti_set_user_pgtbl(pgdp, pgd); 699 } 700 #else /* CONFIG_PAGE_TABLE_ISOLATION */ 701 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 702 { 703 return pgd; 704 } 705 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 706 707 #endif /* __ASSEMBLY__ */ 708 709 710 #ifdef CONFIG_X86_32 711 # include <asm/pgtable_32.h> 712 #else 713 # include <asm/pgtable_64.h> 714 #endif 715 716 #ifndef __ASSEMBLY__ 717 #include <linux/mm_types.h> 718 #include <linux/mmdebug.h> 719 #include <linux/log2.h> 720 #include <asm/fixmap.h> 721 722 static inline int pte_none(pte_t pte) 723 { 724 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 725 } 726 727 #define __HAVE_ARCH_PTE_SAME 728 static inline int pte_same(pte_t a, pte_t b) 729 { 730 return a.pte == b.pte; 731 } 732 733 static inline int pte_present(pte_t a) 734 { 735 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 736 } 737 738 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 739 static inline int pte_devmap(pte_t a) 740 { 741 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 742 } 743 #endif 744 745 #define pte_accessible pte_accessible 746 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 747 { 748 if (pte_flags(a) & _PAGE_PRESENT) 749 return true; 750 751 if ((pte_flags(a) & _PAGE_PROTNONE) && 752 mm_tlb_flush_pending(mm)) 753 return true; 754 755 return false; 756 } 757 758 static inline int pmd_present(pmd_t pmd) 759 { 760 /* 761 * Checking for _PAGE_PSE is needed too because 762 * split_huge_page will temporarily clear the present bit (but 763 * the _PAGE_PSE flag will remain set at all times while the 764 * _PAGE_PRESENT bit is clear). 765 */ 766 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 767 } 768 769 #ifdef CONFIG_NUMA_BALANCING 770 /* 771 * These work without NUMA balancing but the kernel does not care. See the 772 * comment in include/asm-generic/pgtable.h 773 */ 774 static inline int pte_protnone(pte_t pte) 775 { 776 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 777 == _PAGE_PROTNONE; 778 } 779 780 static inline int pmd_protnone(pmd_t pmd) 781 { 782 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 783 == _PAGE_PROTNONE; 784 } 785 #endif /* CONFIG_NUMA_BALANCING */ 786 787 static inline int pmd_none(pmd_t pmd) 788 { 789 /* Only check low word on 32-bit platforms, since it might be 790 out of sync with upper half. */ 791 unsigned long val = native_pmd_val(pmd); 792 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 793 } 794 795 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 796 { 797 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 798 } 799 800 /* 801 * Currently stuck as a macro due to indirect forward reference to 802 * linux/mmzone.h's __section_mem_map_addr() definition: 803 */ 804 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 805 806 /* 807 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 808 * 809 * this macro returns the index of the entry in the pmd page which would 810 * control the given virtual address 811 */ 812 static inline unsigned long pmd_index(unsigned long address) 813 { 814 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 815 } 816 817 /* 818 * Conversion functions: convert a page and protection to a page entry, 819 * and a page entry and page directory to the page they refer to. 820 * 821 * (Currently stuck as a macro because of indirect forward reference 822 * to linux/mm.h:page_to_nid()) 823 */ 824 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 825 826 /* 827 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 828 * 829 * this function returns the index of the entry in the pte page which would 830 * control the given virtual address 831 */ 832 static inline unsigned long pte_index(unsigned long address) 833 { 834 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 835 } 836 837 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 838 { 839 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 840 } 841 842 static inline int pmd_bad(pmd_t pmd) 843 { 844 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 845 } 846 847 static inline unsigned long pages_to_mb(unsigned long npg) 848 { 849 return npg >> (20 - PAGE_SHIFT); 850 } 851 852 #if CONFIG_PGTABLE_LEVELS > 2 853 static inline int pud_none(pud_t pud) 854 { 855 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 856 } 857 858 static inline int pud_present(pud_t pud) 859 { 860 return pud_flags(pud) & _PAGE_PRESENT; 861 } 862 863 static inline unsigned long pud_page_vaddr(pud_t pud) 864 { 865 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); 866 } 867 868 /* 869 * Currently stuck as a macro due to indirect forward reference to 870 * linux/mmzone.h's __section_mem_map_addr() definition: 871 */ 872 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 873 874 /* Find an entry in the second-level page table.. */ 875 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 876 { 877 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 878 } 879 880 #define pud_leaf pud_large 881 static inline int pud_large(pud_t pud) 882 { 883 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 884 (_PAGE_PSE | _PAGE_PRESENT); 885 } 886 887 static inline int pud_bad(pud_t pud) 888 { 889 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 890 } 891 #else 892 #define pud_leaf pud_large 893 static inline int pud_large(pud_t pud) 894 { 895 return 0; 896 } 897 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 898 899 static inline unsigned long pud_index(unsigned long address) 900 { 901 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 902 } 903 904 #if CONFIG_PGTABLE_LEVELS > 3 905 static inline int p4d_none(p4d_t p4d) 906 { 907 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 908 } 909 910 static inline int p4d_present(p4d_t p4d) 911 { 912 return p4d_flags(p4d) & _PAGE_PRESENT; 913 } 914 915 static inline unsigned long p4d_page_vaddr(p4d_t p4d) 916 { 917 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 918 } 919 920 /* 921 * Currently stuck as a macro due to indirect forward reference to 922 * linux/mmzone.h's __section_mem_map_addr() definition: 923 */ 924 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 925 926 /* Find an entry in the third-level page table.. */ 927 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 928 { 929 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 930 } 931 932 static inline int p4d_bad(p4d_t p4d) 933 { 934 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 935 936 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 937 ignore_flags |= _PAGE_NX; 938 939 return (p4d_flags(p4d) & ~ignore_flags) != 0; 940 } 941 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 942 943 static inline unsigned long p4d_index(unsigned long address) 944 { 945 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 946 } 947 948 #if CONFIG_PGTABLE_LEVELS > 4 949 static inline int pgd_present(pgd_t pgd) 950 { 951 if (!pgtable_l5_enabled()) 952 return 1; 953 return pgd_flags(pgd) & _PAGE_PRESENT; 954 } 955 956 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 957 { 958 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 959 } 960 961 /* 962 * Currently stuck as a macro due to indirect forward reference to 963 * linux/mmzone.h's __section_mem_map_addr() definition: 964 */ 965 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 966 967 /* to find an entry in a page-table-directory. */ 968 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 969 { 970 if (!pgtable_l5_enabled()) 971 return (p4d_t *)pgd; 972 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 973 } 974 975 static inline int pgd_bad(pgd_t pgd) 976 { 977 unsigned long ignore_flags = _PAGE_USER; 978 979 if (!pgtable_l5_enabled()) 980 return 0; 981 982 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 983 ignore_flags |= _PAGE_NX; 984 985 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 986 } 987 988 static inline int pgd_none(pgd_t pgd) 989 { 990 if (!pgtable_l5_enabled()) 991 return 0; 992 /* 993 * There is no need to do a workaround for the KNL stray 994 * A/D bit erratum here. PGDs only point to page tables 995 * except on 32-bit non-PAE which is not supported on 996 * KNL. 997 */ 998 return !native_pgd_val(pgd); 999 } 1000 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1001 1002 #endif /* __ASSEMBLY__ */ 1003 1004 /* 1005 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 1006 * 1007 * this macro returns the index of the entry in the pgd page which would 1008 * control the given virtual address 1009 */ 1010 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 1011 1012 /* 1013 * pgd_offset() returns a (pgd_t *) 1014 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 1015 */ 1016 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address))) 1017 /* 1018 * a shortcut to get a pgd_t in a given mm 1019 */ 1020 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 1021 /* 1022 * a shortcut which implies the use of the kernel's pgd, instead 1023 * of a process's 1024 */ 1025 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 1026 1027 1028 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 1029 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 1030 1031 #ifndef __ASSEMBLY__ 1032 1033 extern int direct_gbpages; 1034 void init_mem_mapping(void); 1035 void early_alloc_pgt_buf(void); 1036 extern void memblock_find_dma_reserve(void); 1037 1038 #ifdef CONFIG_X86_64 1039 /* Realmode trampoline initialization. */ 1040 extern pgd_t trampoline_pgd_entry; 1041 static inline void __meminit init_trampoline_default(void) 1042 { 1043 /* Default trampoline pgd value */ 1044 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 1045 } 1046 1047 void __init poking_init(void); 1048 1049 # ifdef CONFIG_RANDOMIZE_MEMORY 1050 void __meminit init_trampoline(void); 1051 # else 1052 # define init_trampoline init_trampoline_default 1053 # endif 1054 #else 1055 static inline void init_trampoline(void) { } 1056 #endif 1057 1058 /* local pte updates need not use xchg for locking */ 1059 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 1060 { 1061 pte_t res = *ptep; 1062 1063 /* Pure native function needs no input for mm, addr */ 1064 native_pte_clear(NULL, 0, ptep); 1065 return res; 1066 } 1067 1068 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 1069 { 1070 pmd_t res = *pmdp; 1071 1072 native_pmd_clear(pmdp); 1073 return res; 1074 } 1075 1076 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 1077 { 1078 pud_t res = *pudp; 1079 1080 native_pud_clear(pudp); 1081 return res; 1082 } 1083 1084 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 1085 pte_t *ptep , pte_t pte) 1086 { 1087 native_set_pte(ptep, pte); 1088 } 1089 1090 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1091 pmd_t *pmdp, pmd_t pmd) 1092 { 1093 set_pmd(pmdp, pmd); 1094 } 1095 1096 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 1097 pud_t *pudp, pud_t pud) 1098 { 1099 native_set_pud(pudp, pud); 1100 } 1101 1102 /* 1103 * We only update the dirty/accessed state if we set 1104 * the dirty bit by hand in the kernel, since the hardware 1105 * will do the accessed bit for us, and we don't want to 1106 * race with other CPU's that might be updating the dirty 1107 * bit at the same time. 1108 */ 1109 struct vm_area_struct; 1110 1111 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1112 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1113 unsigned long address, pte_t *ptep, 1114 pte_t entry, int dirty); 1115 1116 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1117 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1118 unsigned long addr, pte_t *ptep); 1119 1120 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1121 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1122 unsigned long address, pte_t *ptep); 1123 1124 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1125 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1126 pte_t *ptep) 1127 { 1128 pte_t pte = native_ptep_get_and_clear(ptep); 1129 return pte; 1130 } 1131 1132 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1133 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1134 unsigned long addr, pte_t *ptep, 1135 int full) 1136 { 1137 pte_t pte; 1138 if (full) { 1139 /* 1140 * Full address destruction in progress; paravirt does not 1141 * care about updates and native needs no locking 1142 */ 1143 pte = native_local_ptep_get_and_clear(ptep); 1144 } else { 1145 pte = ptep_get_and_clear(mm, addr, ptep); 1146 } 1147 return pte; 1148 } 1149 1150 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1151 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1152 unsigned long addr, pte_t *ptep) 1153 { 1154 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 1155 } 1156 1157 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 1158 1159 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1160 1161 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1162 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1163 unsigned long address, pmd_t *pmdp, 1164 pmd_t entry, int dirty); 1165 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1166 unsigned long address, pud_t *pudp, 1167 pud_t entry, int dirty); 1168 1169 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1170 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1171 unsigned long addr, pmd_t *pmdp); 1172 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1173 unsigned long addr, pud_t *pudp); 1174 1175 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1176 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1177 unsigned long address, pmd_t *pmdp); 1178 1179 1180 #define pmd_write pmd_write 1181 static inline int pmd_write(pmd_t pmd) 1182 { 1183 return pmd_flags(pmd) & _PAGE_RW; 1184 } 1185 1186 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1187 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1188 pmd_t *pmdp) 1189 { 1190 return native_pmdp_get_and_clear(pmdp); 1191 } 1192 1193 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1194 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1195 unsigned long addr, pud_t *pudp) 1196 { 1197 return native_pudp_get_and_clear(pudp); 1198 } 1199 1200 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1201 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1202 unsigned long addr, pmd_t *pmdp) 1203 { 1204 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 1205 } 1206 1207 #define pud_write pud_write 1208 static inline int pud_write(pud_t pud) 1209 { 1210 return pud_flags(pud) & _PAGE_RW; 1211 } 1212 1213 #ifndef pmdp_establish 1214 #define pmdp_establish pmdp_establish 1215 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1216 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1217 { 1218 if (IS_ENABLED(CONFIG_SMP)) { 1219 return xchg(pmdp, pmd); 1220 } else { 1221 pmd_t old = *pmdp; 1222 WRITE_ONCE(*pmdp, pmd); 1223 return old; 1224 } 1225 } 1226 #endif 1227 /* 1228 * Page table pages are page-aligned. The lower half of the top 1229 * level is used for userspace and the top half for the kernel. 1230 * 1231 * Returns true for parts of the PGD that map userspace and 1232 * false for the parts that map the kernel. 1233 */ 1234 static inline bool pgdp_maps_userspace(void *__ptr) 1235 { 1236 unsigned long ptr = (unsigned long)__ptr; 1237 1238 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); 1239 } 1240 1241 #define pgd_leaf pgd_large 1242 static inline int pgd_large(pgd_t pgd) { return 0; } 1243 1244 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1245 /* 1246 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages 1247 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and 1248 * the user one is in the last 4k. To switch between them, you 1249 * just need to flip the 12th bit in their addresses. 1250 */ 1251 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT 1252 1253 /* 1254 * This generates better code than the inline assembly in 1255 * __set_bit(). 1256 */ 1257 static inline void *ptr_set_bit(void *ptr, int bit) 1258 { 1259 unsigned long __ptr = (unsigned long)ptr; 1260 1261 __ptr |= BIT(bit); 1262 return (void *)__ptr; 1263 } 1264 static inline void *ptr_clear_bit(void *ptr, int bit) 1265 { 1266 unsigned long __ptr = (unsigned long)ptr; 1267 1268 __ptr &= ~BIT(bit); 1269 return (void *)__ptr; 1270 } 1271 1272 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) 1273 { 1274 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1275 } 1276 1277 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) 1278 { 1279 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1280 } 1281 1282 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) 1283 { 1284 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1285 } 1286 1287 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) 1288 { 1289 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1290 } 1291 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 1292 1293 /* 1294 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1295 * 1296 * dst - pointer to pgd range anwhere on a pgd page 1297 * src - "" 1298 * count - the number of pgds to copy. 1299 * 1300 * dst and src can be on the same page, but the range must not overlap, 1301 * and must not cross a page boundary. 1302 */ 1303 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1304 { 1305 memcpy(dst, src, count * sizeof(pgd_t)); 1306 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1307 if (!static_cpu_has(X86_FEATURE_PTI)) 1308 return; 1309 /* Clone the user space pgd as well */ 1310 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1311 count * sizeof(pgd_t)); 1312 #endif 1313 } 1314 1315 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1316 static inline int page_level_shift(enum pg_level level) 1317 { 1318 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1319 } 1320 static inline unsigned long page_level_size(enum pg_level level) 1321 { 1322 return 1UL << page_level_shift(level); 1323 } 1324 static inline unsigned long page_level_mask(enum pg_level level) 1325 { 1326 return ~(page_level_size(level) - 1); 1327 } 1328 1329 /* 1330 * The x86 doesn't have any external MMU info: the kernel page 1331 * tables contain all the necessary information. 1332 */ 1333 static inline void update_mmu_cache(struct vm_area_struct *vma, 1334 unsigned long addr, pte_t *ptep) 1335 { 1336 } 1337 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1338 unsigned long addr, pmd_t *pmd) 1339 { 1340 } 1341 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1342 unsigned long addr, pud_t *pud) 1343 { 1344 } 1345 1346 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1347 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1348 { 1349 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1350 } 1351 1352 static inline int pte_swp_soft_dirty(pte_t pte) 1353 { 1354 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1355 } 1356 1357 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1358 { 1359 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1360 } 1361 1362 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1363 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1364 { 1365 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1366 } 1367 1368 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1369 { 1370 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1371 } 1372 1373 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1374 { 1375 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1376 } 1377 #endif 1378 #endif 1379 1380 #define PKRU_AD_BIT 0x1 1381 #define PKRU_WD_BIT 0x2 1382 #define PKRU_BITS_PER_PKEY 2 1383 1384 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1385 extern u32 init_pkru_value; 1386 #else 1387 #define init_pkru_value 0 1388 #endif 1389 1390 static inline bool __pkru_allows_read(u32 pkru, u16 pkey) 1391 { 1392 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1393 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); 1394 } 1395 1396 static inline bool __pkru_allows_write(u32 pkru, u16 pkey) 1397 { 1398 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1399 /* 1400 * Access-disable disables writes too so we need to check 1401 * both bits here. 1402 */ 1403 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); 1404 } 1405 1406 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1407 { 1408 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1409 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1410 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1411 #else 1412 return 0; 1413 #endif 1414 } 1415 1416 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1417 { 1418 u32 pkru = read_pkru(); 1419 1420 if (!__pkru_allows_read(pkru, pkey)) 1421 return false; 1422 if (write && !__pkru_allows_write(pkru, pkey)) 1423 return false; 1424 1425 return true; 1426 } 1427 1428 /* 1429 * 'pteval' can come from a PTE, PMD or PUD. We only check 1430 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1431 * same value on all 3 types. 1432 */ 1433 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1434 { 1435 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1436 1437 if (write) 1438 need_pte_bits |= _PAGE_RW; 1439 1440 if ((pteval & need_pte_bits) != need_pte_bits) 1441 return 0; 1442 1443 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1444 } 1445 1446 #define pte_access_permitted pte_access_permitted 1447 static inline bool pte_access_permitted(pte_t pte, bool write) 1448 { 1449 return __pte_access_permitted(pte_val(pte), write); 1450 } 1451 1452 #define pmd_access_permitted pmd_access_permitted 1453 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1454 { 1455 return __pte_access_permitted(pmd_val(pmd), write); 1456 } 1457 1458 #define pud_access_permitted pud_access_permitted 1459 static inline bool pud_access_permitted(pud_t pud, bool write) 1460 { 1461 return __pte_access_permitted(pud_val(pud), write); 1462 } 1463 1464 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 1465 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); 1466 1467 static inline bool arch_has_pfn_modify_check(void) 1468 { 1469 return boot_cpu_has_bug(X86_BUG_L1TF); 1470 } 1471 1472 #define arch_faults_on_old_pte arch_faults_on_old_pte 1473 static inline bool arch_faults_on_old_pte(void) 1474 { 1475 return false; 1476 } 1477 1478 #include <asm-generic/pgtable.h> 1479 #endif /* __ASSEMBLY__ */ 1480 1481 #endif /* _ASM_X86_PGTABLE_H */ 1482