1 #ifndef _ASM_X86_PGTABLE_H 2 #define _ASM_X86_PGTABLE_H 3 4 #include <asm/page.h> 5 #include <asm/e820.h> 6 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 #ifndef __ASSEMBLY__ 19 #include <asm/x86_init.h> 20 21 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd); 22 23 /* 24 * ZERO_PAGE is a global shared page that is always zero: used 25 * for zero-mapped memory areas etc.. 26 */ 27 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 28 __visible; 29 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 30 31 extern spinlock_t pgd_lock; 32 extern struct list_head pgd_list; 33 34 extern struct mm_struct *pgd_page_get_mm(struct page *page); 35 36 #ifdef CONFIG_PARAVIRT 37 #include <asm/paravirt.h> 38 #else /* !CONFIG_PARAVIRT */ 39 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 40 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 41 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd) 42 43 #define set_pte_atomic(ptep, pte) \ 44 native_set_pte_atomic(ptep, pte) 45 46 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 47 48 #ifndef __PAGETABLE_PUD_FOLDED 49 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 50 #define pgd_clear(pgd) native_pgd_clear(pgd) 51 #endif 52 53 #ifndef set_pud 54 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 55 #endif 56 57 #ifndef __PAGETABLE_PMD_FOLDED 58 #define pud_clear(pud) native_pud_clear(pud) 59 #endif 60 61 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 62 #define pmd_clear(pmd) native_pmd_clear(pmd) 63 64 #define pte_update(mm, addr, ptep) do { } while (0) 65 #define pte_update_defer(mm, addr, ptep) do { } while (0) 66 #define pmd_update(mm, addr, ptep) do { } while (0) 67 #define pmd_update_defer(mm, addr, ptep) do { } while (0) 68 69 #define pgd_val(x) native_pgd_val(x) 70 #define __pgd(x) native_make_pgd(x) 71 72 #ifndef __PAGETABLE_PUD_FOLDED 73 #define pud_val(x) native_pud_val(x) 74 #define __pud(x) native_make_pud(x) 75 #endif 76 77 #ifndef __PAGETABLE_PMD_FOLDED 78 #define pmd_val(x) native_pmd_val(x) 79 #define __pmd(x) native_make_pmd(x) 80 #endif 81 82 #define pte_val(x) native_pte_val(x) 83 #define __pte(x) native_make_pte(x) 84 85 #define arch_end_context_switch(prev) do {} while(0) 86 87 #endif /* CONFIG_PARAVIRT */ 88 89 /* 90 * The following only work if pte_present() is true. 91 * Undefined behaviour if not.. 92 */ 93 static inline int pte_dirty(pte_t pte) 94 { 95 return pte_flags(pte) & _PAGE_DIRTY; 96 } 97 98 static inline int pte_young(pte_t pte) 99 { 100 return pte_flags(pte) & _PAGE_ACCESSED; 101 } 102 103 static inline int pmd_dirty(pmd_t pmd) 104 { 105 return pmd_flags(pmd) & _PAGE_DIRTY; 106 } 107 108 static inline int pmd_young(pmd_t pmd) 109 { 110 return pmd_flags(pmd) & _PAGE_ACCESSED; 111 } 112 113 static inline int pte_write(pte_t pte) 114 { 115 return pte_flags(pte) & _PAGE_RW; 116 } 117 118 static inline int pte_huge(pte_t pte) 119 { 120 return pte_flags(pte) & _PAGE_PSE; 121 } 122 123 static inline int pte_global(pte_t pte) 124 { 125 return pte_flags(pte) & _PAGE_GLOBAL; 126 } 127 128 static inline int pte_exec(pte_t pte) 129 { 130 return !(pte_flags(pte) & _PAGE_NX); 131 } 132 133 static inline int pte_special(pte_t pte) 134 { 135 return pte_flags(pte) & _PAGE_SPECIAL; 136 } 137 138 static inline unsigned long pte_pfn(pte_t pte) 139 { 140 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT; 141 } 142 143 static inline unsigned long pmd_pfn(pmd_t pmd) 144 { 145 return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT; 146 } 147 148 static inline unsigned long pud_pfn(pud_t pud) 149 { 150 return (pud_val(pud) & PTE_PFN_MASK) >> PAGE_SHIFT; 151 } 152 153 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 154 155 static inline int pmd_large(pmd_t pte) 156 { 157 return pmd_flags(pte) & _PAGE_PSE; 158 } 159 160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 161 static inline int pmd_trans_splitting(pmd_t pmd) 162 { 163 return pmd_val(pmd) & _PAGE_SPLITTING; 164 } 165 166 static inline int pmd_trans_huge(pmd_t pmd) 167 { 168 return pmd_val(pmd) & _PAGE_PSE; 169 } 170 171 static inline int has_transparent_hugepage(void) 172 { 173 return cpu_has_pse; 174 } 175 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 176 177 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 178 { 179 pteval_t v = native_pte_val(pte); 180 181 return native_make_pte(v | set); 182 } 183 184 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 185 { 186 pteval_t v = native_pte_val(pte); 187 188 return native_make_pte(v & ~clear); 189 } 190 191 static inline pte_t pte_mkclean(pte_t pte) 192 { 193 return pte_clear_flags(pte, _PAGE_DIRTY); 194 } 195 196 static inline pte_t pte_mkold(pte_t pte) 197 { 198 return pte_clear_flags(pte, _PAGE_ACCESSED); 199 } 200 201 static inline pte_t pte_wrprotect(pte_t pte) 202 { 203 return pte_clear_flags(pte, _PAGE_RW); 204 } 205 206 static inline pte_t pte_mkexec(pte_t pte) 207 { 208 return pte_clear_flags(pte, _PAGE_NX); 209 } 210 211 static inline pte_t pte_mkdirty(pte_t pte) 212 { 213 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 214 } 215 216 static inline pte_t pte_mkyoung(pte_t pte) 217 { 218 return pte_set_flags(pte, _PAGE_ACCESSED); 219 } 220 221 static inline pte_t pte_mkwrite(pte_t pte) 222 { 223 return pte_set_flags(pte, _PAGE_RW); 224 } 225 226 static inline pte_t pte_mkhuge(pte_t pte) 227 { 228 return pte_set_flags(pte, _PAGE_PSE); 229 } 230 231 static inline pte_t pte_clrhuge(pte_t pte) 232 { 233 return pte_clear_flags(pte, _PAGE_PSE); 234 } 235 236 static inline pte_t pte_mkglobal(pte_t pte) 237 { 238 return pte_set_flags(pte, _PAGE_GLOBAL); 239 } 240 241 static inline pte_t pte_clrglobal(pte_t pte) 242 { 243 return pte_clear_flags(pte, _PAGE_GLOBAL); 244 } 245 246 static inline pte_t pte_mkspecial(pte_t pte) 247 { 248 return pte_set_flags(pte, _PAGE_SPECIAL); 249 } 250 251 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 252 { 253 pmdval_t v = native_pmd_val(pmd); 254 255 return __pmd(v | set); 256 } 257 258 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 259 { 260 pmdval_t v = native_pmd_val(pmd); 261 262 return __pmd(v & ~clear); 263 } 264 265 static inline pmd_t pmd_mkold(pmd_t pmd) 266 { 267 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 268 } 269 270 static inline pmd_t pmd_wrprotect(pmd_t pmd) 271 { 272 return pmd_clear_flags(pmd, _PAGE_RW); 273 } 274 275 static inline pmd_t pmd_mkdirty(pmd_t pmd) 276 { 277 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 278 } 279 280 static inline pmd_t pmd_mkhuge(pmd_t pmd) 281 { 282 return pmd_set_flags(pmd, _PAGE_PSE); 283 } 284 285 static inline pmd_t pmd_mkyoung(pmd_t pmd) 286 { 287 return pmd_set_flags(pmd, _PAGE_ACCESSED); 288 } 289 290 static inline pmd_t pmd_mkwrite(pmd_t pmd) 291 { 292 return pmd_set_flags(pmd, _PAGE_RW); 293 } 294 295 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 296 { 297 return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE); 298 } 299 300 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 301 static inline int pte_soft_dirty(pte_t pte) 302 { 303 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 304 } 305 306 static inline int pmd_soft_dirty(pmd_t pmd) 307 { 308 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 309 } 310 311 static inline pte_t pte_mksoft_dirty(pte_t pte) 312 { 313 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 314 } 315 316 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 317 { 318 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 319 } 320 321 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 322 323 /* 324 * Mask out unsupported bits in a present pgprot. Non-present pgprots 325 * can use those bits for other purposes, so leave them be. 326 */ 327 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 328 { 329 pgprotval_t protval = pgprot_val(pgprot); 330 331 if (protval & _PAGE_PRESENT) 332 protval &= __supported_pte_mask; 333 334 return protval; 335 } 336 337 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 338 { 339 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) | 340 massage_pgprot(pgprot)); 341 } 342 343 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 344 { 345 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) | 346 massage_pgprot(pgprot)); 347 } 348 349 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 350 { 351 pteval_t val = pte_val(pte); 352 353 /* 354 * Chop off the NX bit (if present), and add the NX portion of 355 * the newprot (if present): 356 */ 357 val &= _PAGE_CHG_MASK; 358 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK; 359 360 return __pte(val); 361 } 362 363 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 364 { 365 pmdval_t val = pmd_val(pmd); 366 367 val &= _HPAGE_CHG_MASK; 368 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK; 369 370 return __pmd(val); 371 } 372 373 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 374 #define pgprot_modify pgprot_modify 375 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 376 { 377 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 378 pgprotval_t addbits = pgprot_val(newprot); 379 return __pgprot(preservebits | addbits); 380 } 381 382 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK) 383 384 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 385 386 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 387 enum page_cache_mode pcm, 388 enum page_cache_mode new_pcm) 389 { 390 /* 391 * PAT type is always WB for untracked ranges, so no need to check. 392 */ 393 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 394 return 1; 395 396 /* 397 * Certain new memtypes are not allowed with certain 398 * requested memtype: 399 * - request is uncached, return cannot be write-back 400 * - request is write-combine, return cannot be write-back 401 * - request is write-through, return cannot be write-back 402 * - request is write-through, return cannot be write-combine 403 */ 404 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 405 new_pcm == _PAGE_CACHE_MODE_WB) || 406 (pcm == _PAGE_CACHE_MODE_WC && 407 new_pcm == _PAGE_CACHE_MODE_WB) || 408 (pcm == _PAGE_CACHE_MODE_WT && 409 new_pcm == _PAGE_CACHE_MODE_WB) || 410 (pcm == _PAGE_CACHE_MODE_WT && 411 new_pcm == _PAGE_CACHE_MODE_WC)) { 412 return 0; 413 } 414 415 return 1; 416 } 417 418 pmd_t *populate_extra_pmd(unsigned long vaddr); 419 pte_t *populate_extra_pte(unsigned long vaddr); 420 #endif /* __ASSEMBLY__ */ 421 422 #ifdef CONFIG_X86_32 423 # include <asm/pgtable_32.h> 424 #else 425 # include <asm/pgtable_64.h> 426 #endif 427 428 #ifndef __ASSEMBLY__ 429 #include <linux/mm_types.h> 430 #include <linux/mmdebug.h> 431 #include <linux/log2.h> 432 433 static inline int pte_none(pte_t pte) 434 { 435 return !pte.pte; 436 } 437 438 #define __HAVE_ARCH_PTE_SAME 439 static inline int pte_same(pte_t a, pte_t b) 440 { 441 return a.pte == b.pte; 442 } 443 444 static inline int pte_present(pte_t a) 445 { 446 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 447 } 448 449 #define pte_accessible pte_accessible 450 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 451 { 452 if (pte_flags(a) & _PAGE_PRESENT) 453 return true; 454 455 if ((pte_flags(a) & _PAGE_PROTNONE) && 456 mm_tlb_flush_pending(mm)) 457 return true; 458 459 return false; 460 } 461 462 static inline int pte_hidden(pte_t pte) 463 { 464 return pte_flags(pte) & _PAGE_HIDDEN; 465 } 466 467 static inline int pmd_present(pmd_t pmd) 468 { 469 /* 470 * Checking for _PAGE_PSE is needed too because 471 * split_huge_page will temporarily clear the present bit (but 472 * the _PAGE_PSE flag will remain set at all times while the 473 * _PAGE_PRESENT bit is clear). 474 */ 475 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 476 } 477 478 #ifdef CONFIG_NUMA_BALANCING 479 /* 480 * These work without NUMA balancing but the kernel does not care. See the 481 * comment in include/asm-generic/pgtable.h 482 */ 483 static inline int pte_protnone(pte_t pte) 484 { 485 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 486 == _PAGE_PROTNONE; 487 } 488 489 static inline int pmd_protnone(pmd_t pmd) 490 { 491 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 492 == _PAGE_PROTNONE; 493 } 494 #endif /* CONFIG_NUMA_BALANCING */ 495 496 static inline int pmd_none(pmd_t pmd) 497 { 498 /* Only check low word on 32-bit platforms, since it might be 499 out of sync with upper half. */ 500 return (unsigned long)native_pmd_val(pmd) == 0; 501 } 502 503 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 504 { 505 return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK); 506 } 507 508 /* 509 * Currently stuck as a macro due to indirect forward reference to 510 * linux/mmzone.h's __section_mem_map_addr() definition: 511 */ 512 #define pmd_page(pmd) pfn_to_page((pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT) 513 514 /* 515 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 516 * 517 * this macro returns the index of the entry in the pmd page which would 518 * control the given virtual address 519 */ 520 static inline unsigned long pmd_index(unsigned long address) 521 { 522 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 523 } 524 525 /* 526 * Conversion functions: convert a page and protection to a page entry, 527 * and a page entry and page directory to the page they refer to. 528 * 529 * (Currently stuck as a macro because of indirect forward reference 530 * to linux/mm.h:page_to_nid()) 531 */ 532 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 533 534 /* 535 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 536 * 537 * this function returns the index of the entry in the pte page which would 538 * control the given virtual address 539 */ 540 static inline unsigned long pte_index(unsigned long address) 541 { 542 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 543 } 544 545 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 546 { 547 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 548 } 549 550 static inline int pmd_bad(pmd_t pmd) 551 { 552 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 553 } 554 555 static inline unsigned long pages_to_mb(unsigned long npg) 556 { 557 return npg >> (20 - PAGE_SHIFT); 558 } 559 560 #if CONFIG_PGTABLE_LEVELS > 2 561 static inline int pud_none(pud_t pud) 562 { 563 return native_pud_val(pud) == 0; 564 } 565 566 static inline int pud_present(pud_t pud) 567 { 568 return pud_flags(pud) & _PAGE_PRESENT; 569 } 570 571 static inline unsigned long pud_page_vaddr(pud_t pud) 572 { 573 return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK); 574 } 575 576 /* 577 * Currently stuck as a macro due to indirect forward reference to 578 * linux/mmzone.h's __section_mem_map_addr() definition: 579 */ 580 #define pud_page(pud) pfn_to_page(pud_val(pud) >> PAGE_SHIFT) 581 582 /* Find an entry in the second-level page table.. */ 583 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 584 { 585 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 586 } 587 588 static inline int pud_large(pud_t pud) 589 { 590 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 591 (_PAGE_PSE | _PAGE_PRESENT); 592 } 593 594 static inline int pud_bad(pud_t pud) 595 { 596 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 597 } 598 #else 599 static inline int pud_large(pud_t pud) 600 { 601 return 0; 602 } 603 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 604 605 #if CONFIG_PGTABLE_LEVELS > 3 606 static inline int pgd_present(pgd_t pgd) 607 { 608 return pgd_flags(pgd) & _PAGE_PRESENT; 609 } 610 611 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 612 { 613 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 614 } 615 616 /* 617 * Currently stuck as a macro due to indirect forward reference to 618 * linux/mmzone.h's __section_mem_map_addr() definition: 619 */ 620 #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT) 621 622 /* to find an entry in a page-table-directory. */ 623 static inline unsigned long pud_index(unsigned long address) 624 { 625 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 626 } 627 628 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 629 { 630 return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address); 631 } 632 633 static inline int pgd_bad(pgd_t pgd) 634 { 635 return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE; 636 } 637 638 static inline int pgd_none(pgd_t pgd) 639 { 640 return !native_pgd_val(pgd); 641 } 642 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 643 644 #endif /* __ASSEMBLY__ */ 645 646 /* 647 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 648 * 649 * this macro returns the index of the entry in the pgd page which would 650 * control the given virtual address 651 */ 652 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 653 654 /* 655 * pgd_offset() returns a (pgd_t *) 656 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 657 */ 658 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address))) 659 /* 660 * a shortcut which implies the use of the kernel's pgd, instead 661 * of a process's 662 */ 663 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 664 665 666 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 667 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 668 669 #ifndef __ASSEMBLY__ 670 671 extern int direct_gbpages; 672 void init_mem_mapping(void); 673 void early_alloc_pgt_buf(void); 674 675 /* local pte updates need not use xchg for locking */ 676 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 677 { 678 pte_t res = *ptep; 679 680 /* Pure native function needs no input for mm, addr */ 681 native_pte_clear(NULL, 0, ptep); 682 return res; 683 } 684 685 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 686 { 687 pmd_t res = *pmdp; 688 689 native_pmd_clear(pmdp); 690 return res; 691 } 692 693 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 694 pte_t *ptep , pte_t pte) 695 { 696 native_set_pte(ptep, pte); 697 } 698 699 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr, 700 pmd_t *pmdp , pmd_t pmd) 701 { 702 native_set_pmd(pmdp, pmd); 703 } 704 705 #ifndef CONFIG_PARAVIRT 706 /* 707 * Rules for using pte_update - it must be called after any PTE update which 708 * has not been done using the set_pte / clear_pte interfaces. It is used by 709 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE 710 * updates should either be sets, clears, or set_pte_atomic for P->P 711 * transitions, which means this hook should only be called for user PTEs. 712 * This hook implies a P->P protection or access change has taken place, which 713 * requires a subsequent TLB flush. The notification can optionally be delayed 714 * until the TLB flush event by using the pte_update_defer form of the 715 * interface, but care must be taken to assure that the flush happens while 716 * still holding the same page table lock so that the shadow and primary pages 717 * do not become out of sync on SMP. 718 */ 719 #define pte_update(mm, addr, ptep) do { } while (0) 720 #define pte_update_defer(mm, addr, ptep) do { } while (0) 721 #endif 722 723 /* 724 * We only update the dirty/accessed state if we set 725 * the dirty bit by hand in the kernel, since the hardware 726 * will do the accessed bit for us, and we don't want to 727 * race with other CPU's that might be updating the dirty 728 * bit at the same time. 729 */ 730 struct vm_area_struct; 731 732 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 733 extern int ptep_set_access_flags(struct vm_area_struct *vma, 734 unsigned long address, pte_t *ptep, 735 pte_t entry, int dirty); 736 737 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 738 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 739 unsigned long addr, pte_t *ptep); 740 741 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 742 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 743 unsigned long address, pte_t *ptep); 744 745 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 746 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 747 pte_t *ptep) 748 { 749 pte_t pte = native_ptep_get_and_clear(ptep); 750 pte_update(mm, addr, ptep); 751 return pte; 752 } 753 754 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 755 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 756 unsigned long addr, pte_t *ptep, 757 int full) 758 { 759 pte_t pte; 760 if (full) { 761 /* 762 * Full address destruction in progress; paravirt does not 763 * care about updates and native needs no locking 764 */ 765 pte = native_local_ptep_get_and_clear(ptep); 766 } else { 767 pte = ptep_get_and_clear(mm, addr, ptep); 768 } 769 return pte; 770 } 771 772 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 773 static inline void ptep_set_wrprotect(struct mm_struct *mm, 774 unsigned long addr, pte_t *ptep) 775 { 776 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 777 pte_update(mm, addr, ptep); 778 } 779 780 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 781 782 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 783 784 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 785 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 786 unsigned long address, pmd_t *pmdp, 787 pmd_t entry, int dirty); 788 789 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 790 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 791 unsigned long addr, pmd_t *pmdp); 792 793 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 794 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 795 unsigned long address, pmd_t *pmdp); 796 797 798 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH 799 extern void pmdp_splitting_flush(struct vm_area_struct *vma, 800 unsigned long addr, pmd_t *pmdp); 801 802 #define __HAVE_ARCH_PMD_WRITE 803 static inline int pmd_write(pmd_t pmd) 804 { 805 return pmd_flags(pmd) & _PAGE_RW; 806 } 807 808 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 809 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 810 pmd_t *pmdp) 811 { 812 pmd_t pmd = native_pmdp_get_and_clear(pmdp); 813 pmd_update(mm, addr, pmdp); 814 return pmd; 815 } 816 817 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 818 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 819 unsigned long addr, pmd_t *pmdp) 820 { 821 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 822 pmd_update(mm, addr, pmdp); 823 } 824 825 /* 826 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 827 * 828 * dst - pointer to pgd range anwhere on a pgd page 829 * src - "" 830 * count - the number of pgds to copy. 831 * 832 * dst and src can be on the same page, but the range must not overlap, 833 * and must not cross a page boundary. 834 */ 835 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 836 { 837 memcpy(dst, src, count * sizeof(pgd_t)); 838 } 839 840 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 841 static inline int page_level_shift(enum pg_level level) 842 { 843 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 844 } 845 static inline unsigned long page_level_size(enum pg_level level) 846 { 847 return 1UL << page_level_shift(level); 848 } 849 static inline unsigned long page_level_mask(enum pg_level level) 850 { 851 return ~(page_level_size(level) - 1); 852 } 853 854 /* 855 * The x86 doesn't have any external MMU info: the kernel page 856 * tables contain all the necessary information. 857 */ 858 static inline void update_mmu_cache(struct vm_area_struct *vma, 859 unsigned long addr, pte_t *ptep) 860 { 861 } 862 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 863 unsigned long addr, pmd_t *pmd) 864 { 865 } 866 867 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 868 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 869 { 870 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 871 } 872 873 static inline int pte_swp_soft_dirty(pte_t pte) 874 { 875 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 876 } 877 878 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 879 { 880 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 881 } 882 #endif 883 884 #include <asm-generic/pgtable.h> 885 #endif /* __ASSEMBLY__ */ 886 887 #endif /* _ASM_X86_PGTABLE_H */ 888