xref: /openbmc/linux/arch/x86/include/asm/pgtable.h (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4 
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8 
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)						\
13 	((boot_cpu_data.x86 > 3)					\
14 	 ? (__pgprot(pgprot_val(prot) |					\
15 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16 	 : (prot))
17 
18 /*
19  * Macros to add or remove encryption attribute
20  */
21 #define pgprot_encrypted(prot)	__pgprot(__sme_set(pgprot_val(prot)))
22 #define pgprot_decrypted(prot)	__pgprot(__sme_clr(pgprot_val(prot)))
23 
24 #ifndef __ASSEMBLY__
25 #include <asm/x86_init.h>
26 
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29 
30 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
31 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user);
32 void ptdump_walk_pgd_level_checkwx(void);
33 
34 #ifdef CONFIG_DEBUG_WX
35 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
36 #else
37 #define debug_checkwx() do { } while (0)
38 #endif
39 
40 /*
41  * ZERO_PAGE is a global shared page that is always zero: used
42  * for zero-mapped memory areas etc..
43  */
44 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
45 	__visible;
46 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
47 
48 extern spinlock_t pgd_lock;
49 extern struct list_head pgd_list;
50 
51 extern struct mm_struct *pgd_page_get_mm(struct page *page);
52 
53 extern pmdval_t early_pmd_flags;
54 
55 #ifdef CONFIG_PARAVIRT
56 #include <asm/paravirt.h>
57 #else  /* !CONFIG_PARAVIRT */
58 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
59 #define set_pte_at(mm, addr, ptep, pte)	native_set_pte_at(mm, addr, ptep, pte)
60 
61 #define set_pte_atomic(ptep, pte)					\
62 	native_set_pte_atomic(ptep, pte)
63 
64 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
65 
66 #ifndef __PAGETABLE_P4D_FOLDED
67 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
68 #define pgd_clear(pgd)			(pgtable_l5_enabled ? native_pgd_clear(pgd) : 0)
69 #endif
70 
71 #ifndef set_p4d
72 # define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
73 #endif
74 
75 #ifndef __PAGETABLE_PUD_FOLDED
76 #define p4d_clear(p4d)			native_p4d_clear(p4d)
77 #endif
78 
79 #ifndef set_pud
80 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
81 #endif
82 
83 #ifndef __PAGETABLE_PUD_FOLDED
84 #define pud_clear(pud)			native_pud_clear(pud)
85 #endif
86 
87 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
88 #define pmd_clear(pmd)			native_pmd_clear(pmd)
89 
90 #define pgd_val(x)	native_pgd_val(x)
91 #define __pgd(x)	native_make_pgd(x)
92 
93 #ifndef __PAGETABLE_P4D_FOLDED
94 #define p4d_val(x)	native_p4d_val(x)
95 #define __p4d(x)	native_make_p4d(x)
96 #endif
97 
98 #ifndef __PAGETABLE_PUD_FOLDED
99 #define pud_val(x)	native_pud_val(x)
100 #define __pud(x)	native_make_pud(x)
101 #endif
102 
103 #ifndef __PAGETABLE_PMD_FOLDED
104 #define pmd_val(x)	native_pmd_val(x)
105 #define __pmd(x)	native_make_pmd(x)
106 #endif
107 
108 #define pte_val(x)	native_pte_val(x)
109 #define __pte(x)	native_make_pte(x)
110 
111 #define arch_end_context_switch(prev)	do {} while(0)
112 
113 #endif	/* CONFIG_PARAVIRT */
114 
115 /*
116  * The following only work if pte_present() is true.
117  * Undefined behaviour if not..
118  */
119 static inline int pte_dirty(pte_t pte)
120 {
121 	return pte_flags(pte) & _PAGE_DIRTY;
122 }
123 
124 
125 static inline u32 read_pkru(void)
126 {
127 	if (boot_cpu_has(X86_FEATURE_OSPKE))
128 		return __read_pkru();
129 	return 0;
130 }
131 
132 static inline void write_pkru(u32 pkru)
133 {
134 	if (boot_cpu_has(X86_FEATURE_OSPKE))
135 		__write_pkru(pkru);
136 }
137 
138 static inline int pte_young(pte_t pte)
139 {
140 	return pte_flags(pte) & _PAGE_ACCESSED;
141 }
142 
143 static inline int pmd_dirty(pmd_t pmd)
144 {
145 	return pmd_flags(pmd) & _PAGE_DIRTY;
146 }
147 
148 static inline int pmd_young(pmd_t pmd)
149 {
150 	return pmd_flags(pmd) & _PAGE_ACCESSED;
151 }
152 
153 static inline int pud_dirty(pud_t pud)
154 {
155 	return pud_flags(pud) & _PAGE_DIRTY;
156 }
157 
158 static inline int pud_young(pud_t pud)
159 {
160 	return pud_flags(pud) & _PAGE_ACCESSED;
161 }
162 
163 static inline int pte_write(pte_t pte)
164 {
165 	return pte_flags(pte) & _PAGE_RW;
166 }
167 
168 static inline int pte_huge(pte_t pte)
169 {
170 	return pte_flags(pte) & _PAGE_PSE;
171 }
172 
173 static inline int pte_global(pte_t pte)
174 {
175 	return pte_flags(pte) & _PAGE_GLOBAL;
176 }
177 
178 static inline int pte_exec(pte_t pte)
179 {
180 	return !(pte_flags(pte) & _PAGE_NX);
181 }
182 
183 static inline int pte_special(pte_t pte)
184 {
185 	return pte_flags(pte) & _PAGE_SPECIAL;
186 }
187 
188 static inline unsigned long pte_pfn(pte_t pte)
189 {
190 	return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
191 }
192 
193 static inline unsigned long pmd_pfn(pmd_t pmd)
194 {
195 	return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
196 }
197 
198 static inline unsigned long pud_pfn(pud_t pud)
199 {
200 	return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
201 }
202 
203 static inline unsigned long p4d_pfn(p4d_t p4d)
204 {
205 	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
206 }
207 
208 static inline unsigned long pgd_pfn(pgd_t pgd)
209 {
210 	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
211 }
212 
213 static inline int p4d_large(p4d_t p4d)
214 {
215 	/* No 512 GiB pages yet */
216 	return 0;
217 }
218 
219 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
220 
221 static inline int pmd_large(pmd_t pte)
222 {
223 	return pmd_flags(pte) & _PAGE_PSE;
224 }
225 
226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
227 static inline int pmd_trans_huge(pmd_t pmd)
228 {
229 	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
230 }
231 
232 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
233 static inline int pud_trans_huge(pud_t pud)
234 {
235 	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
236 }
237 #endif
238 
239 #define has_transparent_hugepage has_transparent_hugepage
240 static inline int has_transparent_hugepage(void)
241 {
242 	return boot_cpu_has(X86_FEATURE_PSE);
243 }
244 
245 #ifdef __HAVE_ARCH_PTE_DEVMAP
246 static inline int pmd_devmap(pmd_t pmd)
247 {
248 	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
249 }
250 
251 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
252 static inline int pud_devmap(pud_t pud)
253 {
254 	return !!(pud_val(pud) & _PAGE_DEVMAP);
255 }
256 #else
257 static inline int pud_devmap(pud_t pud)
258 {
259 	return 0;
260 }
261 #endif
262 
263 static inline int pgd_devmap(pgd_t pgd)
264 {
265 	return 0;
266 }
267 #endif
268 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
269 
270 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
271 {
272 	pteval_t v = native_pte_val(pte);
273 
274 	return native_make_pte(v | set);
275 }
276 
277 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
278 {
279 	pteval_t v = native_pte_val(pte);
280 
281 	return native_make_pte(v & ~clear);
282 }
283 
284 static inline pte_t pte_mkclean(pte_t pte)
285 {
286 	return pte_clear_flags(pte, _PAGE_DIRTY);
287 }
288 
289 static inline pte_t pte_mkold(pte_t pte)
290 {
291 	return pte_clear_flags(pte, _PAGE_ACCESSED);
292 }
293 
294 static inline pte_t pte_wrprotect(pte_t pte)
295 {
296 	return pte_clear_flags(pte, _PAGE_RW);
297 }
298 
299 static inline pte_t pte_mkexec(pte_t pte)
300 {
301 	return pte_clear_flags(pte, _PAGE_NX);
302 }
303 
304 static inline pte_t pte_mkdirty(pte_t pte)
305 {
306 	return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
307 }
308 
309 static inline pte_t pte_mkyoung(pte_t pte)
310 {
311 	return pte_set_flags(pte, _PAGE_ACCESSED);
312 }
313 
314 static inline pte_t pte_mkwrite(pte_t pte)
315 {
316 	return pte_set_flags(pte, _PAGE_RW);
317 }
318 
319 static inline pte_t pte_mkhuge(pte_t pte)
320 {
321 	return pte_set_flags(pte, _PAGE_PSE);
322 }
323 
324 static inline pte_t pte_clrhuge(pte_t pte)
325 {
326 	return pte_clear_flags(pte, _PAGE_PSE);
327 }
328 
329 static inline pte_t pte_mkglobal(pte_t pte)
330 {
331 	return pte_set_flags(pte, _PAGE_GLOBAL);
332 }
333 
334 static inline pte_t pte_clrglobal(pte_t pte)
335 {
336 	return pte_clear_flags(pte, _PAGE_GLOBAL);
337 }
338 
339 static inline pte_t pte_mkspecial(pte_t pte)
340 {
341 	return pte_set_flags(pte, _PAGE_SPECIAL);
342 }
343 
344 static inline pte_t pte_mkdevmap(pte_t pte)
345 {
346 	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
347 }
348 
349 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
350 {
351 	pmdval_t v = native_pmd_val(pmd);
352 
353 	return native_make_pmd(v | set);
354 }
355 
356 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
357 {
358 	pmdval_t v = native_pmd_val(pmd);
359 
360 	return native_make_pmd(v & ~clear);
361 }
362 
363 static inline pmd_t pmd_mkold(pmd_t pmd)
364 {
365 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
366 }
367 
368 static inline pmd_t pmd_mkclean(pmd_t pmd)
369 {
370 	return pmd_clear_flags(pmd, _PAGE_DIRTY);
371 }
372 
373 static inline pmd_t pmd_wrprotect(pmd_t pmd)
374 {
375 	return pmd_clear_flags(pmd, _PAGE_RW);
376 }
377 
378 static inline pmd_t pmd_mkdirty(pmd_t pmd)
379 {
380 	return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
381 }
382 
383 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
384 {
385 	return pmd_set_flags(pmd, _PAGE_DEVMAP);
386 }
387 
388 static inline pmd_t pmd_mkhuge(pmd_t pmd)
389 {
390 	return pmd_set_flags(pmd, _PAGE_PSE);
391 }
392 
393 static inline pmd_t pmd_mkyoung(pmd_t pmd)
394 {
395 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
396 }
397 
398 static inline pmd_t pmd_mkwrite(pmd_t pmd)
399 {
400 	return pmd_set_flags(pmd, _PAGE_RW);
401 }
402 
403 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
404 {
405 	return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
406 }
407 
408 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
409 {
410 	pudval_t v = native_pud_val(pud);
411 
412 	return native_make_pud(v | set);
413 }
414 
415 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
416 {
417 	pudval_t v = native_pud_val(pud);
418 
419 	return native_make_pud(v & ~clear);
420 }
421 
422 static inline pud_t pud_mkold(pud_t pud)
423 {
424 	return pud_clear_flags(pud, _PAGE_ACCESSED);
425 }
426 
427 static inline pud_t pud_mkclean(pud_t pud)
428 {
429 	return pud_clear_flags(pud, _PAGE_DIRTY);
430 }
431 
432 static inline pud_t pud_wrprotect(pud_t pud)
433 {
434 	return pud_clear_flags(pud, _PAGE_RW);
435 }
436 
437 static inline pud_t pud_mkdirty(pud_t pud)
438 {
439 	return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
440 }
441 
442 static inline pud_t pud_mkdevmap(pud_t pud)
443 {
444 	return pud_set_flags(pud, _PAGE_DEVMAP);
445 }
446 
447 static inline pud_t pud_mkhuge(pud_t pud)
448 {
449 	return pud_set_flags(pud, _PAGE_PSE);
450 }
451 
452 static inline pud_t pud_mkyoung(pud_t pud)
453 {
454 	return pud_set_flags(pud, _PAGE_ACCESSED);
455 }
456 
457 static inline pud_t pud_mkwrite(pud_t pud)
458 {
459 	return pud_set_flags(pud, _PAGE_RW);
460 }
461 
462 static inline pud_t pud_mknotpresent(pud_t pud)
463 {
464 	return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
465 }
466 
467 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
468 static inline int pte_soft_dirty(pte_t pte)
469 {
470 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
471 }
472 
473 static inline int pmd_soft_dirty(pmd_t pmd)
474 {
475 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
476 }
477 
478 static inline int pud_soft_dirty(pud_t pud)
479 {
480 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
481 }
482 
483 static inline pte_t pte_mksoft_dirty(pte_t pte)
484 {
485 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
486 }
487 
488 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
489 {
490 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
491 }
492 
493 static inline pud_t pud_mksoft_dirty(pud_t pud)
494 {
495 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
496 }
497 
498 static inline pte_t pte_clear_soft_dirty(pte_t pte)
499 {
500 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
501 }
502 
503 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
504 {
505 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
506 }
507 
508 static inline pud_t pud_clear_soft_dirty(pud_t pud)
509 {
510 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
511 }
512 
513 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
514 
515 /*
516  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
517  * can use those bits for other purposes, so leave them be.
518  */
519 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
520 {
521 	pgprotval_t protval = pgprot_val(pgprot);
522 
523 	if (protval & _PAGE_PRESENT)
524 		protval &= __supported_pte_mask;
525 
526 	return protval;
527 }
528 
529 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
530 {
531 	return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
532 		     massage_pgprot(pgprot));
533 }
534 
535 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
536 {
537 	return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
538 		     massage_pgprot(pgprot));
539 }
540 
541 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
542 {
543 	return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
544 		     massage_pgprot(pgprot));
545 }
546 
547 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
548 {
549 	pteval_t val = pte_val(pte);
550 
551 	/*
552 	 * Chop off the NX bit (if present), and add the NX portion of
553 	 * the newprot (if present):
554 	 */
555 	val &= _PAGE_CHG_MASK;
556 	val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
557 
558 	return __pte(val);
559 }
560 
561 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
562 {
563 	pmdval_t val = pmd_val(pmd);
564 
565 	val &= _HPAGE_CHG_MASK;
566 	val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
567 
568 	return __pmd(val);
569 }
570 
571 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
572 #define pgprot_modify pgprot_modify
573 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
574 {
575 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
576 	pgprotval_t addbits = pgprot_val(newprot);
577 	return __pgprot(preservebits | addbits);
578 }
579 
580 #define pte_pgprot(x) __pgprot(pte_flags(x))
581 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
582 #define pud_pgprot(x) __pgprot(pud_flags(x))
583 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
584 
585 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
586 
587 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
588 					 enum page_cache_mode pcm,
589 					 enum page_cache_mode new_pcm)
590 {
591 	/*
592 	 * PAT type is always WB for untracked ranges, so no need to check.
593 	 */
594 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
595 		return 1;
596 
597 	/*
598 	 * Certain new memtypes are not allowed with certain
599 	 * requested memtype:
600 	 * - request is uncached, return cannot be write-back
601 	 * - request is write-combine, return cannot be write-back
602 	 * - request is write-through, return cannot be write-back
603 	 * - request is write-through, return cannot be write-combine
604 	 */
605 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
606 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
607 	    (pcm == _PAGE_CACHE_MODE_WC &&
608 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
609 	    (pcm == _PAGE_CACHE_MODE_WT &&
610 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
611 	    (pcm == _PAGE_CACHE_MODE_WT &&
612 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
613 		return 0;
614 	}
615 
616 	return 1;
617 }
618 
619 pmd_t *populate_extra_pmd(unsigned long vaddr);
620 pte_t *populate_extra_pte(unsigned long vaddr);
621 #endif	/* __ASSEMBLY__ */
622 
623 #ifdef CONFIG_X86_32
624 # include <asm/pgtable_32.h>
625 #else
626 # include <asm/pgtable_64.h>
627 #endif
628 
629 #ifndef __ASSEMBLY__
630 #include <linux/mm_types.h>
631 #include <linux/mmdebug.h>
632 #include <linux/log2.h>
633 #include <asm/fixmap.h>
634 
635 static inline int pte_none(pte_t pte)
636 {
637 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
638 }
639 
640 #define __HAVE_ARCH_PTE_SAME
641 static inline int pte_same(pte_t a, pte_t b)
642 {
643 	return a.pte == b.pte;
644 }
645 
646 static inline int pte_present(pte_t a)
647 {
648 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
649 }
650 
651 #ifdef __HAVE_ARCH_PTE_DEVMAP
652 static inline int pte_devmap(pte_t a)
653 {
654 	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
655 }
656 #endif
657 
658 #define pte_accessible pte_accessible
659 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
660 {
661 	if (pte_flags(a) & _PAGE_PRESENT)
662 		return true;
663 
664 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
665 			mm_tlb_flush_pending(mm))
666 		return true;
667 
668 	return false;
669 }
670 
671 static inline int pmd_present(pmd_t pmd)
672 {
673 	/*
674 	 * Checking for _PAGE_PSE is needed too because
675 	 * split_huge_page will temporarily clear the present bit (but
676 	 * the _PAGE_PSE flag will remain set at all times while the
677 	 * _PAGE_PRESENT bit is clear).
678 	 */
679 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
680 }
681 
682 #ifdef CONFIG_NUMA_BALANCING
683 /*
684  * These work without NUMA balancing but the kernel does not care. See the
685  * comment in include/asm-generic/pgtable.h
686  */
687 static inline int pte_protnone(pte_t pte)
688 {
689 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
690 		== _PAGE_PROTNONE;
691 }
692 
693 static inline int pmd_protnone(pmd_t pmd)
694 {
695 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
696 		== _PAGE_PROTNONE;
697 }
698 #endif /* CONFIG_NUMA_BALANCING */
699 
700 static inline int pmd_none(pmd_t pmd)
701 {
702 	/* Only check low word on 32-bit platforms, since it might be
703 	   out of sync with upper half. */
704 	unsigned long val = native_pmd_val(pmd);
705 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
706 }
707 
708 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
709 {
710 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
711 }
712 
713 /*
714  * Currently stuck as a macro due to indirect forward reference to
715  * linux/mmzone.h's __section_mem_map_addr() definition:
716  */
717 #define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
718 
719 /*
720  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
721  *
722  * this macro returns the index of the entry in the pmd page which would
723  * control the given virtual address
724  */
725 static inline unsigned long pmd_index(unsigned long address)
726 {
727 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
728 }
729 
730 /*
731  * Conversion functions: convert a page and protection to a page entry,
732  * and a page entry and page directory to the page they refer to.
733  *
734  * (Currently stuck as a macro because of indirect forward reference
735  * to linux/mm.h:page_to_nid())
736  */
737 #define mk_pte(page, pgprot)   pfn_pte(page_to_pfn(page), (pgprot))
738 
739 /*
740  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
741  *
742  * this function returns the index of the entry in the pte page which would
743  * control the given virtual address
744  */
745 static inline unsigned long pte_index(unsigned long address)
746 {
747 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
748 }
749 
750 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
751 {
752 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
753 }
754 
755 static inline int pmd_bad(pmd_t pmd)
756 {
757 	return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
758 }
759 
760 static inline unsigned long pages_to_mb(unsigned long npg)
761 {
762 	return npg >> (20 - PAGE_SHIFT);
763 }
764 
765 #if CONFIG_PGTABLE_LEVELS > 2
766 static inline int pud_none(pud_t pud)
767 {
768 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
769 }
770 
771 static inline int pud_present(pud_t pud)
772 {
773 	return pud_flags(pud) & _PAGE_PRESENT;
774 }
775 
776 static inline unsigned long pud_page_vaddr(pud_t pud)
777 {
778 	return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
779 }
780 
781 /*
782  * Currently stuck as a macro due to indirect forward reference to
783  * linux/mmzone.h's __section_mem_map_addr() definition:
784  */
785 #define pud_page(pud)	pfn_to_page(pud_pfn(pud))
786 
787 /* Find an entry in the second-level page table.. */
788 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
789 {
790 	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
791 }
792 
793 static inline int pud_large(pud_t pud)
794 {
795 	return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
796 		(_PAGE_PSE | _PAGE_PRESENT);
797 }
798 
799 static inline int pud_bad(pud_t pud)
800 {
801 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
802 }
803 #else
804 static inline int pud_large(pud_t pud)
805 {
806 	return 0;
807 }
808 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
809 
810 static inline unsigned long pud_index(unsigned long address)
811 {
812 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
813 }
814 
815 #if CONFIG_PGTABLE_LEVELS > 3
816 static inline int p4d_none(p4d_t p4d)
817 {
818 	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
819 }
820 
821 static inline int p4d_present(p4d_t p4d)
822 {
823 	return p4d_flags(p4d) & _PAGE_PRESENT;
824 }
825 
826 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
827 {
828 	return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
829 }
830 
831 /*
832  * Currently stuck as a macro due to indirect forward reference to
833  * linux/mmzone.h's __section_mem_map_addr() definition:
834  */
835 #define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
836 
837 /* Find an entry in the third-level page table.. */
838 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
839 {
840 	return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
841 }
842 
843 static inline int p4d_bad(p4d_t p4d)
844 {
845 	unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
846 
847 	if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
848 		ignore_flags |= _PAGE_NX;
849 
850 	return (p4d_flags(p4d) & ~ignore_flags) != 0;
851 }
852 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
853 
854 static inline unsigned long p4d_index(unsigned long address)
855 {
856 	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
857 }
858 
859 #if CONFIG_PGTABLE_LEVELS > 4
860 static inline int pgd_present(pgd_t pgd)
861 {
862 	if (!pgtable_l5_enabled)
863 		return 1;
864 	return pgd_flags(pgd) & _PAGE_PRESENT;
865 }
866 
867 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
868 {
869 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
870 }
871 
872 /*
873  * Currently stuck as a macro due to indirect forward reference to
874  * linux/mmzone.h's __section_mem_map_addr() definition:
875  */
876 #define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
877 
878 /* to find an entry in a page-table-directory. */
879 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
880 {
881 	if (!pgtable_l5_enabled)
882 		return (p4d_t *)pgd;
883 	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
884 }
885 
886 static inline int pgd_bad(pgd_t pgd)
887 {
888 	unsigned long ignore_flags = _PAGE_USER;
889 
890 	if (!pgtable_l5_enabled)
891 		return 0;
892 
893 	if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
894 		ignore_flags |= _PAGE_NX;
895 
896 	return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
897 }
898 
899 static inline int pgd_none(pgd_t pgd)
900 {
901 	if (!pgtable_l5_enabled)
902 		return 0;
903 	/*
904 	 * There is no need to do a workaround for the KNL stray
905 	 * A/D bit erratum here.  PGDs only point to page tables
906 	 * except on 32-bit non-PAE which is not supported on
907 	 * KNL.
908 	 */
909 	return !native_pgd_val(pgd);
910 }
911 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
912 
913 #endif	/* __ASSEMBLY__ */
914 
915 /*
916  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
917  *
918  * this macro returns the index of the entry in the pgd page which would
919  * control the given virtual address
920  */
921 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
922 
923 /*
924  * pgd_offset() returns a (pgd_t *)
925  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
926  */
927 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address)))
928 /*
929  * a shortcut to get a pgd_t in a given mm
930  */
931 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
932 /*
933  * a shortcut which implies the use of the kernel's pgd, instead
934  * of a process's
935  */
936 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
937 
938 
939 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
940 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
941 
942 #ifndef __ASSEMBLY__
943 
944 extern int direct_gbpages;
945 void init_mem_mapping(void);
946 void early_alloc_pgt_buf(void);
947 extern void memblock_find_dma_reserve(void);
948 
949 #ifdef CONFIG_X86_64
950 /* Realmode trampoline initialization. */
951 extern pgd_t trampoline_pgd_entry;
952 static inline void __meminit init_trampoline_default(void)
953 {
954 	/* Default trampoline pgd value */
955 	trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
956 }
957 # ifdef CONFIG_RANDOMIZE_MEMORY
958 void __meminit init_trampoline(void);
959 # else
960 #  define init_trampoline init_trampoline_default
961 # endif
962 #else
963 static inline void init_trampoline(void) { }
964 #endif
965 
966 /* local pte updates need not use xchg for locking */
967 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
968 {
969 	pte_t res = *ptep;
970 
971 	/* Pure native function needs no input for mm, addr */
972 	native_pte_clear(NULL, 0, ptep);
973 	return res;
974 }
975 
976 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
977 {
978 	pmd_t res = *pmdp;
979 
980 	native_pmd_clear(pmdp);
981 	return res;
982 }
983 
984 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
985 {
986 	pud_t res = *pudp;
987 
988 	native_pud_clear(pudp);
989 	return res;
990 }
991 
992 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
993 				     pte_t *ptep , pte_t pte)
994 {
995 	native_set_pte(ptep, pte);
996 }
997 
998 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
999 			      pmd_t *pmdp, pmd_t pmd)
1000 {
1001 	native_set_pmd(pmdp, pmd);
1002 }
1003 
1004 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1005 			      pud_t *pudp, pud_t pud)
1006 {
1007 	native_set_pud(pudp, pud);
1008 }
1009 
1010 /*
1011  * We only update the dirty/accessed state if we set
1012  * the dirty bit by hand in the kernel, since the hardware
1013  * will do the accessed bit for us, and we don't want to
1014  * race with other CPU's that might be updating the dirty
1015  * bit at the same time.
1016  */
1017 struct vm_area_struct;
1018 
1019 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1020 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1021 				 unsigned long address, pte_t *ptep,
1022 				 pte_t entry, int dirty);
1023 
1024 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1025 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1026 				     unsigned long addr, pte_t *ptep);
1027 
1028 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1029 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1030 				  unsigned long address, pte_t *ptep);
1031 
1032 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1033 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1034 				       pte_t *ptep)
1035 {
1036 	pte_t pte = native_ptep_get_and_clear(ptep);
1037 	return pte;
1038 }
1039 
1040 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1041 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1042 					    unsigned long addr, pte_t *ptep,
1043 					    int full)
1044 {
1045 	pte_t pte;
1046 	if (full) {
1047 		/*
1048 		 * Full address destruction in progress; paravirt does not
1049 		 * care about updates and native needs no locking
1050 		 */
1051 		pte = native_local_ptep_get_and_clear(ptep);
1052 	} else {
1053 		pte = ptep_get_and_clear(mm, addr, ptep);
1054 	}
1055 	return pte;
1056 }
1057 
1058 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1059 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1060 				      unsigned long addr, pte_t *ptep)
1061 {
1062 	clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1063 }
1064 
1065 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1066 
1067 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1068 
1069 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1070 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1071 				 unsigned long address, pmd_t *pmdp,
1072 				 pmd_t entry, int dirty);
1073 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1074 				 unsigned long address, pud_t *pudp,
1075 				 pud_t entry, int dirty);
1076 
1077 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1078 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1079 				     unsigned long addr, pmd_t *pmdp);
1080 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1081 				     unsigned long addr, pud_t *pudp);
1082 
1083 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1084 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1085 				  unsigned long address, pmd_t *pmdp);
1086 
1087 
1088 #define pmd_write pmd_write
1089 static inline int pmd_write(pmd_t pmd)
1090 {
1091 	return pmd_flags(pmd) & _PAGE_RW;
1092 }
1093 
1094 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1095 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1096 				       pmd_t *pmdp)
1097 {
1098 	return native_pmdp_get_and_clear(pmdp);
1099 }
1100 
1101 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1102 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1103 					unsigned long addr, pud_t *pudp)
1104 {
1105 	return native_pudp_get_and_clear(pudp);
1106 }
1107 
1108 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1109 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1110 				      unsigned long addr, pmd_t *pmdp)
1111 {
1112 	clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1113 }
1114 
1115 #define pud_write pud_write
1116 static inline int pud_write(pud_t pud)
1117 {
1118 	return pud_flags(pud) & _PAGE_RW;
1119 }
1120 
1121 #ifndef pmdp_establish
1122 #define pmdp_establish pmdp_establish
1123 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1124 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1125 {
1126 	if (IS_ENABLED(CONFIG_SMP)) {
1127 		return xchg(pmdp, pmd);
1128 	} else {
1129 		pmd_t old = *pmdp;
1130 		*pmdp = pmd;
1131 		return old;
1132 	}
1133 }
1134 #endif
1135 
1136 /*
1137  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1138  *
1139  *  dst - pointer to pgd range anwhere on a pgd page
1140  *  src - ""
1141  *  count - the number of pgds to copy.
1142  *
1143  * dst and src can be on the same page, but the range must not overlap,
1144  * and must not cross a page boundary.
1145  */
1146 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1147 {
1148 	memcpy(dst, src, count * sizeof(pgd_t));
1149 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1150 	if (!static_cpu_has(X86_FEATURE_PTI))
1151 		return;
1152 	/* Clone the user space pgd as well */
1153 	memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1154 	       count * sizeof(pgd_t));
1155 #endif
1156 }
1157 
1158 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1159 static inline int page_level_shift(enum pg_level level)
1160 {
1161 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1162 }
1163 static inline unsigned long page_level_size(enum pg_level level)
1164 {
1165 	return 1UL << page_level_shift(level);
1166 }
1167 static inline unsigned long page_level_mask(enum pg_level level)
1168 {
1169 	return ~(page_level_size(level) - 1);
1170 }
1171 
1172 /*
1173  * The x86 doesn't have any external MMU info: the kernel page
1174  * tables contain all the necessary information.
1175  */
1176 static inline void update_mmu_cache(struct vm_area_struct *vma,
1177 		unsigned long addr, pte_t *ptep)
1178 {
1179 }
1180 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1181 		unsigned long addr, pmd_t *pmd)
1182 {
1183 }
1184 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1185 		unsigned long addr, pud_t *pud)
1186 {
1187 }
1188 
1189 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1190 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1191 {
1192 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1193 }
1194 
1195 static inline int pte_swp_soft_dirty(pte_t pte)
1196 {
1197 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1198 }
1199 
1200 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1201 {
1202 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1203 }
1204 
1205 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1206 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1207 {
1208 	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1209 }
1210 
1211 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1212 {
1213 	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1214 }
1215 
1216 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1217 {
1218 	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1219 }
1220 #endif
1221 #endif
1222 
1223 #define PKRU_AD_BIT 0x1
1224 #define PKRU_WD_BIT 0x2
1225 #define PKRU_BITS_PER_PKEY 2
1226 
1227 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1228 {
1229 	int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1230 	return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1231 }
1232 
1233 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1234 {
1235 	int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1236 	/*
1237 	 * Access-disable disables writes too so we need to check
1238 	 * both bits here.
1239 	 */
1240 	return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1241 }
1242 
1243 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1244 {
1245 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1246 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1247 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1248 #else
1249 	return 0;
1250 #endif
1251 }
1252 
1253 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1254 {
1255 	u32 pkru = read_pkru();
1256 
1257 	if (!__pkru_allows_read(pkru, pkey))
1258 		return false;
1259 	if (write && !__pkru_allows_write(pkru, pkey))
1260 		return false;
1261 
1262 	return true;
1263 }
1264 
1265 /*
1266  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1267  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1268  * same value on all 3 types.
1269  */
1270 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1271 {
1272 	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1273 
1274 	if (write)
1275 		need_pte_bits |= _PAGE_RW;
1276 
1277 	if ((pteval & need_pte_bits) != need_pte_bits)
1278 		return 0;
1279 
1280 	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1281 }
1282 
1283 #define pte_access_permitted pte_access_permitted
1284 static inline bool pte_access_permitted(pte_t pte, bool write)
1285 {
1286 	return __pte_access_permitted(pte_val(pte), write);
1287 }
1288 
1289 #define pmd_access_permitted pmd_access_permitted
1290 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1291 {
1292 	return __pte_access_permitted(pmd_val(pmd), write);
1293 }
1294 
1295 #define pud_access_permitted pud_access_permitted
1296 static inline bool pud_access_permitted(pud_t pud, bool write)
1297 {
1298 	return __pte_access_permitted(pud_val(pud), write);
1299 }
1300 
1301 #include <asm-generic/pgtable.h>
1302 #endif	/* __ASSEMBLY__ */
1303 
1304 #endif /* _ASM_X86_PGTABLE_H */
1305