1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 /* 19 * Macros to add or remove encryption attribute 20 */ 21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) 22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) 23 24 #ifndef __ASSEMBLY__ 25 #include <asm/x86_init.h> 26 #include <asm/fpu/xstate.h> 27 #include <asm/fpu/api.h> 28 29 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 30 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 31 32 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd); 33 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user); 34 void ptdump_walk_pgd_level_checkwx(void); 35 void ptdump_walk_user_pgd_level_checkwx(void); 36 37 #ifdef CONFIG_DEBUG_WX 38 #define debug_checkwx() ptdump_walk_pgd_level_checkwx() 39 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() 40 #else 41 #define debug_checkwx() do { } while (0) 42 #define debug_checkwx_user() do { } while (0) 43 #endif 44 45 /* 46 * ZERO_PAGE is a global shared page that is always zero: used 47 * for zero-mapped memory areas etc.. 48 */ 49 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 50 __visible; 51 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) 52 53 extern spinlock_t pgd_lock; 54 extern struct list_head pgd_list; 55 56 extern struct mm_struct *pgd_page_get_mm(struct page *page); 57 58 extern pmdval_t early_pmd_flags; 59 60 #ifdef CONFIG_PARAVIRT_XXL 61 #include <asm/paravirt.h> 62 #else /* !CONFIG_PARAVIRT_XXL */ 63 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 64 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 65 66 #define set_pte_atomic(ptep, pte) \ 67 native_set_pte_atomic(ptep, pte) 68 69 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 70 71 #ifndef __PAGETABLE_P4D_FOLDED 72 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 73 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) 74 #endif 75 76 #ifndef set_p4d 77 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 78 #endif 79 80 #ifndef __PAGETABLE_PUD_FOLDED 81 #define p4d_clear(p4d) native_p4d_clear(p4d) 82 #endif 83 84 #ifndef set_pud 85 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 86 #endif 87 88 #ifndef __PAGETABLE_PUD_FOLDED 89 #define pud_clear(pud) native_pud_clear(pud) 90 #endif 91 92 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 93 #define pmd_clear(pmd) native_pmd_clear(pmd) 94 95 #define pgd_val(x) native_pgd_val(x) 96 #define __pgd(x) native_make_pgd(x) 97 98 #ifndef __PAGETABLE_P4D_FOLDED 99 #define p4d_val(x) native_p4d_val(x) 100 #define __p4d(x) native_make_p4d(x) 101 #endif 102 103 #ifndef __PAGETABLE_PUD_FOLDED 104 #define pud_val(x) native_pud_val(x) 105 #define __pud(x) native_make_pud(x) 106 #endif 107 108 #ifndef __PAGETABLE_PMD_FOLDED 109 #define pmd_val(x) native_pmd_val(x) 110 #define __pmd(x) native_make_pmd(x) 111 #endif 112 113 #define pte_val(x) native_pte_val(x) 114 #define __pte(x) native_make_pte(x) 115 116 #define arch_end_context_switch(prev) do {} while(0) 117 #endif /* CONFIG_PARAVIRT_XXL */ 118 119 /* 120 * The following only work if pte_present() is true. 121 * Undefined behaviour if not.. 122 */ 123 static inline int pte_dirty(pte_t pte) 124 { 125 return pte_flags(pte) & _PAGE_DIRTY; 126 } 127 128 129 static inline u32 read_pkru(void) 130 { 131 if (boot_cpu_has(X86_FEATURE_OSPKE)) 132 return rdpkru(); 133 return 0; 134 } 135 136 static inline void write_pkru(u32 pkru) 137 { 138 struct pkru_state *pk; 139 140 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 141 return; 142 143 pk = get_xsave_addr(¤t->thread.fpu.state.xsave, XFEATURE_PKRU); 144 145 /* 146 * The PKRU value in xstate needs to be in sync with the value that is 147 * written to the CPU. The FPU restore on return to userland would 148 * otherwise load the previous value again. 149 */ 150 fpregs_lock(); 151 if (pk) 152 pk->pkru = pkru; 153 __write_pkru(pkru); 154 fpregs_unlock(); 155 } 156 157 static inline int pte_young(pte_t pte) 158 { 159 return pte_flags(pte) & _PAGE_ACCESSED; 160 } 161 162 static inline int pmd_dirty(pmd_t pmd) 163 { 164 return pmd_flags(pmd) & _PAGE_DIRTY; 165 } 166 167 static inline int pmd_young(pmd_t pmd) 168 { 169 return pmd_flags(pmd) & _PAGE_ACCESSED; 170 } 171 172 static inline int pud_dirty(pud_t pud) 173 { 174 return pud_flags(pud) & _PAGE_DIRTY; 175 } 176 177 static inline int pud_young(pud_t pud) 178 { 179 return pud_flags(pud) & _PAGE_ACCESSED; 180 } 181 182 static inline int pte_write(pte_t pte) 183 { 184 return pte_flags(pte) & _PAGE_RW; 185 } 186 187 static inline int pte_huge(pte_t pte) 188 { 189 return pte_flags(pte) & _PAGE_PSE; 190 } 191 192 static inline int pte_global(pte_t pte) 193 { 194 return pte_flags(pte) & _PAGE_GLOBAL; 195 } 196 197 static inline int pte_exec(pte_t pte) 198 { 199 return !(pte_flags(pte) & _PAGE_NX); 200 } 201 202 static inline int pte_special(pte_t pte) 203 { 204 return pte_flags(pte) & _PAGE_SPECIAL; 205 } 206 207 /* Entries that were set to PROT_NONE are inverted */ 208 209 static inline u64 protnone_mask(u64 val); 210 211 static inline unsigned long pte_pfn(pte_t pte) 212 { 213 phys_addr_t pfn = pte_val(pte); 214 pfn ^= protnone_mask(pfn); 215 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; 216 } 217 218 static inline unsigned long pmd_pfn(pmd_t pmd) 219 { 220 phys_addr_t pfn = pmd_val(pmd); 221 pfn ^= protnone_mask(pfn); 222 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 223 } 224 225 static inline unsigned long pud_pfn(pud_t pud) 226 { 227 phys_addr_t pfn = pud_val(pud); 228 pfn ^= protnone_mask(pfn); 229 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; 230 } 231 232 static inline unsigned long p4d_pfn(p4d_t p4d) 233 { 234 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 235 } 236 237 static inline unsigned long pgd_pfn(pgd_t pgd) 238 { 239 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 240 } 241 242 static inline int p4d_large(p4d_t p4d) 243 { 244 /* No 512 GiB pages yet */ 245 return 0; 246 } 247 248 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 249 250 static inline int pmd_large(pmd_t pte) 251 { 252 return pmd_flags(pte) & _PAGE_PSE; 253 } 254 255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 256 static inline int pmd_trans_huge(pmd_t pmd) 257 { 258 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 259 } 260 261 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 262 static inline int pud_trans_huge(pud_t pud) 263 { 264 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 265 } 266 #endif 267 268 #define has_transparent_hugepage has_transparent_hugepage 269 static inline int has_transparent_hugepage(void) 270 { 271 return boot_cpu_has(X86_FEATURE_PSE); 272 } 273 274 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 275 static inline int pmd_devmap(pmd_t pmd) 276 { 277 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 278 } 279 280 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 281 static inline int pud_devmap(pud_t pud) 282 { 283 return !!(pud_val(pud) & _PAGE_DEVMAP); 284 } 285 #else 286 static inline int pud_devmap(pud_t pud) 287 { 288 return 0; 289 } 290 #endif 291 292 static inline int pgd_devmap(pgd_t pgd) 293 { 294 return 0; 295 } 296 #endif 297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 298 299 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 300 { 301 pteval_t v = native_pte_val(pte); 302 303 return native_make_pte(v | set); 304 } 305 306 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 307 { 308 pteval_t v = native_pte_val(pte); 309 310 return native_make_pte(v & ~clear); 311 } 312 313 static inline pte_t pte_mkclean(pte_t pte) 314 { 315 return pte_clear_flags(pte, _PAGE_DIRTY); 316 } 317 318 static inline pte_t pte_mkold(pte_t pte) 319 { 320 return pte_clear_flags(pte, _PAGE_ACCESSED); 321 } 322 323 static inline pte_t pte_wrprotect(pte_t pte) 324 { 325 return pte_clear_flags(pte, _PAGE_RW); 326 } 327 328 static inline pte_t pte_mkexec(pte_t pte) 329 { 330 return pte_clear_flags(pte, _PAGE_NX); 331 } 332 333 static inline pte_t pte_mkdirty(pte_t pte) 334 { 335 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 336 } 337 338 static inline pte_t pte_mkyoung(pte_t pte) 339 { 340 return pte_set_flags(pte, _PAGE_ACCESSED); 341 } 342 343 static inline pte_t pte_mkwrite(pte_t pte) 344 { 345 return pte_set_flags(pte, _PAGE_RW); 346 } 347 348 static inline pte_t pte_mkhuge(pte_t pte) 349 { 350 return pte_set_flags(pte, _PAGE_PSE); 351 } 352 353 static inline pte_t pte_clrhuge(pte_t pte) 354 { 355 return pte_clear_flags(pte, _PAGE_PSE); 356 } 357 358 static inline pte_t pte_mkglobal(pte_t pte) 359 { 360 return pte_set_flags(pte, _PAGE_GLOBAL); 361 } 362 363 static inline pte_t pte_clrglobal(pte_t pte) 364 { 365 return pte_clear_flags(pte, _PAGE_GLOBAL); 366 } 367 368 static inline pte_t pte_mkspecial(pte_t pte) 369 { 370 return pte_set_flags(pte, _PAGE_SPECIAL); 371 } 372 373 static inline pte_t pte_mkdevmap(pte_t pte) 374 { 375 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 376 } 377 378 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 379 { 380 pmdval_t v = native_pmd_val(pmd); 381 382 return native_make_pmd(v | set); 383 } 384 385 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 386 { 387 pmdval_t v = native_pmd_val(pmd); 388 389 return native_make_pmd(v & ~clear); 390 } 391 392 static inline pmd_t pmd_mkold(pmd_t pmd) 393 { 394 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 395 } 396 397 static inline pmd_t pmd_mkclean(pmd_t pmd) 398 { 399 return pmd_clear_flags(pmd, _PAGE_DIRTY); 400 } 401 402 static inline pmd_t pmd_wrprotect(pmd_t pmd) 403 { 404 return pmd_clear_flags(pmd, _PAGE_RW); 405 } 406 407 static inline pmd_t pmd_mkdirty(pmd_t pmd) 408 { 409 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 410 } 411 412 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 413 { 414 return pmd_set_flags(pmd, _PAGE_DEVMAP); 415 } 416 417 static inline pmd_t pmd_mkhuge(pmd_t pmd) 418 { 419 return pmd_set_flags(pmd, _PAGE_PSE); 420 } 421 422 static inline pmd_t pmd_mkyoung(pmd_t pmd) 423 { 424 return pmd_set_flags(pmd, _PAGE_ACCESSED); 425 } 426 427 static inline pmd_t pmd_mkwrite(pmd_t pmd) 428 { 429 return pmd_set_flags(pmd, _PAGE_RW); 430 } 431 432 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 433 { 434 pudval_t v = native_pud_val(pud); 435 436 return native_make_pud(v | set); 437 } 438 439 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 440 { 441 pudval_t v = native_pud_val(pud); 442 443 return native_make_pud(v & ~clear); 444 } 445 446 static inline pud_t pud_mkold(pud_t pud) 447 { 448 return pud_clear_flags(pud, _PAGE_ACCESSED); 449 } 450 451 static inline pud_t pud_mkclean(pud_t pud) 452 { 453 return pud_clear_flags(pud, _PAGE_DIRTY); 454 } 455 456 static inline pud_t pud_wrprotect(pud_t pud) 457 { 458 return pud_clear_flags(pud, _PAGE_RW); 459 } 460 461 static inline pud_t pud_mkdirty(pud_t pud) 462 { 463 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 464 } 465 466 static inline pud_t pud_mkdevmap(pud_t pud) 467 { 468 return pud_set_flags(pud, _PAGE_DEVMAP); 469 } 470 471 static inline pud_t pud_mkhuge(pud_t pud) 472 { 473 return pud_set_flags(pud, _PAGE_PSE); 474 } 475 476 static inline pud_t pud_mkyoung(pud_t pud) 477 { 478 return pud_set_flags(pud, _PAGE_ACCESSED); 479 } 480 481 static inline pud_t pud_mkwrite(pud_t pud) 482 { 483 return pud_set_flags(pud, _PAGE_RW); 484 } 485 486 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 487 static inline int pte_soft_dirty(pte_t pte) 488 { 489 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 490 } 491 492 static inline int pmd_soft_dirty(pmd_t pmd) 493 { 494 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 495 } 496 497 static inline int pud_soft_dirty(pud_t pud) 498 { 499 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 500 } 501 502 static inline pte_t pte_mksoft_dirty(pte_t pte) 503 { 504 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 505 } 506 507 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 508 { 509 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 510 } 511 512 static inline pud_t pud_mksoft_dirty(pud_t pud) 513 { 514 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 515 } 516 517 static inline pte_t pte_clear_soft_dirty(pte_t pte) 518 { 519 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 520 } 521 522 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 523 { 524 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 525 } 526 527 static inline pud_t pud_clear_soft_dirty(pud_t pud) 528 { 529 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 530 } 531 532 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 533 534 /* 535 * Mask out unsupported bits in a present pgprot. Non-present pgprots 536 * can use those bits for other purposes, so leave them be. 537 */ 538 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 539 { 540 pgprotval_t protval = pgprot_val(pgprot); 541 542 if (protval & _PAGE_PRESENT) 543 protval &= __supported_pte_mask; 544 545 return protval; 546 } 547 548 static inline pgprotval_t check_pgprot(pgprot_t pgprot) 549 { 550 pgprotval_t massaged_val = massage_pgprot(pgprot); 551 552 /* mmdebug.h can not be included here because of dependencies */ 553 #ifdef CONFIG_DEBUG_VM 554 WARN_ONCE(pgprot_val(pgprot) != massaged_val, 555 "attempted to set unsupported pgprot: %016llx " 556 "bits: %016llx supported: %016llx\n", 557 (u64)pgprot_val(pgprot), 558 (u64)pgprot_val(pgprot) ^ massaged_val, 559 (u64)__supported_pte_mask); 560 #endif 561 562 return massaged_val; 563 } 564 565 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 566 { 567 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 568 pfn ^= protnone_mask(pgprot_val(pgprot)); 569 pfn &= PTE_PFN_MASK; 570 return __pte(pfn | check_pgprot(pgprot)); 571 } 572 573 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 574 { 575 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 576 pfn ^= protnone_mask(pgprot_val(pgprot)); 577 pfn &= PHYSICAL_PMD_PAGE_MASK; 578 return __pmd(pfn | check_pgprot(pgprot)); 579 } 580 581 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 582 { 583 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 584 pfn ^= protnone_mask(pgprot_val(pgprot)); 585 pfn &= PHYSICAL_PUD_PAGE_MASK; 586 return __pud(pfn | check_pgprot(pgprot)); 587 } 588 589 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 590 { 591 return pfn_pmd(pmd_pfn(pmd), 592 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 593 } 594 595 static inline pud_t pud_mknotpresent(pud_t pud) 596 { 597 return pfn_pud(pud_pfn(pud), 598 __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 599 } 600 601 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); 602 603 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 604 { 605 pteval_t val = pte_val(pte), oldval = val; 606 607 /* 608 * Chop off the NX bit (if present), and add the NX portion of 609 * the newprot (if present): 610 */ 611 val &= _PAGE_CHG_MASK; 612 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; 613 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); 614 return __pte(val); 615 } 616 617 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 618 { 619 pmdval_t val = pmd_val(pmd), oldval = val; 620 621 val &= _HPAGE_CHG_MASK; 622 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 623 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); 624 return __pmd(val); 625 } 626 627 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 628 #define pgprot_modify pgprot_modify 629 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 630 { 631 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 632 pgprotval_t addbits = pgprot_val(newprot); 633 return __pgprot(preservebits | addbits); 634 } 635 636 #define pte_pgprot(x) __pgprot(pte_flags(x)) 637 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 638 #define pud_pgprot(x) __pgprot(pud_flags(x)) 639 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 640 641 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 642 643 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 644 { 645 return canon_pgprot(prot); 646 } 647 648 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 649 enum page_cache_mode pcm, 650 enum page_cache_mode new_pcm) 651 { 652 /* 653 * PAT type is always WB for untracked ranges, so no need to check. 654 */ 655 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 656 return 1; 657 658 /* 659 * Certain new memtypes are not allowed with certain 660 * requested memtype: 661 * - request is uncached, return cannot be write-back 662 * - request is write-combine, return cannot be write-back 663 * - request is write-through, return cannot be write-back 664 * - request is write-through, return cannot be write-combine 665 */ 666 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 667 new_pcm == _PAGE_CACHE_MODE_WB) || 668 (pcm == _PAGE_CACHE_MODE_WC && 669 new_pcm == _PAGE_CACHE_MODE_WB) || 670 (pcm == _PAGE_CACHE_MODE_WT && 671 new_pcm == _PAGE_CACHE_MODE_WB) || 672 (pcm == _PAGE_CACHE_MODE_WT && 673 new_pcm == _PAGE_CACHE_MODE_WC)) { 674 return 0; 675 } 676 677 return 1; 678 } 679 680 pmd_t *populate_extra_pmd(unsigned long vaddr); 681 pte_t *populate_extra_pte(unsigned long vaddr); 682 683 #ifdef CONFIG_PAGE_TABLE_ISOLATION 684 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); 685 686 /* 687 * Take a PGD location (pgdp) and a pgd value that needs to be set there. 688 * Populates the user and returns the resulting PGD that must be set in 689 * the kernel copy of the page tables. 690 */ 691 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 692 { 693 if (!static_cpu_has(X86_FEATURE_PTI)) 694 return pgd; 695 return __pti_set_user_pgtbl(pgdp, pgd); 696 } 697 #else /* CONFIG_PAGE_TABLE_ISOLATION */ 698 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 699 { 700 return pgd; 701 } 702 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 703 704 #endif /* __ASSEMBLY__ */ 705 706 707 #ifdef CONFIG_X86_32 708 # include <asm/pgtable_32.h> 709 #else 710 # include <asm/pgtable_64.h> 711 #endif 712 713 #ifndef __ASSEMBLY__ 714 #include <linux/mm_types.h> 715 #include <linux/mmdebug.h> 716 #include <linux/log2.h> 717 #include <asm/fixmap.h> 718 719 static inline int pte_none(pte_t pte) 720 { 721 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 722 } 723 724 #define __HAVE_ARCH_PTE_SAME 725 static inline int pte_same(pte_t a, pte_t b) 726 { 727 return a.pte == b.pte; 728 } 729 730 static inline int pte_present(pte_t a) 731 { 732 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 733 } 734 735 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 736 static inline int pte_devmap(pte_t a) 737 { 738 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 739 } 740 #endif 741 742 #define pte_accessible pte_accessible 743 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 744 { 745 if (pte_flags(a) & _PAGE_PRESENT) 746 return true; 747 748 if ((pte_flags(a) & _PAGE_PROTNONE) && 749 mm_tlb_flush_pending(mm)) 750 return true; 751 752 return false; 753 } 754 755 static inline int pmd_present(pmd_t pmd) 756 { 757 /* 758 * Checking for _PAGE_PSE is needed too because 759 * split_huge_page will temporarily clear the present bit (but 760 * the _PAGE_PSE flag will remain set at all times while the 761 * _PAGE_PRESENT bit is clear). 762 */ 763 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 764 } 765 766 #ifdef CONFIG_NUMA_BALANCING 767 /* 768 * These work without NUMA balancing but the kernel does not care. See the 769 * comment in include/asm-generic/pgtable.h 770 */ 771 static inline int pte_protnone(pte_t pte) 772 { 773 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 774 == _PAGE_PROTNONE; 775 } 776 777 static inline int pmd_protnone(pmd_t pmd) 778 { 779 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 780 == _PAGE_PROTNONE; 781 } 782 #endif /* CONFIG_NUMA_BALANCING */ 783 784 static inline int pmd_none(pmd_t pmd) 785 { 786 /* Only check low word on 32-bit platforms, since it might be 787 out of sync with upper half. */ 788 unsigned long val = native_pmd_val(pmd); 789 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 790 } 791 792 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 793 { 794 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 795 } 796 797 /* 798 * Currently stuck as a macro due to indirect forward reference to 799 * linux/mmzone.h's __section_mem_map_addr() definition: 800 */ 801 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 802 803 /* 804 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 805 * 806 * this macro returns the index of the entry in the pmd page which would 807 * control the given virtual address 808 */ 809 static inline unsigned long pmd_index(unsigned long address) 810 { 811 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 812 } 813 814 /* 815 * Conversion functions: convert a page and protection to a page entry, 816 * and a page entry and page directory to the page they refer to. 817 * 818 * (Currently stuck as a macro because of indirect forward reference 819 * to linux/mm.h:page_to_nid()) 820 */ 821 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 822 823 /* 824 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 825 * 826 * this function returns the index of the entry in the pte page which would 827 * control the given virtual address 828 */ 829 static inline unsigned long pte_index(unsigned long address) 830 { 831 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 832 } 833 834 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 835 { 836 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 837 } 838 839 static inline int pmd_bad(pmd_t pmd) 840 { 841 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 842 } 843 844 static inline unsigned long pages_to_mb(unsigned long npg) 845 { 846 return npg >> (20 - PAGE_SHIFT); 847 } 848 849 #if CONFIG_PGTABLE_LEVELS > 2 850 static inline int pud_none(pud_t pud) 851 { 852 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 853 } 854 855 static inline int pud_present(pud_t pud) 856 { 857 return pud_flags(pud) & _PAGE_PRESENT; 858 } 859 860 static inline unsigned long pud_page_vaddr(pud_t pud) 861 { 862 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); 863 } 864 865 /* 866 * Currently stuck as a macro due to indirect forward reference to 867 * linux/mmzone.h's __section_mem_map_addr() definition: 868 */ 869 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 870 871 /* Find an entry in the second-level page table.. */ 872 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 873 { 874 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 875 } 876 877 static inline int pud_large(pud_t pud) 878 { 879 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 880 (_PAGE_PSE | _PAGE_PRESENT); 881 } 882 883 static inline int pud_bad(pud_t pud) 884 { 885 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 886 } 887 #else 888 static inline int pud_large(pud_t pud) 889 { 890 return 0; 891 } 892 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 893 894 static inline unsigned long pud_index(unsigned long address) 895 { 896 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 897 } 898 899 #if CONFIG_PGTABLE_LEVELS > 3 900 static inline int p4d_none(p4d_t p4d) 901 { 902 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 903 } 904 905 static inline int p4d_present(p4d_t p4d) 906 { 907 return p4d_flags(p4d) & _PAGE_PRESENT; 908 } 909 910 static inline unsigned long p4d_page_vaddr(p4d_t p4d) 911 { 912 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 913 } 914 915 /* 916 * Currently stuck as a macro due to indirect forward reference to 917 * linux/mmzone.h's __section_mem_map_addr() definition: 918 */ 919 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 920 921 /* Find an entry in the third-level page table.. */ 922 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 923 { 924 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 925 } 926 927 static inline int p4d_bad(p4d_t p4d) 928 { 929 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 930 931 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 932 ignore_flags |= _PAGE_NX; 933 934 return (p4d_flags(p4d) & ~ignore_flags) != 0; 935 } 936 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 937 938 static inline unsigned long p4d_index(unsigned long address) 939 { 940 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 941 } 942 943 #if CONFIG_PGTABLE_LEVELS > 4 944 static inline int pgd_present(pgd_t pgd) 945 { 946 if (!pgtable_l5_enabled()) 947 return 1; 948 return pgd_flags(pgd) & _PAGE_PRESENT; 949 } 950 951 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 952 { 953 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 954 } 955 956 /* 957 * Currently stuck as a macro due to indirect forward reference to 958 * linux/mmzone.h's __section_mem_map_addr() definition: 959 */ 960 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 961 962 /* to find an entry in a page-table-directory. */ 963 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 964 { 965 if (!pgtable_l5_enabled()) 966 return (p4d_t *)pgd; 967 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 968 } 969 970 static inline int pgd_bad(pgd_t pgd) 971 { 972 unsigned long ignore_flags = _PAGE_USER; 973 974 if (!pgtable_l5_enabled()) 975 return 0; 976 977 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 978 ignore_flags |= _PAGE_NX; 979 980 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 981 } 982 983 static inline int pgd_none(pgd_t pgd) 984 { 985 if (!pgtable_l5_enabled()) 986 return 0; 987 /* 988 * There is no need to do a workaround for the KNL stray 989 * A/D bit erratum here. PGDs only point to page tables 990 * except on 32-bit non-PAE which is not supported on 991 * KNL. 992 */ 993 return !native_pgd_val(pgd); 994 } 995 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 996 997 #endif /* __ASSEMBLY__ */ 998 999 /* 1000 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 1001 * 1002 * this macro returns the index of the entry in the pgd page which would 1003 * control the given virtual address 1004 */ 1005 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 1006 1007 /* 1008 * pgd_offset() returns a (pgd_t *) 1009 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 1010 */ 1011 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address))) 1012 /* 1013 * a shortcut to get a pgd_t in a given mm 1014 */ 1015 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 1016 /* 1017 * a shortcut which implies the use of the kernel's pgd, instead 1018 * of a process's 1019 */ 1020 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 1021 1022 1023 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 1024 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 1025 1026 #ifndef __ASSEMBLY__ 1027 1028 extern int direct_gbpages; 1029 void init_mem_mapping(void); 1030 void early_alloc_pgt_buf(void); 1031 extern void memblock_find_dma_reserve(void); 1032 1033 #ifdef CONFIG_X86_64 1034 /* Realmode trampoline initialization. */ 1035 extern pgd_t trampoline_pgd_entry; 1036 static inline void __meminit init_trampoline_default(void) 1037 { 1038 /* Default trampoline pgd value */ 1039 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 1040 } 1041 1042 void __init poking_init(void); 1043 1044 # ifdef CONFIG_RANDOMIZE_MEMORY 1045 void __meminit init_trampoline(void); 1046 # else 1047 # define init_trampoline init_trampoline_default 1048 # endif 1049 #else 1050 static inline void init_trampoline(void) { } 1051 #endif 1052 1053 /* local pte updates need not use xchg for locking */ 1054 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 1055 { 1056 pte_t res = *ptep; 1057 1058 /* Pure native function needs no input for mm, addr */ 1059 native_pte_clear(NULL, 0, ptep); 1060 return res; 1061 } 1062 1063 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 1064 { 1065 pmd_t res = *pmdp; 1066 1067 native_pmd_clear(pmdp); 1068 return res; 1069 } 1070 1071 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 1072 { 1073 pud_t res = *pudp; 1074 1075 native_pud_clear(pudp); 1076 return res; 1077 } 1078 1079 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 1080 pte_t *ptep , pte_t pte) 1081 { 1082 native_set_pte(ptep, pte); 1083 } 1084 1085 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1086 pmd_t *pmdp, pmd_t pmd) 1087 { 1088 set_pmd(pmdp, pmd); 1089 } 1090 1091 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 1092 pud_t *pudp, pud_t pud) 1093 { 1094 native_set_pud(pudp, pud); 1095 } 1096 1097 /* 1098 * We only update the dirty/accessed state if we set 1099 * the dirty bit by hand in the kernel, since the hardware 1100 * will do the accessed bit for us, and we don't want to 1101 * race with other CPU's that might be updating the dirty 1102 * bit at the same time. 1103 */ 1104 struct vm_area_struct; 1105 1106 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1107 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1108 unsigned long address, pte_t *ptep, 1109 pte_t entry, int dirty); 1110 1111 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1112 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1113 unsigned long addr, pte_t *ptep); 1114 1115 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1116 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1117 unsigned long address, pte_t *ptep); 1118 1119 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1120 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1121 pte_t *ptep) 1122 { 1123 pte_t pte = native_ptep_get_and_clear(ptep); 1124 return pte; 1125 } 1126 1127 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1128 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1129 unsigned long addr, pte_t *ptep, 1130 int full) 1131 { 1132 pte_t pte; 1133 if (full) { 1134 /* 1135 * Full address destruction in progress; paravirt does not 1136 * care about updates and native needs no locking 1137 */ 1138 pte = native_local_ptep_get_and_clear(ptep); 1139 } else { 1140 pte = ptep_get_and_clear(mm, addr, ptep); 1141 } 1142 return pte; 1143 } 1144 1145 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1146 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1147 unsigned long addr, pte_t *ptep) 1148 { 1149 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 1150 } 1151 1152 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 1153 1154 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1155 1156 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1157 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1158 unsigned long address, pmd_t *pmdp, 1159 pmd_t entry, int dirty); 1160 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1161 unsigned long address, pud_t *pudp, 1162 pud_t entry, int dirty); 1163 1164 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1165 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1166 unsigned long addr, pmd_t *pmdp); 1167 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1168 unsigned long addr, pud_t *pudp); 1169 1170 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1171 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1172 unsigned long address, pmd_t *pmdp); 1173 1174 1175 #define pmd_write pmd_write 1176 static inline int pmd_write(pmd_t pmd) 1177 { 1178 return pmd_flags(pmd) & _PAGE_RW; 1179 } 1180 1181 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1182 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1183 pmd_t *pmdp) 1184 { 1185 return native_pmdp_get_and_clear(pmdp); 1186 } 1187 1188 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1189 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1190 unsigned long addr, pud_t *pudp) 1191 { 1192 return native_pudp_get_and_clear(pudp); 1193 } 1194 1195 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1196 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1197 unsigned long addr, pmd_t *pmdp) 1198 { 1199 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 1200 } 1201 1202 #define pud_write pud_write 1203 static inline int pud_write(pud_t pud) 1204 { 1205 return pud_flags(pud) & _PAGE_RW; 1206 } 1207 1208 #ifndef pmdp_establish 1209 #define pmdp_establish pmdp_establish 1210 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1211 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1212 { 1213 if (IS_ENABLED(CONFIG_SMP)) { 1214 return xchg(pmdp, pmd); 1215 } else { 1216 pmd_t old = *pmdp; 1217 WRITE_ONCE(*pmdp, pmd); 1218 return old; 1219 } 1220 } 1221 #endif 1222 /* 1223 * Page table pages are page-aligned. The lower half of the top 1224 * level is used for userspace and the top half for the kernel. 1225 * 1226 * Returns true for parts of the PGD that map userspace and 1227 * false for the parts that map the kernel. 1228 */ 1229 static inline bool pgdp_maps_userspace(void *__ptr) 1230 { 1231 unsigned long ptr = (unsigned long)__ptr; 1232 1233 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); 1234 } 1235 1236 static inline int pgd_large(pgd_t pgd) { return 0; } 1237 1238 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1239 /* 1240 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages 1241 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and 1242 * the user one is in the last 4k. To switch between them, you 1243 * just need to flip the 12th bit in their addresses. 1244 */ 1245 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT 1246 1247 /* 1248 * This generates better code than the inline assembly in 1249 * __set_bit(). 1250 */ 1251 static inline void *ptr_set_bit(void *ptr, int bit) 1252 { 1253 unsigned long __ptr = (unsigned long)ptr; 1254 1255 __ptr |= BIT(bit); 1256 return (void *)__ptr; 1257 } 1258 static inline void *ptr_clear_bit(void *ptr, int bit) 1259 { 1260 unsigned long __ptr = (unsigned long)ptr; 1261 1262 __ptr &= ~BIT(bit); 1263 return (void *)__ptr; 1264 } 1265 1266 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) 1267 { 1268 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1269 } 1270 1271 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) 1272 { 1273 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1274 } 1275 1276 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) 1277 { 1278 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1279 } 1280 1281 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) 1282 { 1283 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1284 } 1285 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 1286 1287 /* 1288 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1289 * 1290 * dst - pointer to pgd range anwhere on a pgd page 1291 * src - "" 1292 * count - the number of pgds to copy. 1293 * 1294 * dst and src can be on the same page, but the range must not overlap, 1295 * and must not cross a page boundary. 1296 */ 1297 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1298 { 1299 memcpy(dst, src, count * sizeof(pgd_t)); 1300 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1301 if (!static_cpu_has(X86_FEATURE_PTI)) 1302 return; 1303 /* Clone the user space pgd as well */ 1304 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1305 count * sizeof(pgd_t)); 1306 #endif 1307 } 1308 1309 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1310 static inline int page_level_shift(enum pg_level level) 1311 { 1312 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1313 } 1314 static inline unsigned long page_level_size(enum pg_level level) 1315 { 1316 return 1UL << page_level_shift(level); 1317 } 1318 static inline unsigned long page_level_mask(enum pg_level level) 1319 { 1320 return ~(page_level_size(level) - 1); 1321 } 1322 1323 /* 1324 * The x86 doesn't have any external MMU info: the kernel page 1325 * tables contain all the necessary information. 1326 */ 1327 static inline void update_mmu_cache(struct vm_area_struct *vma, 1328 unsigned long addr, pte_t *ptep) 1329 { 1330 } 1331 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1332 unsigned long addr, pmd_t *pmd) 1333 { 1334 } 1335 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1336 unsigned long addr, pud_t *pud) 1337 { 1338 } 1339 1340 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1341 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1342 { 1343 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1344 } 1345 1346 static inline int pte_swp_soft_dirty(pte_t pte) 1347 { 1348 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1349 } 1350 1351 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1352 { 1353 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1354 } 1355 1356 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1357 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1358 { 1359 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1360 } 1361 1362 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1363 { 1364 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1365 } 1366 1367 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1368 { 1369 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1370 } 1371 #endif 1372 #endif 1373 1374 #define PKRU_AD_BIT 0x1 1375 #define PKRU_WD_BIT 0x2 1376 #define PKRU_BITS_PER_PKEY 2 1377 1378 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1379 extern u32 init_pkru_value; 1380 #else 1381 #define init_pkru_value 0 1382 #endif 1383 1384 static inline bool __pkru_allows_read(u32 pkru, u16 pkey) 1385 { 1386 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1387 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); 1388 } 1389 1390 static inline bool __pkru_allows_write(u32 pkru, u16 pkey) 1391 { 1392 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1393 /* 1394 * Access-disable disables writes too so we need to check 1395 * both bits here. 1396 */ 1397 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); 1398 } 1399 1400 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1401 { 1402 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1403 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1404 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1405 #else 1406 return 0; 1407 #endif 1408 } 1409 1410 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1411 { 1412 u32 pkru = read_pkru(); 1413 1414 if (!__pkru_allows_read(pkru, pkey)) 1415 return false; 1416 if (write && !__pkru_allows_write(pkru, pkey)) 1417 return false; 1418 1419 return true; 1420 } 1421 1422 /* 1423 * 'pteval' can come from a PTE, PMD or PUD. We only check 1424 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1425 * same value on all 3 types. 1426 */ 1427 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1428 { 1429 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1430 1431 if (write) 1432 need_pte_bits |= _PAGE_RW; 1433 1434 if ((pteval & need_pte_bits) != need_pte_bits) 1435 return 0; 1436 1437 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1438 } 1439 1440 #define pte_access_permitted pte_access_permitted 1441 static inline bool pte_access_permitted(pte_t pte, bool write) 1442 { 1443 return __pte_access_permitted(pte_val(pte), write); 1444 } 1445 1446 #define pmd_access_permitted pmd_access_permitted 1447 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1448 { 1449 return __pte_access_permitted(pmd_val(pmd), write); 1450 } 1451 1452 #define pud_access_permitted pud_access_permitted 1453 static inline bool pud_access_permitted(pud_t pud, bool write) 1454 { 1455 return __pte_access_permitted(pud_val(pud), write); 1456 } 1457 1458 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 1459 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); 1460 1461 static inline bool arch_has_pfn_modify_check(void) 1462 { 1463 return boot_cpu_has_bug(X86_BUG_L1TF); 1464 } 1465 1466 #define arch_faults_on_old_pte arch_faults_on_old_pte 1467 static inline bool arch_faults_on_old_pte(void) 1468 { 1469 return false; 1470 } 1471 1472 #include <asm-generic/pgtable.h> 1473 #endif /* __ASSEMBLY__ */ 1474 1475 #endif /* _ASM_X86_PGTABLE_H */ 1476