1 #ifndef _ASM_X86_PGTABLE_H 2 #define _ASM_X86_PGTABLE_H 3 4 #define FIRST_USER_ADDRESS 0 5 6 #define _PAGE_BIT_PRESENT 0 /* is present */ 7 #define _PAGE_BIT_RW 1 /* writeable */ 8 #define _PAGE_BIT_USER 2 /* userspace addressable */ 9 #define _PAGE_BIT_PWT 3 /* page write through */ 10 #define _PAGE_BIT_PCD 4 /* page cache disabled */ 11 #define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */ 12 #define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */ 13 #define _PAGE_BIT_FILE 6 14 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ 15 #define _PAGE_BIT_PAT 7 /* on 4KB pages */ 16 #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ 17 #define _PAGE_BIT_UNUSED1 9 /* available for programmer */ 18 #define _PAGE_BIT_IOMAP 10 /* flag used to indicate IO mapping */ 19 #define _PAGE_BIT_UNUSED3 11 20 #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */ 21 #define _PAGE_BIT_SPECIAL _PAGE_BIT_UNUSED1 22 #define _PAGE_BIT_CPA_TEST _PAGE_BIT_UNUSED1 23 #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ 24 25 #define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT) 26 #define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW) 27 #define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER) 28 #define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT) 29 #define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD) 30 #define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED) 31 #define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY) 32 #define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE) 33 #define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL) 34 #define _PAGE_UNUSED1 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED1) 35 #define _PAGE_IOMAP (_AT(pteval_t, 1) << _PAGE_BIT_IOMAP) 36 #define _PAGE_UNUSED3 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED3) 37 #define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT) 38 #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) 39 #define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL) 40 #define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST) 41 #define __HAVE_ARCH_PTE_SPECIAL 42 43 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 44 #define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX) 45 #else 46 #define _PAGE_NX (_AT(pteval_t, 0)) 47 #endif 48 49 /* If _PAGE_PRESENT is clear, we use these: */ 50 #define _PAGE_FILE _PAGE_DIRTY /* nonlinear file mapping, 51 * saved PTE; unset:swap */ 52 #define _PAGE_PROTNONE _PAGE_PSE /* if the user mapped it with PROT_NONE; 53 pte_present gives true */ 54 55 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \ 56 _PAGE_ACCESSED | _PAGE_DIRTY) 57 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \ 58 _PAGE_DIRTY) 59 60 /* Set of bits not changed in pte_modify */ 61 #define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \ 62 _PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY) 63 64 #define _PAGE_CACHE_MASK (_PAGE_PCD | _PAGE_PWT) 65 #define _PAGE_CACHE_WB (0) 66 #define _PAGE_CACHE_WC (_PAGE_PWT) 67 #define _PAGE_CACHE_UC_MINUS (_PAGE_PCD) 68 #define _PAGE_CACHE_UC (_PAGE_PCD | _PAGE_PWT) 69 70 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 71 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \ 72 _PAGE_ACCESSED | _PAGE_NX) 73 74 #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | \ 75 _PAGE_USER | _PAGE_ACCESSED) 76 #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 77 _PAGE_ACCESSED | _PAGE_NX) 78 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 79 _PAGE_ACCESSED) 80 #define PAGE_COPY PAGE_COPY_NOEXEC 81 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 82 _PAGE_ACCESSED | _PAGE_NX) 83 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 84 _PAGE_ACCESSED) 85 86 #define __PAGE_KERNEL_EXEC \ 87 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL) 88 #define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX) 89 90 #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) 91 #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW) 92 #define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT) 93 #define __PAGE_KERNEL_WC (__PAGE_KERNEL | _PAGE_CACHE_WC) 94 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT) 95 #define __PAGE_KERNEL_UC_MINUS (__PAGE_KERNEL | _PAGE_PCD) 96 #define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER) 97 #define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT) 98 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) 99 #define __PAGE_KERNEL_LARGE_NOCACHE (__PAGE_KERNEL | _PAGE_CACHE_UC | _PAGE_PSE) 100 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) 101 102 #define __PAGE_KERNEL_IO (__PAGE_KERNEL | _PAGE_IOMAP) 103 #define __PAGE_KERNEL_IO_NOCACHE (__PAGE_KERNEL_NOCACHE | _PAGE_IOMAP) 104 #define __PAGE_KERNEL_IO_UC_MINUS (__PAGE_KERNEL_UC_MINUS | _PAGE_IOMAP) 105 #define __PAGE_KERNEL_IO_WC (__PAGE_KERNEL_WC | _PAGE_IOMAP) 106 107 #define PAGE_KERNEL __pgprot(__PAGE_KERNEL) 108 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) 109 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) 110 #define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX) 111 #define PAGE_KERNEL_WC __pgprot(__PAGE_KERNEL_WC) 112 #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE) 113 #define PAGE_KERNEL_UC_MINUS __pgprot(__PAGE_KERNEL_UC_MINUS) 114 #define PAGE_KERNEL_EXEC_NOCACHE __pgprot(__PAGE_KERNEL_EXEC_NOCACHE) 115 #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE) 116 #define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE) 117 #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC) 118 #define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL) 119 #define PAGE_KERNEL_VSYSCALL_NOCACHE __pgprot(__PAGE_KERNEL_VSYSCALL_NOCACHE) 120 121 #define PAGE_KERNEL_IO __pgprot(__PAGE_KERNEL_IO) 122 #define PAGE_KERNEL_IO_NOCACHE __pgprot(__PAGE_KERNEL_IO_NOCACHE) 123 #define PAGE_KERNEL_IO_UC_MINUS __pgprot(__PAGE_KERNEL_IO_UC_MINUS) 124 #define PAGE_KERNEL_IO_WC __pgprot(__PAGE_KERNEL_IO_WC) 125 126 /* xwr */ 127 #define __P000 PAGE_NONE 128 #define __P001 PAGE_READONLY 129 #define __P010 PAGE_COPY 130 #define __P011 PAGE_COPY 131 #define __P100 PAGE_READONLY_EXEC 132 #define __P101 PAGE_READONLY_EXEC 133 #define __P110 PAGE_COPY_EXEC 134 #define __P111 PAGE_COPY_EXEC 135 136 #define __S000 PAGE_NONE 137 #define __S001 PAGE_READONLY 138 #define __S010 PAGE_SHARED 139 #define __S011 PAGE_SHARED 140 #define __S100 PAGE_READONLY_EXEC 141 #define __S101 PAGE_READONLY_EXEC 142 #define __S110 PAGE_SHARED_EXEC 143 #define __S111 PAGE_SHARED_EXEC 144 145 /* 146 * early identity mapping pte attrib macros. 147 */ 148 #ifdef CONFIG_X86_64 149 #define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC 150 #else 151 /* 152 * For PDE_IDENT_ATTR include USER bit. As the PDE and PTE protection 153 * bits are combined, this will alow user to access the high address mapped 154 * VDSO in the presence of CONFIG_COMPAT_VDSO 155 */ 156 #define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */ 157 #define PDE_IDENT_ATTR 0x067 /* PRESENT+RW+USER+DIRTY+ACCESSED */ 158 #define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */ 159 #endif 160 161 #ifndef __ASSEMBLY__ 162 163 /* 164 * ZERO_PAGE is a global shared page that is always zero: used 165 * for zero-mapped memory areas etc.. 166 */ 167 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 168 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 169 170 extern spinlock_t pgd_lock; 171 extern struct list_head pgd_list; 172 173 /* 174 * The following only work if pte_present() is true. 175 * Undefined behaviour if not.. 176 */ 177 static inline int pte_dirty(pte_t pte) 178 { 179 return pte_flags(pte) & _PAGE_DIRTY; 180 } 181 182 static inline int pte_young(pte_t pte) 183 { 184 return pte_flags(pte) & _PAGE_ACCESSED; 185 } 186 187 static inline int pte_write(pte_t pte) 188 { 189 return pte_flags(pte) & _PAGE_RW; 190 } 191 192 static inline int pte_file(pte_t pte) 193 { 194 return pte_flags(pte) & _PAGE_FILE; 195 } 196 197 static inline int pte_huge(pte_t pte) 198 { 199 return pte_flags(pte) & _PAGE_PSE; 200 } 201 202 static inline int pte_global(pte_t pte) 203 { 204 return pte_flags(pte) & _PAGE_GLOBAL; 205 } 206 207 static inline int pte_exec(pte_t pte) 208 { 209 return !(pte_flags(pte) & _PAGE_NX); 210 } 211 212 static inline int pte_special(pte_t pte) 213 { 214 return pte_flags(pte) & _PAGE_SPECIAL; 215 } 216 217 static inline unsigned long pte_pfn(pte_t pte) 218 { 219 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT; 220 } 221 222 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 223 224 static inline int pmd_large(pmd_t pte) 225 { 226 return (pmd_val(pte) & (_PAGE_PSE | _PAGE_PRESENT)) == 227 (_PAGE_PSE | _PAGE_PRESENT); 228 } 229 230 static inline pte_t pte_mkclean(pte_t pte) 231 { 232 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 233 } 234 235 static inline pte_t pte_mkold(pte_t pte) 236 { 237 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 238 } 239 240 static inline pte_t pte_wrprotect(pte_t pte) 241 { 242 return __pte(pte_val(pte) & ~_PAGE_RW); 243 } 244 245 static inline pte_t pte_mkexec(pte_t pte) 246 { 247 return __pte(pte_val(pte) & ~_PAGE_NX); 248 } 249 250 static inline pte_t pte_mkdirty(pte_t pte) 251 { 252 return __pte(pte_val(pte) | _PAGE_DIRTY); 253 } 254 255 static inline pte_t pte_mkyoung(pte_t pte) 256 { 257 return __pte(pte_val(pte) | _PAGE_ACCESSED); 258 } 259 260 static inline pte_t pte_mkwrite(pte_t pte) 261 { 262 return __pte(pte_val(pte) | _PAGE_RW); 263 } 264 265 static inline pte_t pte_mkhuge(pte_t pte) 266 { 267 return __pte(pte_val(pte) | _PAGE_PSE); 268 } 269 270 static inline pte_t pte_clrhuge(pte_t pte) 271 { 272 return __pte(pte_val(pte) & ~_PAGE_PSE); 273 } 274 275 static inline pte_t pte_mkglobal(pte_t pte) 276 { 277 return __pte(pte_val(pte) | _PAGE_GLOBAL); 278 } 279 280 static inline pte_t pte_clrglobal(pte_t pte) 281 { 282 return __pte(pte_val(pte) & ~_PAGE_GLOBAL); 283 } 284 285 static inline pte_t pte_mkspecial(pte_t pte) 286 { 287 return __pte(pte_val(pte) | _PAGE_SPECIAL); 288 } 289 290 extern pteval_t __supported_pte_mask; 291 292 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 293 { 294 return __pte((((phys_addr_t)page_nr << PAGE_SHIFT) | 295 pgprot_val(pgprot)) & __supported_pte_mask); 296 } 297 298 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 299 { 300 return __pmd((((phys_addr_t)page_nr << PAGE_SHIFT) | 301 pgprot_val(pgprot)) & __supported_pte_mask); 302 } 303 304 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 305 { 306 pteval_t val = pte_val(pte); 307 308 /* 309 * Chop off the NX bit (if present), and add the NX portion of 310 * the newprot (if present): 311 */ 312 val &= _PAGE_CHG_MASK; 313 val |= pgprot_val(newprot) & (~_PAGE_CHG_MASK) & __supported_pte_mask; 314 315 return __pte(val); 316 } 317 318 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 319 #define pgprot_modify pgprot_modify 320 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 321 { 322 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 323 pgprotval_t addbits = pgprot_val(newprot); 324 return __pgprot(preservebits | addbits); 325 } 326 327 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK) 328 329 #define canon_pgprot(p) __pgprot(pgprot_val(p) & __supported_pte_mask) 330 331 #ifndef __ASSEMBLY__ 332 #define __HAVE_PHYS_MEM_ACCESS_PROT 333 struct file; 334 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 335 unsigned long size, pgprot_t vma_prot); 336 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 337 unsigned long size, pgprot_t *vma_prot); 338 #endif 339 340 /* Install a pte for a particular vaddr in kernel space. */ 341 void set_pte_vaddr(unsigned long vaddr, pte_t pte); 342 343 #ifdef CONFIG_X86_32 344 extern void native_pagetable_setup_start(pgd_t *base); 345 extern void native_pagetable_setup_done(pgd_t *base); 346 #else 347 static inline void native_pagetable_setup_start(pgd_t *base) {} 348 static inline void native_pagetable_setup_done(pgd_t *base) {} 349 #endif 350 351 struct seq_file; 352 extern void arch_report_meminfo(struct seq_file *m); 353 354 #ifdef CONFIG_PARAVIRT 355 #include <asm/paravirt.h> 356 #else /* !CONFIG_PARAVIRT */ 357 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 358 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 359 360 #define set_pte_present(mm, addr, ptep, pte) \ 361 native_set_pte_present(mm, addr, ptep, pte) 362 #define set_pte_atomic(ptep, pte) \ 363 native_set_pte_atomic(ptep, pte) 364 365 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 366 367 #ifndef __PAGETABLE_PUD_FOLDED 368 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 369 #define pgd_clear(pgd) native_pgd_clear(pgd) 370 #endif 371 372 #ifndef set_pud 373 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 374 #endif 375 376 #ifndef __PAGETABLE_PMD_FOLDED 377 #define pud_clear(pud) native_pud_clear(pud) 378 #endif 379 380 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 381 #define pmd_clear(pmd) native_pmd_clear(pmd) 382 383 #define pte_update(mm, addr, ptep) do { } while (0) 384 #define pte_update_defer(mm, addr, ptep) do { } while (0) 385 386 static inline void __init paravirt_pagetable_setup_start(pgd_t *base) 387 { 388 native_pagetable_setup_start(base); 389 } 390 391 static inline void __init paravirt_pagetable_setup_done(pgd_t *base) 392 { 393 native_pagetable_setup_done(base); 394 } 395 #endif /* CONFIG_PARAVIRT */ 396 397 #endif /* __ASSEMBLY__ */ 398 399 #ifdef CONFIG_X86_32 400 # include "pgtable_32.h" 401 #else 402 # include "pgtable_64.h" 403 #endif 404 405 /* 406 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 407 * 408 * this macro returns the index of the entry in the pgd page which would 409 * control the given virtual address 410 */ 411 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 412 413 /* 414 * pgd_offset() returns a (pgd_t *) 415 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 416 */ 417 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address))) 418 /* 419 * a shortcut which implies the use of the kernel's pgd, instead 420 * of a process's 421 */ 422 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 423 424 425 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 426 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 427 428 #ifndef __ASSEMBLY__ 429 430 enum { 431 PG_LEVEL_NONE, 432 PG_LEVEL_4K, 433 PG_LEVEL_2M, 434 PG_LEVEL_1G, 435 PG_LEVEL_NUM 436 }; 437 438 #ifdef CONFIG_PROC_FS 439 extern void update_page_count(int level, unsigned long pages); 440 #else 441 static inline void update_page_count(int level, unsigned long pages) { } 442 #endif 443 444 /* 445 * Helper function that returns the kernel pagetable entry controlling 446 * the virtual address 'address'. NULL means no pagetable entry present. 447 * NOTE: the return type is pte_t but if the pmd is PSE then we return it 448 * as a pte too. 449 */ 450 extern pte_t *lookup_address(unsigned long address, unsigned int *level); 451 452 /* local pte updates need not use xchg for locking */ 453 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 454 { 455 pte_t res = *ptep; 456 457 /* Pure native function needs no input for mm, addr */ 458 native_pte_clear(NULL, 0, ptep); 459 return res; 460 } 461 462 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 463 pte_t *ptep , pte_t pte) 464 { 465 native_set_pte(ptep, pte); 466 } 467 468 #ifndef CONFIG_PARAVIRT 469 /* 470 * Rules for using pte_update - it must be called after any PTE update which 471 * has not been done using the set_pte / clear_pte interfaces. It is used by 472 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE 473 * updates should either be sets, clears, or set_pte_atomic for P->P 474 * transitions, which means this hook should only be called for user PTEs. 475 * This hook implies a P->P protection or access change has taken place, which 476 * requires a subsequent TLB flush. The notification can optionally be delayed 477 * until the TLB flush event by using the pte_update_defer form of the 478 * interface, but care must be taken to assure that the flush happens while 479 * still holding the same page table lock so that the shadow and primary pages 480 * do not become out of sync on SMP. 481 */ 482 #define pte_update(mm, addr, ptep) do { } while (0) 483 #define pte_update_defer(mm, addr, ptep) do { } while (0) 484 #endif 485 486 /* 487 * We only update the dirty/accessed state if we set 488 * the dirty bit by hand in the kernel, since the hardware 489 * will do the accessed bit for us, and we don't want to 490 * race with other CPU's that might be updating the dirty 491 * bit at the same time. 492 */ 493 struct vm_area_struct; 494 495 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 496 extern int ptep_set_access_flags(struct vm_area_struct *vma, 497 unsigned long address, pte_t *ptep, 498 pte_t entry, int dirty); 499 500 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 501 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 502 unsigned long addr, pte_t *ptep); 503 504 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 505 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 506 unsigned long address, pte_t *ptep); 507 508 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 509 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 510 pte_t *ptep) 511 { 512 pte_t pte = native_ptep_get_and_clear(ptep); 513 pte_update(mm, addr, ptep); 514 return pte; 515 } 516 517 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 518 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 519 unsigned long addr, pte_t *ptep, 520 int full) 521 { 522 pte_t pte; 523 if (full) { 524 /* 525 * Full address destruction in progress; paravirt does not 526 * care about updates and native needs no locking 527 */ 528 pte = native_local_ptep_get_and_clear(ptep); 529 } else { 530 pte = ptep_get_and_clear(mm, addr, ptep); 531 } 532 return pte; 533 } 534 535 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 536 static inline void ptep_set_wrprotect(struct mm_struct *mm, 537 unsigned long addr, pte_t *ptep) 538 { 539 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 540 pte_update(mm, addr, ptep); 541 } 542 543 /* 544 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 545 * 546 * dst - pointer to pgd range anwhere on a pgd page 547 * src - "" 548 * count - the number of pgds to copy. 549 * 550 * dst and src can be on the same page, but the range must not overlap, 551 * and must not cross a page boundary. 552 */ 553 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 554 { 555 memcpy(dst, src, count * sizeof(pgd_t)); 556 } 557 558 559 #include <asm-generic/pgtable.h> 560 #endif /* __ASSEMBLY__ */ 561 562 #endif /* _ASM_X86_PGTABLE_H */ 563