1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 /* 19 * Macros to add or remove encryption attribute 20 */ 21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) 22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) 23 24 #ifndef __ASSEMBLY__ 25 #include <asm/x86_init.h> 26 27 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 28 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 29 30 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd); 31 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user); 32 void ptdump_walk_pgd_level_checkwx(void); 33 void ptdump_walk_user_pgd_level_checkwx(void); 34 35 #ifdef CONFIG_DEBUG_WX 36 #define debug_checkwx() ptdump_walk_pgd_level_checkwx() 37 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() 38 #else 39 #define debug_checkwx() do { } while (0) 40 #define debug_checkwx_user() do { } while (0) 41 #endif 42 43 /* 44 * ZERO_PAGE is a global shared page that is always zero: used 45 * for zero-mapped memory areas etc.. 46 */ 47 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 48 __visible; 49 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 50 51 extern spinlock_t pgd_lock; 52 extern struct list_head pgd_list; 53 54 extern struct mm_struct *pgd_page_get_mm(struct page *page); 55 56 extern pmdval_t early_pmd_flags; 57 58 #ifdef CONFIG_PARAVIRT 59 #include <asm/paravirt.h> 60 #else /* !CONFIG_PARAVIRT */ 61 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 62 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 63 64 #define set_pte_atomic(ptep, pte) \ 65 native_set_pte_atomic(ptep, pte) 66 67 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 68 69 #ifndef __PAGETABLE_P4D_FOLDED 70 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 71 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) 72 #endif 73 74 #ifndef set_p4d 75 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 76 #endif 77 78 #ifndef __PAGETABLE_PUD_FOLDED 79 #define p4d_clear(p4d) native_p4d_clear(p4d) 80 #endif 81 82 #ifndef set_pud 83 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 84 #endif 85 86 #ifndef __PAGETABLE_PUD_FOLDED 87 #define pud_clear(pud) native_pud_clear(pud) 88 #endif 89 90 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 91 #define pmd_clear(pmd) native_pmd_clear(pmd) 92 93 #define pgd_val(x) native_pgd_val(x) 94 #define __pgd(x) native_make_pgd(x) 95 96 #ifndef __PAGETABLE_P4D_FOLDED 97 #define p4d_val(x) native_p4d_val(x) 98 #define __p4d(x) native_make_p4d(x) 99 #endif 100 101 #ifndef __PAGETABLE_PUD_FOLDED 102 #define pud_val(x) native_pud_val(x) 103 #define __pud(x) native_make_pud(x) 104 #endif 105 106 #ifndef __PAGETABLE_PMD_FOLDED 107 #define pmd_val(x) native_pmd_val(x) 108 #define __pmd(x) native_make_pmd(x) 109 #endif 110 111 #define pte_val(x) native_pte_val(x) 112 #define __pte(x) native_make_pte(x) 113 114 #define arch_end_context_switch(prev) do {} while(0) 115 116 #endif /* CONFIG_PARAVIRT */ 117 118 /* 119 * The following only work if pte_present() is true. 120 * Undefined behaviour if not.. 121 */ 122 static inline int pte_dirty(pte_t pte) 123 { 124 return pte_flags(pte) & _PAGE_DIRTY; 125 } 126 127 128 static inline u32 read_pkru(void) 129 { 130 if (boot_cpu_has(X86_FEATURE_OSPKE)) 131 return __read_pkru(); 132 return 0; 133 } 134 135 static inline void write_pkru(u32 pkru) 136 { 137 if (boot_cpu_has(X86_FEATURE_OSPKE)) 138 __write_pkru(pkru); 139 } 140 141 static inline int pte_young(pte_t pte) 142 { 143 return pte_flags(pte) & _PAGE_ACCESSED; 144 } 145 146 static inline int pmd_dirty(pmd_t pmd) 147 { 148 return pmd_flags(pmd) & _PAGE_DIRTY; 149 } 150 151 static inline int pmd_young(pmd_t pmd) 152 { 153 return pmd_flags(pmd) & _PAGE_ACCESSED; 154 } 155 156 static inline int pud_dirty(pud_t pud) 157 { 158 return pud_flags(pud) & _PAGE_DIRTY; 159 } 160 161 static inline int pud_young(pud_t pud) 162 { 163 return pud_flags(pud) & _PAGE_ACCESSED; 164 } 165 166 static inline int pte_write(pte_t pte) 167 { 168 return pte_flags(pte) & _PAGE_RW; 169 } 170 171 static inline int pte_huge(pte_t pte) 172 { 173 return pte_flags(pte) & _PAGE_PSE; 174 } 175 176 static inline int pte_global(pte_t pte) 177 { 178 return pte_flags(pte) & _PAGE_GLOBAL; 179 } 180 181 static inline int pte_exec(pte_t pte) 182 { 183 return !(pte_flags(pte) & _PAGE_NX); 184 } 185 186 static inline int pte_special(pte_t pte) 187 { 188 return pte_flags(pte) & _PAGE_SPECIAL; 189 } 190 191 /* Entries that were set to PROT_NONE are inverted */ 192 193 static inline u64 protnone_mask(u64 val); 194 195 static inline unsigned long pte_pfn(pte_t pte) 196 { 197 phys_addr_t pfn = pte_val(pte); 198 pfn ^= protnone_mask(pfn); 199 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; 200 } 201 202 static inline unsigned long pmd_pfn(pmd_t pmd) 203 { 204 phys_addr_t pfn = pmd_val(pmd); 205 pfn ^= protnone_mask(pfn); 206 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 207 } 208 209 static inline unsigned long pud_pfn(pud_t pud) 210 { 211 phys_addr_t pfn = pud_val(pud); 212 pfn ^= protnone_mask(pfn); 213 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; 214 } 215 216 static inline unsigned long p4d_pfn(p4d_t p4d) 217 { 218 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 219 } 220 221 static inline unsigned long pgd_pfn(pgd_t pgd) 222 { 223 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 224 } 225 226 static inline int p4d_large(p4d_t p4d) 227 { 228 /* No 512 GiB pages yet */ 229 return 0; 230 } 231 232 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 233 234 static inline int pmd_large(pmd_t pte) 235 { 236 return pmd_flags(pte) & _PAGE_PSE; 237 } 238 239 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 240 static inline int pmd_trans_huge(pmd_t pmd) 241 { 242 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 243 } 244 245 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 246 static inline int pud_trans_huge(pud_t pud) 247 { 248 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 249 } 250 #endif 251 252 #define has_transparent_hugepage has_transparent_hugepage 253 static inline int has_transparent_hugepage(void) 254 { 255 return boot_cpu_has(X86_FEATURE_PSE); 256 } 257 258 #ifdef __HAVE_ARCH_PTE_DEVMAP 259 static inline int pmd_devmap(pmd_t pmd) 260 { 261 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 262 } 263 264 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 265 static inline int pud_devmap(pud_t pud) 266 { 267 return !!(pud_val(pud) & _PAGE_DEVMAP); 268 } 269 #else 270 static inline int pud_devmap(pud_t pud) 271 { 272 return 0; 273 } 274 #endif 275 276 static inline int pgd_devmap(pgd_t pgd) 277 { 278 return 0; 279 } 280 #endif 281 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 282 283 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 284 { 285 pteval_t v = native_pte_val(pte); 286 287 return native_make_pte(v | set); 288 } 289 290 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 291 { 292 pteval_t v = native_pte_val(pte); 293 294 return native_make_pte(v & ~clear); 295 } 296 297 static inline pte_t pte_mkclean(pte_t pte) 298 { 299 return pte_clear_flags(pte, _PAGE_DIRTY); 300 } 301 302 static inline pte_t pte_mkold(pte_t pte) 303 { 304 return pte_clear_flags(pte, _PAGE_ACCESSED); 305 } 306 307 static inline pte_t pte_wrprotect(pte_t pte) 308 { 309 return pte_clear_flags(pte, _PAGE_RW); 310 } 311 312 static inline pte_t pte_mkexec(pte_t pte) 313 { 314 return pte_clear_flags(pte, _PAGE_NX); 315 } 316 317 static inline pte_t pte_mkdirty(pte_t pte) 318 { 319 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 320 } 321 322 static inline pte_t pte_mkyoung(pte_t pte) 323 { 324 return pte_set_flags(pte, _PAGE_ACCESSED); 325 } 326 327 static inline pte_t pte_mkwrite(pte_t pte) 328 { 329 return pte_set_flags(pte, _PAGE_RW); 330 } 331 332 static inline pte_t pte_mkhuge(pte_t pte) 333 { 334 return pte_set_flags(pte, _PAGE_PSE); 335 } 336 337 static inline pte_t pte_clrhuge(pte_t pte) 338 { 339 return pte_clear_flags(pte, _PAGE_PSE); 340 } 341 342 static inline pte_t pte_mkglobal(pte_t pte) 343 { 344 return pte_set_flags(pte, _PAGE_GLOBAL); 345 } 346 347 static inline pte_t pte_clrglobal(pte_t pte) 348 { 349 return pte_clear_flags(pte, _PAGE_GLOBAL); 350 } 351 352 static inline pte_t pte_mkspecial(pte_t pte) 353 { 354 return pte_set_flags(pte, _PAGE_SPECIAL); 355 } 356 357 static inline pte_t pte_mkdevmap(pte_t pte) 358 { 359 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 360 } 361 362 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 363 { 364 pmdval_t v = native_pmd_val(pmd); 365 366 return native_make_pmd(v | set); 367 } 368 369 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 370 { 371 pmdval_t v = native_pmd_val(pmd); 372 373 return native_make_pmd(v & ~clear); 374 } 375 376 static inline pmd_t pmd_mkold(pmd_t pmd) 377 { 378 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 379 } 380 381 static inline pmd_t pmd_mkclean(pmd_t pmd) 382 { 383 return pmd_clear_flags(pmd, _PAGE_DIRTY); 384 } 385 386 static inline pmd_t pmd_wrprotect(pmd_t pmd) 387 { 388 return pmd_clear_flags(pmd, _PAGE_RW); 389 } 390 391 static inline pmd_t pmd_mkdirty(pmd_t pmd) 392 { 393 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 394 } 395 396 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 397 { 398 return pmd_set_flags(pmd, _PAGE_DEVMAP); 399 } 400 401 static inline pmd_t pmd_mkhuge(pmd_t pmd) 402 { 403 return pmd_set_flags(pmd, _PAGE_PSE); 404 } 405 406 static inline pmd_t pmd_mkyoung(pmd_t pmd) 407 { 408 return pmd_set_flags(pmd, _PAGE_ACCESSED); 409 } 410 411 static inline pmd_t pmd_mkwrite(pmd_t pmd) 412 { 413 return pmd_set_flags(pmd, _PAGE_RW); 414 } 415 416 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 417 { 418 pudval_t v = native_pud_val(pud); 419 420 return native_make_pud(v | set); 421 } 422 423 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 424 { 425 pudval_t v = native_pud_val(pud); 426 427 return native_make_pud(v & ~clear); 428 } 429 430 static inline pud_t pud_mkold(pud_t pud) 431 { 432 return pud_clear_flags(pud, _PAGE_ACCESSED); 433 } 434 435 static inline pud_t pud_mkclean(pud_t pud) 436 { 437 return pud_clear_flags(pud, _PAGE_DIRTY); 438 } 439 440 static inline pud_t pud_wrprotect(pud_t pud) 441 { 442 return pud_clear_flags(pud, _PAGE_RW); 443 } 444 445 static inline pud_t pud_mkdirty(pud_t pud) 446 { 447 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 448 } 449 450 static inline pud_t pud_mkdevmap(pud_t pud) 451 { 452 return pud_set_flags(pud, _PAGE_DEVMAP); 453 } 454 455 static inline pud_t pud_mkhuge(pud_t pud) 456 { 457 return pud_set_flags(pud, _PAGE_PSE); 458 } 459 460 static inline pud_t pud_mkyoung(pud_t pud) 461 { 462 return pud_set_flags(pud, _PAGE_ACCESSED); 463 } 464 465 static inline pud_t pud_mkwrite(pud_t pud) 466 { 467 return pud_set_flags(pud, _PAGE_RW); 468 } 469 470 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 471 static inline int pte_soft_dirty(pte_t pte) 472 { 473 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 474 } 475 476 static inline int pmd_soft_dirty(pmd_t pmd) 477 { 478 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 479 } 480 481 static inline int pud_soft_dirty(pud_t pud) 482 { 483 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 484 } 485 486 static inline pte_t pte_mksoft_dirty(pte_t pte) 487 { 488 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 489 } 490 491 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 492 { 493 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 494 } 495 496 static inline pud_t pud_mksoft_dirty(pud_t pud) 497 { 498 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 499 } 500 501 static inline pte_t pte_clear_soft_dirty(pte_t pte) 502 { 503 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 504 } 505 506 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 507 { 508 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 509 } 510 511 static inline pud_t pud_clear_soft_dirty(pud_t pud) 512 { 513 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 514 } 515 516 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 517 518 /* 519 * Mask out unsupported bits in a present pgprot. Non-present pgprots 520 * can use those bits for other purposes, so leave them be. 521 */ 522 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 523 { 524 pgprotval_t protval = pgprot_val(pgprot); 525 526 if (protval & _PAGE_PRESENT) 527 protval &= __supported_pte_mask; 528 529 return protval; 530 } 531 532 static inline pgprotval_t check_pgprot(pgprot_t pgprot) 533 { 534 pgprotval_t massaged_val = massage_pgprot(pgprot); 535 536 /* mmdebug.h can not be included here because of dependencies */ 537 #ifdef CONFIG_DEBUG_VM 538 WARN_ONCE(pgprot_val(pgprot) != massaged_val, 539 "attempted to set unsupported pgprot: %016llx " 540 "bits: %016llx supported: %016llx\n", 541 (u64)pgprot_val(pgprot), 542 (u64)pgprot_val(pgprot) ^ massaged_val, 543 (u64)__supported_pte_mask); 544 #endif 545 546 return massaged_val; 547 } 548 549 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 550 { 551 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 552 pfn ^= protnone_mask(pgprot_val(pgprot)); 553 pfn &= PTE_PFN_MASK; 554 return __pte(pfn | check_pgprot(pgprot)); 555 } 556 557 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 558 { 559 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 560 pfn ^= protnone_mask(pgprot_val(pgprot)); 561 pfn &= PHYSICAL_PMD_PAGE_MASK; 562 return __pmd(pfn | check_pgprot(pgprot)); 563 } 564 565 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 566 { 567 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 568 pfn ^= protnone_mask(pgprot_val(pgprot)); 569 pfn &= PHYSICAL_PUD_PAGE_MASK; 570 return __pud(pfn | check_pgprot(pgprot)); 571 } 572 573 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 574 { 575 return pfn_pmd(pmd_pfn(pmd), 576 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 577 } 578 579 static inline pud_t pud_mknotpresent(pud_t pud) 580 { 581 return pfn_pud(pud_pfn(pud), 582 __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 583 } 584 585 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); 586 587 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 588 { 589 pteval_t val = pte_val(pte), oldval = val; 590 591 /* 592 * Chop off the NX bit (if present), and add the NX portion of 593 * the newprot (if present): 594 */ 595 val &= _PAGE_CHG_MASK; 596 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; 597 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); 598 return __pte(val); 599 } 600 601 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 602 { 603 pmdval_t val = pmd_val(pmd), oldval = val; 604 605 val &= _HPAGE_CHG_MASK; 606 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 607 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); 608 return __pmd(val); 609 } 610 611 /* mprotect needs to preserve PAT bits when updating vm_page_prot */ 612 #define pgprot_modify pgprot_modify 613 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 614 { 615 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 616 pgprotval_t addbits = pgprot_val(newprot); 617 return __pgprot(preservebits | addbits); 618 } 619 620 #define pte_pgprot(x) __pgprot(pte_flags(x)) 621 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 622 #define pud_pgprot(x) __pgprot(pud_flags(x)) 623 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 624 625 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 626 627 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 628 { 629 return canon_pgprot(prot); 630 } 631 632 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 633 enum page_cache_mode pcm, 634 enum page_cache_mode new_pcm) 635 { 636 /* 637 * PAT type is always WB for untracked ranges, so no need to check. 638 */ 639 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 640 return 1; 641 642 /* 643 * Certain new memtypes are not allowed with certain 644 * requested memtype: 645 * - request is uncached, return cannot be write-back 646 * - request is write-combine, return cannot be write-back 647 * - request is write-through, return cannot be write-back 648 * - request is write-through, return cannot be write-combine 649 */ 650 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 651 new_pcm == _PAGE_CACHE_MODE_WB) || 652 (pcm == _PAGE_CACHE_MODE_WC && 653 new_pcm == _PAGE_CACHE_MODE_WB) || 654 (pcm == _PAGE_CACHE_MODE_WT && 655 new_pcm == _PAGE_CACHE_MODE_WB) || 656 (pcm == _PAGE_CACHE_MODE_WT && 657 new_pcm == _PAGE_CACHE_MODE_WC)) { 658 return 0; 659 } 660 661 return 1; 662 } 663 664 pmd_t *populate_extra_pmd(unsigned long vaddr); 665 pte_t *populate_extra_pte(unsigned long vaddr); 666 667 #ifdef CONFIG_PAGE_TABLE_ISOLATION 668 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); 669 670 /* 671 * Take a PGD location (pgdp) and a pgd value that needs to be set there. 672 * Populates the user and returns the resulting PGD that must be set in 673 * the kernel copy of the page tables. 674 */ 675 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 676 { 677 if (!static_cpu_has(X86_FEATURE_PTI)) 678 return pgd; 679 return __pti_set_user_pgtbl(pgdp, pgd); 680 } 681 #else /* CONFIG_PAGE_TABLE_ISOLATION */ 682 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 683 { 684 return pgd; 685 } 686 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 687 688 #endif /* __ASSEMBLY__ */ 689 690 691 #ifdef CONFIG_X86_32 692 # include <asm/pgtable_32.h> 693 #else 694 # include <asm/pgtable_64.h> 695 #endif 696 697 #ifndef __ASSEMBLY__ 698 #include <linux/mm_types.h> 699 #include <linux/mmdebug.h> 700 #include <linux/log2.h> 701 #include <asm/fixmap.h> 702 703 static inline int pte_none(pte_t pte) 704 { 705 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 706 } 707 708 #define __HAVE_ARCH_PTE_SAME 709 static inline int pte_same(pte_t a, pte_t b) 710 { 711 return a.pte == b.pte; 712 } 713 714 static inline int pte_present(pte_t a) 715 { 716 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 717 } 718 719 #ifdef __HAVE_ARCH_PTE_DEVMAP 720 static inline int pte_devmap(pte_t a) 721 { 722 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 723 } 724 #endif 725 726 #define pte_accessible pte_accessible 727 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 728 { 729 if (pte_flags(a) & _PAGE_PRESENT) 730 return true; 731 732 if ((pte_flags(a) & _PAGE_PROTNONE) && 733 mm_tlb_flush_pending(mm)) 734 return true; 735 736 return false; 737 } 738 739 static inline int pmd_present(pmd_t pmd) 740 { 741 /* 742 * Checking for _PAGE_PSE is needed too because 743 * split_huge_page will temporarily clear the present bit (but 744 * the _PAGE_PSE flag will remain set at all times while the 745 * _PAGE_PRESENT bit is clear). 746 */ 747 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 748 } 749 750 #ifdef CONFIG_NUMA_BALANCING 751 /* 752 * These work without NUMA balancing but the kernel does not care. See the 753 * comment in include/asm-generic/pgtable.h 754 */ 755 static inline int pte_protnone(pte_t pte) 756 { 757 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 758 == _PAGE_PROTNONE; 759 } 760 761 static inline int pmd_protnone(pmd_t pmd) 762 { 763 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 764 == _PAGE_PROTNONE; 765 } 766 #endif /* CONFIG_NUMA_BALANCING */ 767 768 static inline int pmd_none(pmd_t pmd) 769 { 770 /* Only check low word on 32-bit platforms, since it might be 771 out of sync with upper half. */ 772 unsigned long val = native_pmd_val(pmd); 773 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 774 } 775 776 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 777 { 778 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 779 } 780 781 /* 782 * Currently stuck as a macro due to indirect forward reference to 783 * linux/mmzone.h's __section_mem_map_addr() definition: 784 */ 785 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 786 787 /* 788 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 789 * 790 * this macro returns the index of the entry in the pmd page which would 791 * control the given virtual address 792 */ 793 static inline unsigned long pmd_index(unsigned long address) 794 { 795 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 796 } 797 798 /* 799 * Conversion functions: convert a page and protection to a page entry, 800 * and a page entry and page directory to the page they refer to. 801 * 802 * (Currently stuck as a macro because of indirect forward reference 803 * to linux/mm.h:page_to_nid()) 804 */ 805 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 806 807 /* 808 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 809 * 810 * this function returns the index of the entry in the pte page which would 811 * control the given virtual address 812 */ 813 static inline unsigned long pte_index(unsigned long address) 814 { 815 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 816 } 817 818 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 819 { 820 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 821 } 822 823 static inline int pmd_bad(pmd_t pmd) 824 { 825 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 826 } 827 828 static inline unsigned long pages_to_mb(unsigned long npg) 829 { 830 return npg >> (20 - PAGE_SHIFT); 831 } 832 833 #if CONFIG_PGTABLE_LEVELS > 2 834 static inline int pud_none(pud_t pud) 835 { 836 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 837 } 838 839 static inline int pud_present(pud_t pud) 840 { 841 return pud_flags(pud) & _PAGE_PRESENT; 842 } 843 844 static inline unsigned long pud_page_vaddr(pud_t pud) 845 { 846 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); 847 } 848 849 /* 850 * Currently stuck as a macro due to indirect forward reference to 851 * linux/mmzone.h's __section_mem_map_addr() definition: 852 */ 853 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 854 855 /* Find an entry in the second-level page table.. */ 856 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 857 { 858 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 859 } 860 861 static inline int pud_large(pud_t pud) 862 { 863 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 864 (_PAGE_PSE | _PAGE_PRESENT); 865 } 866 867 static inline int pud_bad(pud_t pud) 868 { 869 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 870 } 871 #else 872 static inline int pud_large(pud_t pud) 873 { 874 return 0; 875 } 876 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 877 878 static inline unsigned long pud_index(unsigned long address) 879 { 880 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 881 } 882 883 #if CONFIG_PGTABLE_LEVELS > 3 884 static inline int p4d_none(p4d_t p4d) 885 { 886 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 887 } 888 889 static inline int p4d_present(p4d_t p4d) 890 { 891 return p4d_flags(p4d) & _PAGE_PRESENT; 892 } 893 894 static inline unsigned long p4d_page_vaddr(p4d_t p4d) 895 { 896 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 897 } 898 899 /* 900 * Currently stuck as a macro due to indirect forward reference to 901 * linux/mmzone.h's __section_mem_map_addr() definition: 902 */ 903 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 904 905 /* Find an entry in the third-level page table.. */ 906 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 907 { 908 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 909 } 910 911 static inline int p4d_bad(p4d_t p4d) 912 { 913 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 914 915 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 916 ignore_flags |= _PAGE_NX; 917 918 return (p4d_flags(p4d) & ~ignore_flags) != 0; 919 } 920 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 921 922 static inline unsigned long p4d_index(unsigned long address) 923 { 924 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 925 } 926 927 #if CONFIG_PGTABLE_LEVELS > 4 928 static inline int pgd_present(pgd_t pgd) 929 { 930 if (!pgtable_l5_enabled()) 931 return 1; 932 return pgd_flags(pgd) & _PAGE_PRESENT; 933 } 934 935 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 936 { 937 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 938 } 939 940 /* 941 * Currently stuck as a macro due to indirect forward reference to 942 * linux/mmzone.h's __section_mem_map_addr() definition: 943 */ 944 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 945 946 /* to find an entry in a page-table-directory. */ 947 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 948 { 949 if (!pgtable_l5_enabled()) 950 return (p4d_t *)pgd; 951 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 952 } 953 954 static inline int pgd_bad(pgd_t pgd) 955 { 956 unsigned long ignore_flags = _PAGE_USER; 957 958 if (!pgtable_l5_enabled()) 959 return 0; 960 961 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 962 ignore_flags |= _PAGE_NX; 963 964 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 965 } 966 967 static inline int pgd_none(pgd_t pgd) 968 { 969 if (!pgtable_l5_enabled()) 970 return 0; 971 /* 972 * There is no need to do a workaround for the KNL stray 973 * A/D bit erratum here. PGDs only point to page tables 974 * except on 32-bit non-PAE which is not supported on 975 * KNL. 976 */ 977 return !native_pgd_val(pgd); 978 } 979 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 980 981 #endif /* __ASSEMBLY__ */ 982 983 /* 984 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 985 * 986 * this macro returns the index of the entry in the pgd page which would 987 * control the given virtual address 988 */ 989 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 990 991 /* 992 * pgd_offset() returns a (pgd_t *) 993 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 994 */ 995 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address))) 996 /* 997 * a shortcut to get a pgd_t in a given mm 998 */ 999 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 1000 /* 1001 * a shortcut which implies the use of the kernel's pgd, instead 1002 * of a process's 1003 */ 1004 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 1005 1006 1007 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 1008 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 1009 1010 #ifndef __ASSEMBLY__ 1011 1012 extern int direct_gbpages; 1013 void init_mem_mapping(void); 1014 void early_alloc_pgt_buf(void); 1015 extern void memblock_find_dma_reserve(void); 1016 1017 #ifdef CONFIG_X86_64 1018 /* Realmode trampoline initialization. */ 1019 extern pgd_t trampoline_pgd_entry; 1020 static inline void __meminit init_trampoline_default(void) 1021 { 1022 /* Default trampoline pgd value */ 1023 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 1024 } 1025 # ifdef CONFIG_RANDOMIZE_MEMORY 1026 void __meminit init_trampoline(void); 1027 # else 1028 # define init_trampoline init_trampoline_default 1029 # endif 1030 #else 1031 static inline void init_trampoline(void) { } 1032 #endif 1033 1034 /* local pte updates need not use xchg for locking */ 1035 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 1036 { 1037 pte_t res = *ptep; 1038 1039 /* Pure native function needs no input for mm, addr */ 1040 native_pte_clear(NULL, 0, ptep); 1041 return res; 1042 } 1043 1044 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 1045 { 1046 pmd_t res = *pmdp; 1047 1048 native_pmd_clear(pmdp); 1049 return res; 1050 } 1051 1052 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 1053 { 1054 pud_t res = *pudp; 1055 1056 native_pud_clear(pudp); 1057 return res; 1058 } 1059 1060 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 1061 pte_t *ptep , pte_t pte) 1062 { 1063 native_set_pte(ptep, pte); 1064 } 1065 1066 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1067 pmd_t *pmdp, pmd_t pmd) 1068 { 1069 native_set_pmd(pmdp, pmd); 1070 } 1071 1072 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 1073 pud_t *pudp, pud_t pud) 1074 { 1075 native_set_pud(pudp, pud); 1076 } 1077 1078 /* 1079 * We only update the dirty/accessed state if we set 1080 * the dirty bit by hand in the kernel, since the hardware 1081 * will do the accessed bit for us, and we don't want to 1082 * race with other CPU's that might be updating the dirty 1083 * bit at the same time. 1084 */ 1085 struct vm_area_struct; 1086 1087 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1088 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1089 unsigned long address, pte_t *ptep, 1090 pte_t entry, int dirty); 1091 1092 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1093 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1094 unsigned long addr, pte_t *ptep); 1095 1096 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1097 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1098 unsigned long address, pte_t *ptep); 1099 1100 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1101 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1102 pte_t *ptep) 1103 { 1104 pte_t pte = native_ptep_get_and_clear(ptep); 1105 return pte; 1106 } 1107 1108 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1109 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1110 unsigned long addr, pte_t *ptep, 1111 int full) 1112 { 1113 pte_t pte; 1114 if (full) { 1115 /* 1116 * Full address destruction in progress; paravirt does not 1117 * care about updates and native needs no locking 1118 */ 1119 pte = native_local_ptep_get_and_clear(ptep); 1120 } else { 1121 pte = ptep_get_and_clear(mm, addr, ptep); 1122 } 1123 return pte; 1124 } 1125 1126 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1127 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1128 unsigned long addr, pte_t *ptep) 1129 { 1130 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 1131 } 1132 1133 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 1134 1135 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1136 1137 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1138 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1139 unsigned long address, pmd_t *pmdp, 1140 pmd_t entry, int dirty); 1141 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1142 unsigned long address, pud_t *pudp, 1143 pud_t entry, int dirty); 1144 1145 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1146 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1147 unsigned long addr, pmd_t *pmdp); 1148 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1149 unsigned long addr, pud_t *pudp); 1150 1151 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1152 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1153 unsigned long address, pmd_t *pmdp); 1154 1155 1156 #define pmd_write pmd_write 1157 static inline int pmd_write(pmd_t pmd) 1158 { 1159 return pmd_flags(pmd) & _PAGE_RW; 1160 } 1161 1162 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1163 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1164 pmd_t *pmdp) 1165 { 1166 return native_pmdp_get_and_clear(pmdp); 1167 } 1168 1169 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1170 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1171 unsigned long addr, pud_t *pudp) 1172 { 1173 return native_pudp_get_and_clear(pudp); 1174 } 1175 1176 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1177 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1178 unsigned long addr, pmd_t *pmdp) 1179 { 1180 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 1181 } 1182 1183 #define pud_write pud_write 1184 static inline int pud_write(pud_t pud) 1185 { 1186 return pud_flags(pud) & _PAGE_RW; 1187 } 1188 1189 #ifndef pmdp_establish 1190 #define pmdp_establish pmdp_establish 1191 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1192 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1193 { 1194 if (IS_ENABLED(CONFIG_SMP)) { 1195 return xchg(pmdp, pmd); 1196 } else { 1197 pmd_t old = *pmdp; 1198 *pmdp = pmd; 1199 return old; 1200 } 1201 } 1202 #endif 1203 /* 1204 * Page table pages are page-aligned. The lower half of the top 1205 * level is used for userspace and the top half for the kernel. 1206 * 1207 * Returns true for parts of the PGD that map userspace and 1208 * false for the parts that map the kernel. 1209 */ 1210 static inline bool pgdp_maps_userspace(void *__ptr) 1211 { 1212 unsigned long ptr = (unsigned long)__ptr; 1213 1214 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); 1215 } 1216 1217 static inline int pgd_large(pgd_t pgd) { return 0; } 1218 1219 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1220 /* 1221 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages 1222 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and 1223 * the user one is in the last 4k. To switch between them, you 1224 * just need to flip the 12th bit in their addresses. 1225 */ 1226 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT 1227 1228 /* 1229 * This generates better code than the inline assembly in 1230 * __set_bit(). 1231 */ 1232 static inline void *ptr_set_bit(void *ptr, int bit) 1233 { 1234 unsigned long __ptr = (unsigned long)ptr; 1235 1236 __ptr |= BIT(bit); 1237 return (void *)__ptr; 1238 } 1239 static inline void *ptr_clear_bit(void *ptr, int bit) 1240 { 1241 unsigned long __ptr = (unsigned long)ptr; 1242 1243 __ptr &= ~BIT(bit); 1244 return (void *)__ptr; 1245 } 1246 1247 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) 1248 { 1249 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1250 } 1251 1252 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) 1253 { 1254 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1255 } 1256 1257 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) 1258 { 1259 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1260 } 1261 1262 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) 1263 { 1264 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1265 } 1266 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 1267 1268 /* 1269 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1270 * 1271 * dst - pointer to pgd range anwhere on a pgd page 1272 * src - "" 1273 * count - the number of pgds to copy. 1274 * 1275 * dst and src can be on the same page, but the range must not overlap, 1276 * and must not cross a page boundary. 1277 */ 1278 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1279 { 1280 memcpy(dst, src, count * sizeof(pgd_t)); 1281 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1282 if (!static_cpu_has(X86_FEATURE_PTI)) 1283 return; 1284 /* Clone the user space pgd as well */ 1285 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1286 count * sizeof(pgd_t)); 1287 #endif 1288 } 1289 1290 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1291 static inline int page_level_shift(enum pg_level level) 1292 { 1293 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1294 } 1295 static inline unsigned long page_level_size(enum pg_level level) 1296 { 1297 return 1UL << page_level_shift(level); 1298 } 1299 static inline unsigned long page_level_mask(enum pg_level level) 1300 { 1301 return ~(page_level_size(level) - 1); 1302 } 1303 1304 /* 1305 * The x86 doesn't have any external MMU info: the kernel page 1306 * tables contain all the necessary information. 1307 */ 1308 static inline void update_mmu_cache(struct vm_area_struct *vma, 1309 unsigned long addr, pte_t *ptep) 1310 { 1311 } 1312 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1313 unsigned long addr, pmd_t *pmd) 1314 { 1315 } 1316 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1317 unsigned long addr, pud_t *pud) 1318 { 1319 } 1320 1321 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1322 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1323 { 1324 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1325 } 1326 1327 static inline int pte_swp_soft_dirty(pte_t pte) 1328 { 1329 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1330 } 1331 1332 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1333 { 1334 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1335 } 1336 1337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1338 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1339 { 1340 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1341 } 1342 1343 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1344 { 1345 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1346 } 1347 1348 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1349 { 1350 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1351 } 1352 #endif 1353 #endif 1354 1355 #define PKRU_AD_BIT 0x1 1356 #define PKRU_WD_BIT 0x2 1357 #define PKRU_BITS_PER_PKEY 2 1358 1359 static inline bool __pkru_allows_read(u32 pkru, u16 pkey) 1360 { 1361 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1362 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); 1363 } 1364 1365 static inline bool __pkru_allows_write(u32 pkru, u16 pkey) 1366 { 1367 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1368 /* 1369 * Access-disable disables writes too so we need to check 1370 * both bits here. 1371 */ 1372 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); 1373 } 1374 1375 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1376 { 1377 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1378 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1379 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1380 #else 1381 return 0; 1382 #endif 1383 } 1384 1385 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1386 { 1387 u32 pkru = read_pkru(); 1388 1389 if (!__pkru_allows_read(pkru, pkey)) 1390 return false; 1391 if (write && !__pkru_allows_write(pkru, pkey)) 1392 return false; 1393 1394 return true; 1395 } 1396 1397 /* 1398 * 'pteval' can come from a PTE, PMD or PUD. We only check 1399 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1400 * same value on all 3 types. 1401 */ 1402 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1403 { 1404 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1405 1406 if (write) 1407 need_pte_bits |= _PAGE_RW; 1408 1409 if ((pteval & need_pte_bits) != need_pte_bits) 1410 return 0; 1411 1412 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1413 } 1414 1415 #define pte_access_permitted pte_access_permitted 1416 static inline bool pte_access_permitted(pte_t pte, bool write) 1417 { 1418 return __pte_access_permitted(pte_val(pte), write); 1419 } 1420 1421 #define pmd_access_permitted pmd_access_permitted 1422 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1423 { 1424 return __pte_access_permitted(pmd_val(pmd), write); 1425 } 1426 1427 #define pud_access_permitted pud_access_permitted 1428 static inline bool pud_access_permitted(pud_t pud, bool write) 1429 { 1430 return __pte_access_permitted(pud_val(pud), write); 1431 } 1432 1433 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 1434 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); 1435 1436 static inline bool arch_has_pfn_modify_check(void) 1437 { 1438 return boot_cpu_has_bug(X86_BUG_L1TF); 1439 } 1440 1441 #include <asm-generic/pgtable.h> 1442 #endif /* __ASSEMBLY__ */ 1443 1444 #endif /* _ASM_X86_PGTABLE_H */ 1445