xref: /openbmc/linux/arch/x86/include/asm/pgtable.h (revision 8cb5d748)
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3 
4 #include <linux/mem_encrypt.h>
5 #include <asm/page.h>
6 #include <asm/pgtable_types.h>
7 
8 /*
9  * Macro to mark a page protection value as UC-
10  */
11 #define pgprot_noncached(prot)						\
12 	((boot_cpu_data.x86 > 3)					\
13 	 ? (__pgprot(pgprot_val(prot) |					\
14 		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
15 	 : (prot))
16 
17 /*
18  * Macros to add or remove encryption attribute
19  */
20 #define pgprot_encrypted(prot)	__pgprot(__sme_set(pgprot_val(prot)))
21 #define pgprot_decrypted(prot)	__pgprot(__sme_clr(pgprot_val(prot)))
22 
23 #ifndef __ASSEMBLY__
24 #include <asm/x86_init.h>
25 
26 extern pgd_t early_top_pgt[PTRS_PER_PGD];
27 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
28 
29 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
30 void ptdump_walk_pgd_level_checkwx(void);
31 
32 #ifdef CONFIG_DEBUG_WX
33 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
34 #else
35 #define debug_checkwx() do { } while (0)
36 #endif
37 
38 /*
39  * ZERO_PAGE is a global shared page that is always zero: used
40  * for zero-mapped memory areas etc..
41  */
42 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
43 	__visible;
44 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
45 
46 extern spinlock_t pgd_lock;
47 extern struct list_head pgd_list;
48 
49 extern struct mm_struct *pgd_page_get_mm(struct page *page);
50 
51 extern pmdval_t early_pmd_flags;
52 
53 #ifdef CONFIG_PARAVIRT
54 #include <asm/paravirt.h>
55 #else  /* !CONFIG_PARAVIRT */
56 #define set_pte(ptep, pte)		native_set_pte(ptep, pte)
57 #define set_pte_at(mm, addr, ptep, pte)	native_set_pte_at(mm, addr, ptep, pte)
58 
59 #define set_pte_atomic(ptep, pte)					\
60 	native_set_pte_atomic(ptep, pte)
61 
62 #define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
63 
64 #ifndef __PAGETABLE_P4D_FOLDED
65 #define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
66 #define pgd_clear(pgd)			native_pgd_clear(pgd)
67 #endif
68 
69 #ifndef set_p4d
70 # define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
71 #endif
72 
73 #ifndef __PAGETABLE_PUD_FOLDED
74 #define p4d_clear(p4d)			native_p4d_clear(p4d)
75 #endif
76 
77 #ifndef set_pud
78 # define set_pud(pudp, pud)		native_set_pud(pudp, pud)
79 #endif
80 
81 #ifndef __PAGETABLE_PUD_FOLDED
82 #define pud_clear(pud)			native_pud_clear(pud)
83 #endif
84 
85 #define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
86 #define pmd_clear(pmd)			native_pmd_clear(pmd)
87 
88 #define pgd_val(x)	native_pgd_val(x)
89 #define __pgd(x)	native_make_pgd(x)
90 
91 #ifndef __PAGETABLE_P4D_FOLDED
92 #define p4d_val(x)	native_p4d_val(x)
93 #define __p4d(x)	native_make_p4d(x)
94 #endif
95 
96 #ifndef __PAGETABLE_PUD_FOLDED
97 #define pud_val(x)	native_pud_val(x)
98 #define __pud(x)	native_make_pud(x)
99 #endif
100 
101 #ifndef __PAGETABLE_PMD_FOLDED
102 #define pmd_val(x)	native_pmd_val(x)
103 #define __pmd(x)	native_make_pmd(x)
104 #endif
105 
106 #define pte_val(x)	native_pte_val(x)
107 #define __pte(x)	native_make_pte(x)
108 
109 #define arch_end_context_switch(prev)	do {} while(0)
110 
111 #endif	/* CONFIG_PARAVIRT */
112 
113 /*
114  * The following only work if pte_present() is true.
115  * Undefined behaviour if not..
116  */
117 static inline int pte_dirty(pte_t pte)
118 {
119 	return pte_flags(pte) & _PAGE_DIRTY;
120 }
121 
122 
123 static inline u32 read_pkru(void)
124 {
125 	if (boot_cpu_has(X86_FEATURE_OSPKE))
126 		return __read_pkru();
127 	return 0;
128 }
129 
130 static inline void write_pkru(u32 pkru)
131 {
132 	if (boot_cpu_has(X86_FEATURE_OSPKE))
133 		__write_pkru(pkru);
134 }
135 
136 static inline int pte_young(pte_t pte)
137 {
138 	return pte_flags(pte) & _PAGE_ACCESSED;
139 }
140 
141 static inline int pmd_dirty(pmd_t pmd)
142 {
143 	return pmd_flags(pmd) & _PAGE_DIRTY;
144 }
145 
146 static inline int pmd_young(pmd_t pmd)
147 {
148 	return pmd_flags(pmd) & _PAGE_ACCESSED;
149 }
150 
151 static inline int pud_dirty(pud_t pud)
152 {
153 	return pud_flags(pud) & _PAGE_DIRTY;
154 }
155 
156 static inline int pud_young(pud_t pud)
157 {
158 	return pud_flags(pud) & _PAGE_ACCESSED;
159 }
160 
161 static inline int pte_write(pte_t pte)
162 {
163 	return pte_flags(pte) & _PAGE_RW;
164 }
165 
166 static inline int pte_huge(pte_t pte)
167 {
168 	return pte_flags(pte) & _PAGE_PSE;
169 }
170 
171 static inline int pte_global(pte_t pte)
172 {
173 	return pte_flags(pte) & _PAGE_GLOBAL;
174 }
175 
176 static inline int pte_exec(pte_t pte)
177 {
178 	return !(pte_flags(pte) & _PAGE_NX);
179 }
180 
181 static inline int pte_special(pte_t pte)
182 {
183 	return pte_flags(pte) & _PAGE_SPECIAL;
184 }
185 
186 static inline unsigned long pte_pfn(pte_t pte)
187 {
188 	return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
189 }
190 
191 static inline unsigned long pmd_pfn(pmd_t pmd)
192 {
193 	return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
194 }
195 
196 static inline unsigned long pud_pfn(pud_t pud)
197 {
198 	return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
199 }
200 
201 static inline unsigned long p4d_pfn(p4d_t p4d)
202 {
203 	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
204 }
205 
206 static inline unsigned long pgd_pfn(pgd_t pgd)
207 {
208 	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
209 }
210 
211 static inline int p4d_large(p4d_t p4d)
212 {
213 	/* No 512 GiB pages yet */
214 	return 0;
215 }
216 
217 #define pte_page(pte)	pfn_to_page(pte_pfn(pte))
218 
219 static inline int pmd_large(pmd_t pte)
220 {
221 	return pmd_flags(pte) & _PAGE_PSE;
222 }
223 
224 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
225 static inline int pmd_trans_huge(pmd_t pmd)
226 {
227 	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
228 }
229 
230 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
231 static inline int pud_trans_huge(pud_t pud)
232 {
233 	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
234 }
235 #endif
236 
237 #define has_transparent_hugepage has_transparent_hugepage
238 static inline int has_transparent_hugepage(void)
239 {
240 	return boot_cpu_has(X86_FEATURE_PSE);
241 }
242 
243 #ifdef __HAVE_ARCH_PTE_DEVMAP
244 static inline int pmd_devmap(pmd_t pmd)
245 {
246 	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
247 }
248 
249 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
250 static inline int pud_devmap(pud_t pud)
251 {
252 	return !!(pud_val(pud) & _PAGE_DEVMAP);
253 }
254 #else
255 static inline int pud_devmap(pud_t pud)
256 {
257 	return 0;
258 }
259 #endif
260 
261 static inline int pgd_devmap(pgd_t pgd)
262 {
263 	return 0;
264 }
265 #endif
266 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
267 
268 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
269 {
270 	pteval_t v = native_pte_val(pte);
271 
272 	return native_make_pte(v | set);
273 }
274 
275 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
276 {
277 	pteval_t v = native_pte_val(pte);
278 
279 	return native_make_pte(v & ~clear);
280 }
281 
282 static inline pte_t pte_mkclean(pte_t pte)
283 {
284 	return pte_clear_flags(pte, _PAGE_DIRTY);
285 }
286 
287 static inline pte_t pte_mkold(pte_t pte)
288 {
289 	return pte_clear_flags(pte, _PAGE_ACCESSED);
290 }
291 
292 static inline pte_t pte_wrprotect(pte_t pte)
293 {
294 	return pte_clear_flags(pte, _PAGE_RW);
295 }
296 
297 static inline pte_t pte_mkexec(pte_t pte)
298 {
299 	return pte_clear_flags(pte, _PAGE_NX);
300 }
301 
302 static inline pte_t pte_mkdirty(pte_t pte)
303 {
304 	return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
305 }
306 
307 static inline pte_t pte_mkyoung(pte_t pte)
308 {
309 	return pte_set_flags(pte, _PAGE_ACCESSED);
310 }
311 
312 static inline pte_t pte_mkwrite(pte_t pte)
313 {
314 	return pte_set_flags(pte, _PAGE_RW);
315 }
316 
317 static inline pte_t pte_mkhuge(pte_t pte)
318 {
319 	return pte_set_flags(pte, _PAGE_PSE);
320 }
321 
322 static inline pte_t pte_clrhuge(pte_t pte)
323 {
324 	return pte_clear_flags(pte, _PAGE_PSE);
325 }
326 
327 static inline pte_t pte_mkglobal(pte_t pte)
328 {
329 	return pte_set_flags(pte, _PAGE_GLOBAL);
330 }
331 
332 static inline pte_t pte_clrglobal(pte_t pte)
333 {
334 	return pte_clear_flags(pte, _PAGE_GLOBAL);
335 }
336 
337 static inline pte_t pte_mkspecial(pte_t pte)
338 {
339 	return pte_set_flags(pte, _PAGE_SPECIAL);
340 }
341 
342 static inline pte_t pte_mkdevmap(pte_t pte)
343 {
344 	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
345 }
346 
347 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
348 {
349 	pmdval_t v = native_pmd_val(pmd);
350 
351 	return __pmd(v | set);
352 }
353 
354 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
355 {
356 	pmdval_t v = native_pmd_val(pmd);
357 
358 	return __pmd(v & ~clear);
359 }
360 
361 static inline pmd_t pmd_mkold(pmd_t pmd)
362 {
363 	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
364 }
365 
366 static inline pmd_t pmd_mkclean(pmd_t pmd)
367 {
368 	return pmd_clear_flags(pmd, _PAGE_DIRTY);
369 }
370 
371 static inline pmd_t pmd_wrprotect(pmd_t pmd)
372 {
373 	return pmd_clear_flags(pmd, _PAGE_RW);
374 }
375 
376 static inline pmd_t pmd_mkdirty(pmd_t pmd)
377 {
378 	return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
379 }
380 
381 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
382 {
383 	return pmd_set_flags(pmd, _PAGE_DEVMAP);
384 }
385 
386 static inline pmd_t pmd_mkhuge(pmd_t pmd)
387 {
388 	return pmd_set_flags(pmd, _PAGE_PSE);
389 }
390 
391 static inline pmd_t pmd_mkyoung(pmd_t pmd)
392 {
393 	return pmd_set_flags(pmd, _PAGE_ACCESSED);
394 }
395 
396 static inline pmd_t pmd_mkwrite(pmd_t pmd)
397 {
398 	return pmd_set_flags(pmd, _PAGE_RW);
399 }
400 
401 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
402 {
403 	return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
404 }
405 
406 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
407 {
408 	pudval_t v = native_pud_val(pud);
409 
410 	return __pud(v | set);
411 }
412 
413 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
414 {
415 	pudval_t v = native_pud_val(pud);
416 
417 	return __pud(v & ~clear);
418 }
419 
420 static inline pud_t pud_mkold(pud_t pud)
421 {
422 	return pud_clear_flags(pud, _PAGE_ACCESSED);
423 }
424 
425 static inline pud_t pud_mkclean(pud_t pud)
426 {
427 	return pud_clear_flags(pud, _PAGE_DIRTY);
428 }
429 
430 static inline pud_t pud_wrprotect(pud_t pud)
431 {
432 	return pud_clear_flags(pud, _PAGE_RW);
433 }
434 
435 static inline pud_t pud_mkdirty(pud_t pud)
436 {
437 	return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
438 }
439 
440 static inline pud_t pud_mkdevmap(pud_t pud)
441 {
442 	return pud_set_flags(pud, _PAGE_DEVMAP);
443 }
444 
445 static inline pud_t pud_mkhuge(pud_t pud)
446 {
447 	return pud_set_flags(pud, _PAGE_PSE);
448 }
449 
450 static inline pud_t pud_mkyoung(pud_t pud)
451 {
452 	return pud_set_flags(pud, _PAGE_ACCESSED);
453 }
454 
455 static inline pud_t pud_mkwrite(pud_t pud)
456 {
457 	return pud_set_flags(pud, _PAGE_RW);
458 }
459 
460 static inline pud_t pud_mknotpresent(pud_t pud)
461 {
462 	return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
463 }
464 
465 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
466 static inline int pte_soft_dirty(pte_t pte)
467 {
468 	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
469 }
470 
471 static inline int pmd_soft_dirty(pmd_t pmd)
472 {
473 	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
474 }
475 
476 static inline int pud_soft_dirty(pud_t pud)
477 {
478 	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
479 }
480 
481 static inline pte_t pte_mksoft_dirty(pte_t pte)
482 {
483 	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
484 }
485 
486 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
487 {
488 	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
489 }
490 
491 static inline pud_t pud_mksoft_dirty(pud_t pud)
492 {
493 	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
494 }
495 
496 static inline pte_t pte_clear_soft_dirty(pte_t pte)
497 {
498 	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
499 }
500 
501 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
502 {
503 	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
504 }
505 
506 static inline pud_t pud_clear_soft_dirty(pud_t pud)
507 {
508 	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
509 }
510 
511 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
512 
513 /*
514  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
515  * can use those bits for other purposes, so leave them be.
516  */
517 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
518 {
519 	pgprotval_t protval = pgprot_val(pgprot);
520 
521 	if (protval & _PAGE_PRESENT)
522 		protval &= __supported_pte_mask;
523 
524 	return protval;
525 }
526 
527 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
528 {
529 	return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
530 		     massage_pgprot(pgprot));
531 }
532 
533 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
534 {
535 	return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
536 		     massage_pgprot(pgprot));
537 }
538 
539 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
540 {
541 	return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
542 		     massage_pgprot(pgprot));
543 }
544 
545 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
546 {
547 	pteval_t val = pte_val(pte);
548 
549 	/*
550 	 * Chop off the NX bit (if present), and add the NX portion of
551 	 * the newprot (if present):
552 	 */
553 	val &= _PAGE_CHG_MASK;
554 	val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
555 
556 	return __pte(val);
557 }
558 
559 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
560 {
561 	pmdval_t val = pmd_val(pmd);
562 
563 	val &= _HPAGE_CHG_MASK;
564 	val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
565 
566 	return __pmd(val);
567 }
568 
569 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
570 #define pgprot_modify pgprot_modify
571 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
572 {
573 	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
574 	pgprotval_t addbits = pgprot_val(newprot);
575 	return __pgprot(preservebits | addbits);
576 }
577 
578 #define pte_pgprot(x) __pgprot(pte_flags(x))
579 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
580 #define pud_pgprot(x) __pgprot(pud_flags(x))
581 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
582 
583 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
584 
585 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
586 					 enum page_cache_mode pcm,
587 					 enum page_cache_mode new_pcm)
588 {
589 	/*
590 	 * PAT type is always WB for untracked ranges, so no need to check.
591 	 */
592 	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
593 		return 1;
594 
595 	/*
596 	 * Certain new memtypes are not allowed with certain
597 	 * requested memtype:
598 	 * - request is uncached, return cannot be write-back
599 	 * - request is write-combine, return cannot be write-back
600 	 * - request is write-through, return cannot be write-back
601 	 * - request is write-through, return cannot be write-combine
602 	 */
603 	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
604 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
605 	    (pcm == _PAGE_CACHE_MODE_WC &&
606 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
607 	    (pcm == _PAGE_CACHE_MODE_WT &&
608 	     new_pcm == _PAGE_CACHE_MODE_WB) ||
609 	    (pcm == _PAGE_CACHE_MODE_WT &&
610 	     new_pcm == _PAGE_CACHE_MODE_WC)) {
611 		return 0;
612 	}
613 
614 	return 1;
615 }
616 
617 pmd_t *populate_extra_pmd(unsigned long vaddr);
618 pte_t *populate_extra_pte(unsigned long vaddr);
619 #endif	/* __ASSEMBLY__ */
620 
621 #ifdef CONFIG_X86_32
622 # include <asm/pgtable_32.h>
623 #else
624 # include <asm/pgtable_64.h>
625 #endif
626 
627 #ifndef __ASSEMBLY__
628 #include <linux/mm_types.h>
629 #include <linux/mmdebug.h>
630 #include <linux/log2.h>
631 #include <asm/fixmap.h>
632 
633 static inline int pte_none(pte_t pte)
634 {
635 	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
636 }
637 
638 #define __HAVE_ARCH_PTE_SAME
639 static inline int pte_same(pte_t a, pte_t b)
640 {
641 	return a.pte == b.pte;
642 }
643 
644 static inline int pte_present(pte_t a)
645 {
646 	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
647 }
648 
649 #ifdef __HAVE_ARCH_PTE_DEVMAP
650 static inline int pte_devmap(pte_t a)
651 {
652 	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
653 }
654 #endif
655 
656 #define pte_accessible pte_accessible
657 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
658 {
659 	if (pte_flags(a) & _PAGE_PRESENT)
660 		return true;
661 
662 	if ((pte_flags(a) & _PAGE_PROTNONE) &&
663 			mm_tlb_flush_pending(mm))
664 		return true;
665 
666 	return false;
667 }
668 
669 static inline int pte_hidden(pte_t pte)
670 {
671 	return pte_flags(pte) & _PAGE_HIDDEN;
672 }
673 
674 static inline int pmd_present(pmd_t pmd)
675 {
676 	/*
677 	 * Checking for _PAGE_PSE is needed too because
678 	 * split_huge_page will temporarily clear the present bit (but
679 	 * the _PAGE_PSE flag will remain set at all times while the
680 	 * _PAGE_PRESENT bit is clear).
681 	 */
682 	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
683 }
684 
685 #ifdef CONFIG_NUMA_BALANCING
686 /*
687  * These work without NUMA balancing but the kernel does not care. See the
688  * comment in include/asm-generic/pgtable.h
689  */
690 static inline int pte_protnone(pte_t pte)
691 {
692 	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
693 		== _PAGE_PROTNONE;
694 }
695 
696 static inline int pmd_protnone(pmd_t pmd)
697 {
698 	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
699 		== _PAGE_PROTNONE;
700 }
701 #endif /* CONFIG_NUMA_BALANCING */
702 
703 static inline int pmd_none(pmd_t pmd)
704 {
705 	/* Only check low word on 32-bit platforms, since it might be
706 	   out of sync with upper half. */
707 	unsigned long val = native_pmd_val(pmd);
708 	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
709 }
710 
711 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
712 {
713 	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
714 }
715 
716 /*
717  * Currently stuck as a macro due to indirect forward reference to
718  * linux/mmzone.h's __section_mem_map_addr() definition:
719  */
720 #define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
721 
722 /*
723  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
724  *
725  * this macro returns the index of the entry in the pmd page which would
726  * control the given virtual address
727  */
728 static inline unsigned long pmd_index(unsigned long address)
729 {
730 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
731 }
732 
733 /*
734  * Conversion functions: convert a page and protection to a page entry,
735  * and a page entry and page directory to the page they refer to.
736  *
737  * (Currently stuck as a macro because of indirect forward reference
738  * to linux/mm.h:page_to_nid())
739  */
740 #define mk_pte(page, pgprot)   pfn_pte(page_to_pfn(page), (pgprot))
741 
742 /*
743  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
744  *
745  * this function returns the index of the entry in the pte page which would
746  * control the given virtual address
747  */
748 static inline unsigned long pte_index(unsigned long address)
749 {
750 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
751 }
752 
753 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
754 {
755 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
756 }
757 
758 static inline int pmd_bad(pmd_t pmd)
759 {
760 	return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
761 }
762 
763 static inline unsigned long pages_to_mb(unsigned long npg)
764 {
765 	return npg >> (20 - PAGE_SHIFT);
766 }
767 
768 #if CONFIG_PGTABLE_LEVELS > 2
769 static inline int pud_none(pud_t pud)
770 {
771 	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
772 }
773 
774 static inline int pud_present(pud_t pud)
775 {
776 	return pud_flags(pud) & _PAGE_PRESENT;
777 }
778 
779 static inline unsigned long pud_page_vaddr(pud_t pud)
780 {
781 	return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
782 }
783 
784 /*
785  * Currently stuck as a macro due to indirect forward reference to
786  * linux/mmzone.h's __section_mem_map_addr() definition:
787  */
788 #define pud_page(pud)	pfn_to_page(pud_pfn(pud))
789 
790 /* Find an entry in the second-level page table.. */
791 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
792 {
793 	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
794 }
795 
796 static inline int pud_large(pud_t pud)
797 {
798 	return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
799 		(_PAGE_PSE | _PAGE_PRESENT);
800 }
801 
802 static inline int pud_bad(pud_t pud)
803 {
804 	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
805 }
806 #else
807 static inline int pud_large(pud_t pud)
808 {
809 	return 0;
810 }
811 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
812 
813 static inline unsigned long pud_index(unsigned long address)
814 {
815 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
816 }
817 
818 #if CONFIG_PGTABLE_LEVELS > 3
819 static inline int p4d_none(p4d_t p4d)
820 {
821 	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
822 }
823 
824 static inline int p4d_present(p4d_t p4d)
825 {
826 	return p4d_flags(p4d) & _PAGE_PRESENT;
827 }
828 
829 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
830 {
831 	return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
832 }
833 
834 /*
835  * Currently stuck as a macro due to indirect forward reference to
836  * linux/mmzone.h's __section_mem_map_addr() definition:
837  */
838 #define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
839 
840 /* Find an entry in the third-level page table.. */
841 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
842 {
843 	return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
844 }
845 
846 static inline int p4d_bad(p4d_t p4d)
847 {
848 	return (p4d_flags(p4d) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
849 }
850 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
851 
852 static inline unsigned long p4d_index(unsigned long address)
853 {
854 	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
855 }
856 
857 #if CONFIG_PGTABLE_LEVELS > 4
858 static inline int pgd_present(pgd_t pgd)
859 {
860 	return pgd_flags(pgd) & _PAGE_PRESENT;
861 }
862 
863 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
864 {
865 	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
866 }
867 
868 /*
869  * Currently stuck as a macro due to indirect forward reference to
870  * linux/mmzone.h's __section_mem_map_addr() definition:
871  */
872 #define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
873 
874 /* to find an entry in a page-table-directory. */
875 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
876 {
877 	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
878 }
879 
880 static inline int pgd_bad(pgd_t pgd)
881 {
882 	return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
883 }
884 
885 static inline int pgd_none(pgd_t pgd)
886 {
887 	/*
888 	 * There is no need to do a workaround for the KNL stray
889 	 * A/D bit erratum here.  PGDs only point to page tables
890 	 * except on 32-bit non-PAE which is not supported on
891 	 * KNL.
892 	 */
893 	return !native_pgd_val(pgd);
894 }
895 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
896 
897 #endif	/* __ASSEMBLY__ */
898 
899 /*
900  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
901  *
902  * this macro returns the index of the entry in the pgd page which would
903  * control the given virtual address
904  */
905 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
906 
907 /*
908  * pgd_offset() returns a (pgd_t *)
909  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
910  */
911 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
912 /*
913  * a shortcut which implies the use of the kernel's pgd, instead
914  * of a process's
915  */
916 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
917 
918 
919 #define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
920 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
921 
922 #ifndef __ASSEMBLY__
923 
924 extern int direct_gbpages;
925 void init_mem_mapping(void);
926 void early_alloc_pgt_buf(void);
927 extern void memblock_find_dma_reserve(void);
928 
929 #ifdef CONFIG_X86_64
930 /* Realmode trampoline initialization. */
931 extern pgd_t trampoline_pgd_entry;
932 static inline void __meminit init_trampoline_default(void)
933 {
934 	/* Default trampoline pgd value */
935 	trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
936 }
937 # ifdef CONFIG_RANDOMIZE_MEMORY
938 void __meminit init_trampoline(void);
939 # else
940 #  define init_trampoline init_trampoline_default
941 # endif
942 #else
943 static inline void init_trampoline(void) { }
944 #endif
945 
946 /* local pte updates need not use xchg for locking */
947 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
948 {
949 	pte_t res = *ptep;
950 
951 	/* Pure native function needs no input for mm, addr */
952 	native_pte_clear(NULL, 0, ptep);
953 	return res;
954 }
955 
956 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
957 {
958 	pmd_t res = *pmdp;
959 
960 	native_pmd_clear(pmdp);
961 	return res;
962 }
963 
964 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
965 {
966 	pud_t res = *pudp;
967 
968 	native_pud_clear(pudp);
969 	return res;
970 }
971 
972 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
973 				     pte_t *ptep , pte_t pte)
974 {
975 	native_set_pte(ptep, pte);
976 }
977 
978 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
979 			      pmd_t *pmdp, pmd_t pmd)
980 {
981 	native_set_pmd(pmdp, pmd);
982 }
983 
984 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
985 			      pud_t *pudp, pud_t pud)
986 {
987 	native_set_pud(pudp, pud);
988 }
989 
990 /*
991  * We only update the dirty/accessed state if we set
992  * the dirty bit by hand in the kernel, since the hardware
993  * will do the accessed bit for us, and we don't want to
994  * race with other CPU's that might be updating the dirty
995  * bit at the same time.
996  */
997 struct vm_area_struct;
998 
999 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1000 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1001 				 unsigned long address, pte_t *ptep,
1002 				 pte_t entry, int dirty);
1003 
1004 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1005 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1006 				     unsigned long addr, pte_t *ptep);
1007 
1008 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1009 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1010 				  unsigned long address, pte_t *ptep);
1011 
1012 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1013 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1014 				       pte_t *ptep)
1015 {
1016 	pte_t pte = native_ptep_get_and_clear(ptep);
1017 	return pte;
1018 }
1019 
1020 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1021 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1022 					    unsigned long addr, pte_t *ptep,
1023 					    int full)
1024 {
1025 	pte_t pte;
1026 	if (full) {
1027 		/*
1028 		 * Full address destruction in progress; paravirt does not
1029 		 * care about updates and native needs no locking
1030 		 */
1031 		pte = native_local_ptep_get_and_clear(ptep);
1032 	} else {
1033 		pte = ptep_get_and_clear(mm, addr, ptep);
1034 	}
1035 	return pte;
1036 }
1037 
1038 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1039 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1040 				      unsigned long addr, pte_t *ptep)
1041 {
1042 	clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1043 }
1044 
1045 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1046 
1047 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1048 
1049 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1050 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1051 				 unsigned long address, pmd_t *pmdp,
1052 				 pmd_t entry, int dirty);
1053 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1054 				 unsigned long address, pud_t *pudp,
1055 				 pud_t entry, int dirty);
1056 
1057 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1058 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1059 				     unsigned long addr, pmd_t *pmdp);
1060 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1061 				     unsigned long addr, pud_t *pudp);
1062 
1063 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1064 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1065 				  unsigned long address, pmd_t *pmdp);
1066 
1067 
1068 #define __HAVE_ARCH_PMD_WRITE
1069 static inline int pmd_write(pmd_t pmd)
1070 {
1071 	return pmd_flags(pmd) & _PAGE_RW;
1072 }
1073 
1074 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1075 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1076 				       pmd_t *pmdp)
1077 {
1078 	return native_pmdp_get_and_clear(pmdp);
1079 }
1080 
1081 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1082 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1083 					unsigned long addr, pud_t *pudp)
1084 {
1085 	return native_pudp_get_and_clear(pudp);
1086 }
1087 
1088 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1089 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1090 				      unsigned long addr, pmd_t *pmdp)
1091 {
1092 	clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1093 }
1094 
1095 /*
1096  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1097  *
1098  *  dst - pointer to pgd range anwhere on a pgd page
1099  *  src - ""
1100  *  count - the number of pgds to copy.
1101  *
1102  * dst and src can be on the same page, but the range must not overlap,
1103  * and must not cross a page boundary.
1104  */
1105 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1106 {
1107        memcpy(dst, src, count * sizeof(pgd_t));
1108 }
1109 
1110 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1111 static inline int page_level_shift(enum pg_level level)
1112 {
1113 	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1114 }
1115 static inline unsigned long page_level_size(enum pg_level level)
1116 {
1117 	return 1UL << page_level_shift(level);
1118 }
1119 static inline unsigned long page_level_mask(enum pg_level level)
1120 {
1121 	return ~(page_level_size(level) - 1);
1122 }
1123 
1124 /*
1125  * The x86 doesn't have any external MMU info: the kernel page
1126  * tables contain all the necessary information.
1127  */
1128 static inline void update_mmu_cache(struct vm_area_struct *vma,
1129 		unsigned long addr, pte_t *ptep)
1130 {
1131 }
1132 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1133 		unsigned long addr, pmd_t *pmd)
1134 {
1135 }
1136 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1137 		unsigned long addr, pud_t *pud)
1138 {
1139 }
1140 
1141 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1142 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1143 {
1144 	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1145 }
1146 
1147 static inline int pte_swp_soft_dirty(pte_t pte)
1148 {
1149 	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1150 }
1151 
1152 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1153 {
1154 	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1155 }
1156 
1157 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1158 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1159 {
1160 	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1161 }
1162 
1163 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1164 {
1165 	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1166 }
1167 
1168 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1169 {
1170 	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1171 }
1172 #endif
1173 #endif
1174 
1175 #define PKRU_AD_BIT 0x1
1176 #define PKRU_WD_BIT 0x2
1177 #define PKRU_BITS_PER_PKEY 2
1178 
1179 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1180 {
1181 	int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1182 	return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1183 }
1184 
1185 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1186 {
1187 	int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1188 	/*
1189 	 * Access-disable disables writes too so we need to check
1190 	 * both bits here.
1191 	 */
1192 	return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1193 }
1194 
1195 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1196 {
1197 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1198 	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1199 	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1200 #else
1201 	return 0;
1202 #endif
1203 }
1204 
1205 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1206 {
1207 	u32 pkru = read_pkru();
1208 
1209 	if (!__pkru_allows_read(pkru, pkey))
1210 		return false;
1211 	if (write && !__pkru_allows_write(pkru, pkey))
1212 		return false;
1213 
1214 	return true;
1215 }
1216 
1217 /*
1218  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1219  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1220  * same value on all 3 types.
1221  */
1222 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1223 {
1224 	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1225 
1226 	if (write)
1227 		need_pte_bits |= _PAGE_RW;
1228 
1229 	if ((pteval & need_pte_bits) != need_pte_bits)
1230 		return 0;
1231 
1232 	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1233 }
1234 
1235 #define pte_access_permitted pte_access_permitted
1236 static inline bool pte_access_permitted(pte_t pte, bool write)
1237 {
1238 	return __pte_access_permitted(pte_val(pte), write);
1239 }
1240 
1241 #define pmd_access_permitted pmd_access_permitted
1242 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1243 {
1244 	return __pte_access_permitted(pmd_val(pmd), write);
1245 }
1246 
1247 #define pud_access_permitted pud_access_permitted
1248 static inline bool pud_access_permitted(pud_t pud, bool write)
1249 {
1250 	return __pte_access_permitted(pud_val(pud), write);
1251 }
1252 
1253 #include <asm-generic/pgtable.h>
1254 #endif	/* __ASSEMBLY__ */
1255 
1256 #endif /* _ASM_X86_PGTABLE_H */
1257