1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_PGTABLE_H 3 #define _ASM_X86_PGTABLE_H 4 5 #include <linux/mem_encrypt.h> 6 #include <asm/page.h> 7 #include <asm/pgtable_types.h> 8 9 /* 10 * Macro to mark a page protection value as UC- 11 */ 12 #define pgprot_noncached(prot) \ 13 ((boot_cpu_data.x86 > 3) \ 14 ? (__pgprot(pgprot_val(prot) | \ 15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ 16 : (prot)) 17 18 /* 19 * Macros to add or remove encryption attribute 20 */ 21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) 22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) 23 24 #ifndef __ASSEMBLY__ 25 #include <asm/x86_init.h> 26 #include <asm/fpu/xstate.h> 27 #include <asm/fpu/api.h> 28 29 extern pgd_t early_top_pgt[PTRS_PER_PGD]; 30 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd); 31 32 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); 33 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, 34 bool user); 35 void ptdump_walk_pgd_level_checkwx(void); 36 void ptdump_walk_user_pgd_level_checkwx(void); 37 38 #ifdef CONFIG_DEBUG_WX 39 #define debug_checkwx() ptdump_walk_pgd_level_checkwx() 40 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() 41 #else 42 #define debug_checkwx() do { } while (0) 43 #define debug_checkwx_user() do { } while (0) 44 #endif 45 46 /* 47 * ZERO_PAGE is a global shared page that is always zero: used 48 * for zero-mapped memory areas etc.. 49 */ 50 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] 51 __visible; 52 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) 53 54 extern spinlock_t pgd_lock; 55 extern struct list_head pgd_list; 56 57 extern struct mm_struct *pgd_page_get_mm(struct page *page); 58 59 extern pmdval_t early_pmd_flags; 60 61 #ifdef CONFIG_PARAVIRT_XXL 62 #include <asm/paravirt.h> 63 #else /* !CONFIG_PARAVIRT_XXL */ 64 #define set_pte(ptep, pte) native_set_pte(ptep, pte) 65 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 66 67 #define set_pte_atomic(ptep, pte) \ 68 native_set_pte_atomic(ptep, pte) 69 70 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 71 72 #ifndef __PAGETABLE_P4D_FOLDED 73 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 74 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) 75 #endif 76 77 #ifndef set_p4d 78 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) 79 #endif 80 81 #ifndef __PAGETABLE_PUD_FOLDED 82 #define p4d_clear(p4d) native_p4d_clear(p4d) 83 #endif 84 85 #ifndef set_pud 86 # define set_pud(pudp, pud) native_set_pud(pudp, pud) 87 #endif 88 89 #ifndef __PAGETABLE_PUD_FOLDED 90 #define pud_clear(pud) native_pud_clear(pud) 91 #endif 92 93 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 94 #define pmd_clear(pmd) native_pmd_clear(pmd) 95 96 #define pgd_val(x) native_pgd_val(x) 97 #define __pgd(x) native_make_pgd(x) 98 99 #ifndef __PAGETABLE_P4D_FOLDED 100 #define p4d_val(x) native_p4d_val(x) 101 #define __p4d(x) native_make_p4d(x) 102 #endif 103 104 #ifndef __PAGETABLE_PUD_FOLDED 105 #define pud_val(x) native_pud_val(x) 106 #define __pud(x) native_make_pud(x) 107 #endif 108 109 #ifndef __PAGETABLE_PMD_FOLDED 110 #define pmd_val(x) native_pmd_val(x) 111 #define __pmd(x) native_make_pmd(x) 112 #endif 113 114 #define pte_val(x) native_pte_val(x) 115 #define __pte(x) native_make_pte(x) 116 117 #define arch_end_context_switch(prev) do {} while(0) 118 #endif /* CONFIG_PARAVIRT_XXL */ 119 120 /* 121 * The following only work if pte_present() is true. 122 * Undefined behaviour if not.. 123 */ 124 static inline int pte_dirty(pte_t pte) 125 { 126 return pte_flags(pte) & _PAGE_DIRTY; 127 } 128 129 130 static inline u32 read_pkru(void) 131 { 132 if (boot_cpu_has(X86_FEATURE_OSPKE)) 133 return rdpkru(); 134 return 0; 135 } 136 137 static inline void write_pkru(u32 pkru) 138 { 139 struct pkru_state *pk; 140 141 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 142 return; 143 144 pk = get_xsave_addr(¤t->thread.fpu.state.xsave, XFEATURE_PKRU); 145 146 /* 147 * The PKRU value in xstate needs to be in sync with the value that is 148 * written to the CPU. The FPU restore on return to userland would 149 * otherwise load the previous value again. 150 */ 151 fpregs_lock(); 152 if (pk) 153 pk->pkru = pkru; 154 __write_pkru(pkru); 155 fpregs_unlock(); 156 } 157 158 static inline int pte_young(pte_t pte) 159 { 160 return pte_flags(pte) & _PAGE_ACCESSED; 161 } 162 163 static inline int pmd_dirty(pmd_t pmd) 164 { 165 return pmd_flags(pmd) & _PAGE_DIRTY; 166 } 167 168 static inline int pmd_young(pmd_t pmd) 169 { 170 return pmd_flags(pmd) & _PAGE_ACCESSED; 171 } 172 173 static inline int pud_dirty(pud_t pud) 174 { 175 return pud_flags(pud) & _PAGE_DIRTY; 176 } 177 178 static inline int pud_young(pud_t pud) 179 { 180 return pud_flags(pud) & _PAGE_ACCESSED; 181 } 182 183 static inline int pte_write(pte_t pte) 184 { 185 return pte_flags(pte) & _PAGE_RW; 186 } 187 188 static inline int pte_huge(pte_t pte) 189 { 190 return pte_flags(pte) & _PAGE_PSE; 191 } 192 193 static inline int pte_global(pte_t pte) 194 { 195 return pte_flags(pte) & _PAGE_GLOBAL; 196 } 197 198 static inline int pte_exec(pte_t pte) 199 { 200 return !(pte_flags(pte) & _PAGE_NX); 201 } 202 203 static inline int pte_special(pte_t pte) 204 { 205 return pte_flags(pte) & _PAGE_SPECIAL; 206 } 207 208 /* Entries that were set to PROT_NONE are inverted */ 209 210 static inline u64 protnone_mask(u64 val); 211 212 static inline unsigned long pte_pfn(pte_t pte) 213 { 214 phys_addr_t pfn = pte_val(pte); 215 pfn ^= protnone_mask(pfn); 216 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; 217 } 218 219 static inline unsigned long pmd_pfn(pmd_t pmd) 220 { 221 phys_addr_t pfn = pmd_val(pmd); 222 pfn ^= protnone_mask(pfn); 223 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; 224 } 225 226 static inline unsigned long pud_pfn(pud_t pud) 227 { 228 phys_addr_t pfn = pud_val(pud); 229 pfn ^= protnone_mask(pfn); 230 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; 231 } 232 233 static inline unsigned long p4d_pfn(p4d_t p4d) 234 { 235 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; 236 } 237 238 static inline unsigned long pgd_pfn(pgd_t pgd) 239 { 240 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; 241 } 242 243 #define p4d_leaf p4d_large 244 static inline int p4d_large(p4d_t p4d) 245 { 246 /* No 512 GiB pages yet */ 247 return 0; 248 } 249 250 #define pte_page(pte) pfn_to_page(pte_pfn(pte)) 251 252 #define pmd_leaf pmd_large 253 static inline int pmd_large(pmd_t pte) 254 { 255 return pmd_flags(pte) & _PAGE_PSE; 256 } 257 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 static inline int pmd_trans_huge(pmd_t pmd) 260 { 261 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 262 } 263 264 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 265 static inline int pud_trans_huge(pud_t pud) 266 { 267 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; 268 } 269 #endif 270 271 #define has_transparent_hugepage has_transparent_hugepage 272 static inline int has_transparent_hugepage(void) 273 { 274 return boot_cpu_has(X86_FEATURE_PSE); 275 } 276 277 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 278 static inline int pmd_devmap(pmd_t pmd) 279 { 280 return !!(pmd_val(pmd) & _PAGE_DEVMAP); 281 } 282 283 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 284 static inline int pud_devmap(pud_t pud) 285 { 286 return !!(pud_val(pud) & _PAGE_DEVMAP); 287 } 288 #else 289 static inline int pud_devmap(pud_t pud) 290 { 291 return 0; 292 } 293 #endif 294 295 static inline int pgd_devmap(pgd_t pgd) 296 { 297 return 0; 298 } 299 #endif 300 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 301 302 static inline pte_t pte_set_flags(pte_t pte, pteval_t set) 303 { 304 pteval_t v = native_pte_val(pte); 305 306 return native_make_pte(v | set); 307 } 308 309 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) 310 { 311 pteval_t v = native_pte_val(pte); 312 313 return native_make_pte(v & ~clear); 314 } 315 316 static inline pte_t pte_mkclean(pte_t pte) 317 { 318 return pte_clear_flags(pte, _PAGE_DIRTY); 319 } 320 321 static inline pte_t pte_mkold(pte_t pte) 322 { 323 return pte_clear_flags(pte, _PAGE_ACCESSED); 324 } 325 326 static inline pte_t pte_wrprotect(pte_t pte) 327 { 328 return pte_clear_flags(pte, _PAGE_RW); 329 } 330 331 static inline pte_t pte_mkexec(pte_t pte) 332 { 333 return pte_clear_flags(pte, _PAGE_NX); 334 } 335 336 static inline pte_t pte_mkdirty(pte_t pte) 337 { 338 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 339 } 340 341 static inline pte_t pte_mkyoung(pte_t pte) 342 { 343 return pte_set_flags(pte, _PAGE_ACCESSED); 344 } 345 346 static inline pte_t pte_mkwrite(pte_t pte) 347 { 348 return pte_set_flags(pte, _PAGE_RW); 349 } 350 351 static inline pte_t pte_mkhuge(pte_t pte) 352 { 353 return pte_set_flags(pte, _PAGE_PSE); 354 } 355 356 static inline pte_t pte_clrhuge(pte_t pte) 357 { 358 return pte_clear_flags(pte, _PAGE_PSE); 359 } 360 361 static inline pte_t pte_mkglobal(pte_t pte) 362 { 363 return pte_set_flags(pte, _PAGE_GLOBAL); 364 } 365 366 static inline pte_t pte_clrglobal(pte_t pte) 367 { 368 return pte_clear_flags(pte, _PAGE_GLOBAL); 369 } 370 371 static inline pte_t pte_mkspecial(pte_t pte) 372 { 373 return pte_set_flags(pte, _PAGE_SPECIAL); 374 } 375 376 static inline pte_t pte_mkdevmap(pte_t pte) 377 { 378 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); 379 } 380 381 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) 382 { 383 pmdval_t v = native_pmd_val(pmd); 384 385 return native_make_pmd(v | set); 386 } 387 388 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) 389 { 390 pmdval_t v = native_pmd_val(pmd); 391 392 return native_make_pmd(v & ~clear); 393 } 394 395 static inline pmd_t pmd_mkold(pmd_t pmd) 396 { 397 return pmd_clear_flags(pmd, _PAGE_ACCESSED); 398 } 399 400 static inline pmd_t pmd_mkclean(pmd_t pmd) 401 { 402 return pmd_clear_flags(pmd, _PAGE_DIRTY); 403 } 404 405 static inline pmd_t pmd_wrprotect(pmd_t pmd) 406 { 407 return pmd_clear_flags(pmd, _PAGE_RW); 408 } 409 410 static inline pmd_t pmd_mkdirty(pmd_t pmd) 411 { 412 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 413 } 414 415 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 416 { 417 return pmd_set_flags(pmd, _PAGE_DEVMAP); 418 } 419 420 static inline pmd_t pmd_mkhuge(pmd_t pmd) 421 { 422 return pmd_set_flags(pmd, _PAGE_PSE); 423 } 424 425 static inline pmd_t pmd_mkyoung(pmd_t pmd) 426 { 427 return pmd_set_flags(pmd, _PAGE_ACCESSED); 428 } 429 430 static inline pmd_t pmd_mkwrite(pmd_t pmd) 431 { 432 return pmd_set_flags(pmd, _PAGE_RW); 433 } 434 435 static inline pud_t pud_set_flags(pud_t pud, pudval_t set) 436 { 437 pudval_t v = native_pud_val(pud); 438 439 return native_make_pud(v | set); 440 } 441 442 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) 443 { 444 pudval_t v = native_pud_val(pud); 445 446 return native_make_pud(v & ~clear); 447 } 448 449 static inline pud_t pud_mkold(pud_t pud) 450 { 451 return pud_clear_flags(pud, _PAGE_ACCESSED); 452 } 453 454 static inline pud_t pud_mkclean(pud_t pud) 455 { 456 return pud_clear_flags(pud, _PAGE_DIRTY); 457 } 458 459 static inline pud_t pud_wrprotect(pud_t pud) 460 { 461 return pud_clear_flags(pud, _PAGE_RW); 462 } 463 464 static inline pud_t pud_mkdirty(pud_t pud) 465 { 466 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); 467 } 468 469 static inline pud_t pud_mkdevmap(pud_t pud) 470 { 471 return pud_set_flags(pud, _PAGE_DEVMAP); 472 } 473 474 static inline pud_t pud_mkhuge(pud_t pud) 475 { 476 return pud_set_flags(pud, _PAGE_PSE); 477 } 478 479 static inline pud_t pud_mkyoung(pud_t pud) 480 { 481 return pud_set_flags(pud, _PAGE_ACCESSED); 482 } 483 484 static inline pud_t pud_mkwrite(pud_t pud) 485 { 486 return pud_set_flags(pud, _PAGE_RW); 487 } 488 489 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 490 static inline int pte_soft_dirty(pte_t pte) 491 { 492 return pte_flags(pte) & _PAGE_SOFT_DIRTY; 493 } 494 495 static inline int pmd_soft_dirty(pmd_t pmd) 496 { 497 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; 498 } 499 500 static inline int pud_soft_dirty(pud_t pud) 501 { 502 return pud_flags(pud) & _PAGE_SOFT_DIRTY; 503 } 504 505 static inline pte_t pte_mksoft_dirty(pte_t pte) 506 { 507 return pte_set_flags(pte, _PAGE_SOFT_DIRTY); 508 } 509 510 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 511 { 512 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); 513 } 514 515 static inline pud_t pud_mksoft_dirty(pud_t pud) 516 { 517 return pud_set_flags(pud, _PAGE_SOFT_DIRTY); 518 } 519 520 static inline pte_t pte_clear_soft_dirty(pte_t pte) 521 { 522 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); 523 } 524 525 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 526 { 527 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); 528 } 529 530 static inline pud_t pud_clear_soft_dirty(pud_t pud) 531 { 532 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); 533 } 534 535 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 536 537 /* 538 * Mask out unsupported bits in a present pgprot. Non-present pgprots 539 * can use those bits for other purposes, so leave them be. 540 */ 541 static inline pgprotval_t massage_pgprot(pgprot_t pgprot) 542 { 543 pgprotval_t protval = pgprot_val(pgprot); 544 545 if (protval & _PAGE_PRESENT) 546 protval &= __supported_pte_mask; 547 548 return protval; 549 } 550 551 static inline pgprotval_t check_pgprot(pgprot_t pgprot) 552 { 553 pgprotval_t massaged_val = massage_pgprot(pgprot); 554 555 /* mmdebug.h can not be included here because of dependencies */ 556 #ifdef CONFIG_DEBUG_VM 557 WARN_ONCE(pgprot_val(pgprot) != massaged_val, 558 "attempted to set unsupported pgprot: %016llx " 559 "bits: %016llx supported: %016llx\n", 560 (u64)pgprot_val(pgprot), 561 (u64)pgprot_val(pgprot) ^ massaged_val, 562 (u64)__supported_pte_mask); 563 #endif 564 565 return massaged_val; 566 } 567 568 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 569 { 570 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 571 pfn ^= protnone_mask(pgprot_val(pgprot)); 572 pfn &= PTE_PFN_MASK; 573 return __pte(pfn | check_pgprot(pgprot)); 574 } 575 576 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 577 { 578 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 579 pfn ^= protnone_mask(pgprot_val(pgprot)); 580 pfn &= PHYSICAL_PMD_PAGE_MASK; 581 return __pmd(pfn | check_pgprot(pgprot)); 582 } 583 584 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) 585 { 586 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; 587 pfn ^= protnone_mask(pgprot_val(pgprot)); 588 pfn &= PHYSICAL_PUD_PAGE_MASK; 589 return __pud(pfn | check_pgprot(pgprot)); 590 } 591 592 static inline pmd_t pmd_mknotpresent(pmd_t pmd) 593 { 594 return pfn_pmd(pmd_pfn(pmd), 595 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); 596 } 597 598 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); 599 600 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 601 { 602 pteval_t val = pte_val(pte), oldval = val; 603 604 /* 605 * Chop off the NX bit (if present), and add the NX portion of 606 * the newprot (if present): 607 */ 608 val &= _PAGE_CHG_MASK; 609 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; 610 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); 611 return __pte(val); 612 } 613 614 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 615 { 616 pmdval_t val = pmd_val(pmd), oldval = val; 617 618 val &= _HPAGE_CHG_MASK; 619 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; 620 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); 621 return __pmd(val); 622 } 623 624 /* 625 * mprotect needs to preserve PAT and encryption bits when updating 626 * vm_page_prot 627 */ 628 #define pgprot_modify pgprot_modify 629 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 630 { 631 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; 632 pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; 633 return __pgprot(preservebits | addbits); 634 } 635 636 #define pte_pgprot(x) __pgprot(pte_flags(x)) 637 #define pmd_pgprot(x) __pgprot(pmd_flags(x)) 638 #define pud_pgprot(x) __pgprot(pud_flags(x)) 639 #define p4d_pgprot(x) __pgprot(p4d_flags(x)) 640 641 #define canon_pgprot(p) __pgprot(massage_pgprot(p)) 642 643 static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 644 { 645 return canon_pgprot(prot); 646 } 647 648 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, 649 enum page_cache_mode pcm, 650 enum page_cache_mode new_pcm) 651 { 652 /* 653 * PAT type is always WB for untracked ranges, so no need to check. 654 */ 655 if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) 656 return 1; 657 658 /* 659 * Certain new memtypes are not allowed with certain 660 * requested memtype: 661 * - request is uncached, return cannot be write-back 662 * - request is write-combine, return cannot be write-back 663 * - request is write-through, return cannot be write-back 664 * - request is write-through, return cannot be write-combine 665 */ 666 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && 667 new_pcm == _PAGE_CACHE_MODE_WB) || 668 (pcm == _PAGE_CACHE_MODE_WC && 669 new_pcm == _PAGE_CACHE_MODE_WB) || 670 (pcm == _PAGE_CACHE_MODE_WT && 671 new_pcm == _PAGE_CACHE_MODE_WB) || 672 (pcm == _PAGE_CACHE_MODE_WT && 673 new_pcm == _PAGE_CACHE_MODE_WC)) { 674 return 0; 675 } 676 677 return 1; 678 } 679 680 pmd_t *populate_extra_pmd(unsigned long vaddr); 681 pte_t *populate_extra_pte(unsigned long vaddr); 682 683 #ifdef CONFIG_PAGE_TABLE_ISOLATION 684 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); 685 686 /* 687 * Take a PGD location (pgdp) and a pgd value that needs to be set there. 688 * Populates the user and returns the resulting PGD that must be set in 689 * the kernel copy of the page tables. 690 */ 691 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 692 { 693 if (!static_cpu_has(X86_FEATURE_PTI)) 694 return pgd; 695 return __pti_set_user_pgtbl(pgdp, pgd); 696 } 697 #else /* CONFIG_PAGE_TABLE_ISOLATION */ 698 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) 699 { 700 return pgd; 701 } 702 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 703 704 #endif /* __ASSEMBLY__ */ 705 706 707 #ifdef CONFIG_X86_32 708 # include <asm/pgtable_32.h> 709 #else 710 # include <asm/pgtable_64.h> 711 #endif 712 713 #ifndef __ASSEMBLY__ 714 #include <linux/mm_types.h> 715 #include <linux/mmdebug.h> 716 #include <linux/log2.h> 717 #include <asm/fixmap.h> 718 719 static inline int pte_none(pte_t pte) 720 { 721 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); 722 } 723 724 #define __HAVE_ARCH_PTE_SAME 725 static inline int pte_same(pte_t a, pte_t b) 726 { 727 return a.pte == b.pte; 728 } 729 730 static inline int pte_present(pte_t a) 731 { 732 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); 733 } 734 735 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 736 static inline int pte_devmap(pte_t a) 737 { 738 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; 739 } 740 #endif 741 742 #define pte_accessible pte_accessible 743 static inline bool pte_accessible(struct mm_struct *mm, pte_t a) 744 { 745 if (pte_flags(a) & _PAGE_PRESENT) 746 return true; 747 748 if ((pte_flags(a) & _PAGE_PROTNONE) && 749 mm_tlb_flush_pending(mm)) 750 return true; 751 752 return false; 753 } 754 755 static inline int pmd_present(pmd_t pmd) 756 { 757 /* 758 * Checking for _PAGE_PSE is needed too because 759 * split_huge_page will temporarily clear the present bit (but 760 * the _PAGE_PSE flag will remain set at all times while the 761 * _PAGE_PRESENT bit is clear). 762 */ 763 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); 764 } 765 766 #ifdef CONFIG_NUMA_BALANCING 767 /* 768 * These work without NUMA balancing but the kernel does not care. See the 769 * comment in include/asm-generic/pgtable.h 770 */ 771 static inline int pte_protnone(pte_t pte) 772 { 773 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 774 == _PAGE_PROTNONE; 775 } 776 777 static inline int pmd_protnone(pmd_t pmd) 778 { 779 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) 780 == _PAGE_PROTNONE; 781 } 782 #endif /* CONFIG_NUMA_BALANCING */ 783 784 static inline int pmd_none(pmd_t pmd) 785 { 786 /* Only check low word on 32-bit platforms, since it might be 787 out of sync with upper half. */ 788 unsigned long val = native_pmd_val(pmd); 789 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; 790 } 791 792 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 793 { 794 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); 795 } 796 797 /* 798 * Currently stuck as a macro due to indirect forward reference to 799 * linux/mmzone.h's __section_mem_map_addr() definition: 800 */ 801 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 802 803 /* 804 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 805 * 806 * this macro returns the index of the entry in the pmd page which would 807 * control the given virtual address 808 */ 809 static inline unsigned long pmd_index(unsigned long address) 810 { 811 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 812 } 813 814 /* 815 * Conversion functions: convert a page and protection to a page entry, 816 * and a page entry and page directory to the page they refer to. 817 * 818 * (Currently stuck as a macro because of indirect forward reference 819 * to linux/mm.h:page_to_nid()) 820 */ 821 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 822 823 /* 824 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 825 * 826 * this function returns the index of the entry in the pte page which would 827 * control the given virtual address 828 */ 829 static inline unsigned long pte_index(unsigned long address) 830 { 831 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 832 } 833 834 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 835 { 836 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 837 } 838 839 static inline int pmd_bad(pmd_t pmd) 840 { 841 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; 842 } 843 844 static inline unsigned long pages_to_mb(unsigned long npg) 845 { 846 return npg >> (20 - PAGE_SHIFT); 847 } 848 849 #if CONFIG_PGTABLE_LEVELS > 2 850 static inline int pud_none(pud_t pud) 851 { 852 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 853 } 854 855 static inline int pud_present(pud_t pud) 856 { 857 return pud_flags(pud) & _PAGE_PRESENT; 858 } 859 860 static inline unsigned long pud_page_vaddr(pud_t pud) 861 { 862 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); 863 } 864 865 /* 866 * Currently stuck as a macro due to indirect forward reference to 867 * linux/mmzone.h's __section_mem_map_addr() definition: 868 */ 869 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 870 871 /* Find an entry in the second-level page table.. */ 872 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 873 { 874 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 875 } 876 877 #define pud_leaf pud_large 878 static inline int pud_large(pud_t pud) 879 { 880 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == 881 (_PAGE_PSE | _PAGE_PRESENT); 882 } 883 884 static inline int pud_bad(pud_t pud) 885 { 886 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; 887 } 888 #else 889 #define pud_leaf pud_large 890 static inline int pud_large(pud_t pud) 891 { 892 return 0; 893 } 894 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 895 896 static inline unsigned long pud_index(unsigned long address) 897 { 898 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 899 } 900 901 #if CONFIG_PGTABLE_LEVELS > 3 902 static inline int p4d_none(p4d_t p4d) 903 { 904 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; 905 } 906 907 static inline int p4d_present(p4d_t p4d) 908 { 909 return p4d_flags(p4d) & _PAGE_PRESENT; 910 } 911 912 static inline unsigned long p4d_page_vaddr(p4d_t p4d) 913 { 914 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); 915 } 916 917 /* 918 * Currently stuck as a macro due to indirect forward reference to 919 * linux/mmzone.h's __section_mem_map_addr() definition: 920 */ 921 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 922 923 /* Find an entry in the third-level page table.. */ 924 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 925 { 926 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 927 } 928 929 static inline int p4d_bad(p4d_t p4d) 930 { 931 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; 932 933 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 934 ignore_flags |= _PAGE_NX; 935 936 return (p4d_flags(p4d) & ~ignore_flags) != 0; 937 } 938 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 939 940 static inline unsigned long p4d_index(unsigned long address) 941 { 942 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); 943 } 944 945 #if CONFIG_PGTABLE_LEVELS > 4 946 static inline int pgd_present(pgd_t pgd) 947 { 948 if (!pgtable_l5_enabled()) 949 return 1; 950 return pgd_flags(pgd) & _PAGE_PRESENT; 951 } 952 953 static inline unsigned long pgd_page_vaddr(pgd_t pgd) 954 { 955 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); 956 } 957 958 /* 959 * Currently stuck as a macro due to indirect forward reference to 960 * linux/mmzone.h's __section_mem_map_addr() definition: 961 */ 962 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 963 964 /* to find an entry in a page-table-directory. */ 965 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 966 { 967 if (!pgtable_l5_enabled()) 968 return (p4d_t *)pgd; 969 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); 970 } 971 972 static inline int pgd_bad(pgd_t pgd) 973 { 974 unsigned long ignore_flags = _PAGE_USER; 975 976 if (!pgtable_l5_enabled()) 977 return 0; 978 979 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 980 ignore_flags |= _PAGE_NX; 981 982 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; 983 } 984 985 static inline int pgd_none(pgd_t pgd) 986 { 987 if (!pgtable_l5_enabled()) 988 return 0; 989 /* 990 * There is no need to do a workaround for the KNL stray 991 * A/D bit erratum here. PGDs only point to page tables 992 * except on 32-bit non-PAE which is not supported on 993 * KNL. 994 */ 995 return !native_pgd_val(pgd); 996 } 997 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 998 999 #endif /* __ASSEMBLY__ */ 1000 1001 /* 1002 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 1003 * 1004 * this macro returns the index of the entry in the pgd page which would 1005 * control the given virtual address 1006 */ 1007 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 1008 1009 /* 1010 * pgd_offset() returns a (pgd_t *) 1011 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 1012 */ 1013 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address))) 1014 /* 1015 * a shortcut to get a pgd_t in a given mm 1016 */ 1017 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 1018 /* 1019 * a shortcut which implies the use of the kernel's pgd, instead 1020 * of a process's 1021 */ 1022 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 1023 1024 1025 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) 1026 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) 1027 1028 #ifndef __ASSEMBLY__ 1029 1030 extern int direct_gbpages; 1031 void init_mem_mapping(void); 1032 void early_alloc_pgt_buf(void); 1033 extern void memblock_find_dma_reserve(void); 1034 1035 #ifdef CONFIG_X86_64 1036 /* Realmode trampoline initialization. */ 1037 extern pgd_t trampoline_pgd_entry; 1038 static inline void __meminit init_trampoline_default(void) 1039 { 1040 /* Default trampoline pgd value */ 1041 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; 1042 } 1043 1044 void __init poking_init(void); 1045 1046 # ifdef CONFIG_RANDOMIZE_MEMORY 1047 void __meminit init_trampoline(void); 1048 # else 1049 # define init_trampoline init_trampoline_default 1050 # endif 1051 #else 1052 static inline void init_trampoline(void) { } 1053 #endif 1054 1055 /* local pte updates need not use xchg for locking */ 1056 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 1057 { 1058 pte_t res = *ptep; 1059 1060 /* Pure native function needs no input for mm, addr */ 1061 native_pte_clear(NULL, 0, ptep); 1062 return res; 1063 } 1064 1065 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) 1066 { 1067 pmd_t res = *pmdp; 1068 1069 native_pmd_clear(pmdp); 1070 return res; 1071 } 1072 1073 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) 1074 { 1075 pud_t res = *pudp; 1076 1077 native_pud_clear(pudp); 1078 return res; 1079 } 1080 1081 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 1082 pte_t *ptep , pte_t pte) 1083 { 1084 native_set_pte(ptep, pte); 1085 } 1086 1087 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1088 pmd_t *pmdp, pmd_t pmd) 1089 { 1090 set_pmd(pmdp, pmd); 1091 } 1092 1093 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 1094 pud_t *pudp, pud_t pud) 1095 { 1096 native_set_pud(pudp, pud); 1097 } 1098 1099 /* 1100 * We only update the dirty/accessed state if we set 1101 * the dirty bit by hand in the kernel, since the hardware 1102 * will do the accessed bit for us, and we don't want to 1103 * race with other CPU's that might be updating the dirty 1104 * bit at the same time. 1105 */ 1106 struct vm_area_struct; 1107 1108 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1109 extern int ptep_set_access_flags(struct vm_area_struct *vma, 1110 unsigned long address, pte_t *ptep, 1111 pte_t entry, int dirty); 1112 1113 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1114 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, 1115 unsigned long addr, pte_t *ptep); 1116 1117 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1118 extern int ptep_clear_flush_young(struct vm_area_struct *vma, 1119 unsigned long address, pte_t *ptep); 1120 1121 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1122 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 1123 pte_t *ptep) 1124 { 1125 pte_t pte = native_ptep_get_and_clear(ptep); 1126 return pte; 1127 } 1128 1129 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1130 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1131 unsigned long addr, pte_t *ptep, 1132 int full) 1133 { 1134 pte_t pte; 1135 if (full) { 1136 /* 1137 * Full address destruction in progress; paravirt does not 1138 * care about updates and native needs no locking 1139 */ 1140 pte = native_local_ptep_get_and_clear(ptep); 1141 } else { 1142 pte = ptep_get_and_clear(mm, addr, ptep); 1143 } 1144 return pte; 1145 } 1146 1147 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1148 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1149 unsigned long addr, pte_t *ptep) 1150 { 1151 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 1152 } 1153 1154 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 1155 1156 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1157 1158 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1159 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1160 unsigned long address, pmd_t *pmdp, 1161 pmd_t entry, int dirty); 1162 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1163 unsigned long address, pud_t *pudp, 1164 pud_t entry, int dirty); 1165 1166 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1167 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1168 unsigned long addr, pmd_t *pmdp); 1169 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1170 unsigned long addr, pud_t *pudp); 1171 1172 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1173 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 1174 unsigned long address, pmd_t *pmdp); 1175 1176 1177 #define pmd_write pmd_write 1178 static inline int pmd_write(pmd_t pmd) 1179 { 1180 return pmd_flags(pmd) & _PAGE_RW; 1181 } 1182 1183 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1184 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, 1185 pmd_t *pmdp) 1186 { 1187 return native_pmdp_get_and_clear(pmdp); 1188 } 1189 1190 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1191 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1192 unsigned long addr, pud_t *pudp) 1193 { 1194 return native_pudp_get_and_clear(pudp); 1195 } 1196 1197 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1198 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1199 unsigned long addr, pmd_t *pmdp) 1200 { 1201 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); 1202 } 1203 1204 #define pud_write pud_write 1205 static inline int pud_write(pud_t pud) 1206 { 1207 return pud_flags(pud) & _PAGE_RW; 1208 } 1209 1210 #ifndef pmdp_establish 1211 #define pmdp_establish pmdp_establish 1212 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1213 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1214 { 1215 if (IS_ENABLED(CONFIG_SMP)) { 1216 return xchg(pmdp, pmd); 1217 } else { 1218 pmd_t old = *pmdp; 1219 WRITE_ONCE(*pmdp, pmd); 1220 return old; 1221 } 1222 } 1223 #endif 1224 /* 1225 * Page table pages are page-aligned. The lower half of the top 1226 * level is used for userspace and the top half for the kernel. 1227 * 1228 * Returns true for parts of the PGD that map userspace and 1229 * false for the parts that map the kernel. 1230 */ 1231 static inline bool pgdp_maps_userspace(void *__ptr) 1232 { 1233 unsigned long ptr = (unsigned long)__ptr; 1234 1235 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); 1236 } 1237 1238 #define pgd_leaf pgd_large 1239 static inline int pgd_large(pgd_t pgd) { return 0; } 1240 1241 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1242 /* 1243 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages 1244 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and 1245 * the user one is in the last 4k. To switch between them, you 1246 * just need to flip the 12th bit in their addresses. 1247 */ 1248 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT 1249 1250 /* 1251 * This generates better code than the inline assembly in 1252 * __set_bit(). 1253 */ 1254 static inline void *ptr_set_bit(void *ptr, int bit) 1255 { 1256 unsigned long __ptr = (unsigned long)ptr; 1257 1258 __ptr |= BIT(bit); 1259 return (void *)__ptr; 1260 } 1261 static inline void *ptr_clear_bit(void *ptr, int bit) 1262 { 1263 unsigned long __ptr = (unsigned long)ptr; 1264 1265 __ptr &= ~BIT(bit); 1266 return (void *)__ptr; 1267 } 1268 1269 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) 1270 { 1271 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1272 } 1273 1274 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) 1275 { 1276 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); 1277 } 1278 1279 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) 1280 { 1281 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1282 } 1283 1284 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) 1285 { 1286 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); 1287 } 1288 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 1289 1290 /* 1291 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 1292 * 1293 * dst - pointer to pgd range anwhere on a pgd page 1294 * src - "" 1295 * count - the number of pgds to copy. 1296 * 1297 * dst and src can be on the same page, but the range must not overlap, 1298 * and must not cross a page boundary. 1299 */ 1300 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 1301 { 1302 memcpy(dst, src, count * sizeof(pgd_t)); 1303 #ifdef CONFIG_PAGE_TABLE_ISOLATION 1304 if (!static_cpu_has(X86_FEATURE_PTI)) 1305 return; 1306 /* Clone the user space pgd as well */ 1307 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), 1308 count * sizeof(pgd_t)); 1309 #endif 1310 } 1311 1312 #define PTE_SHIFT ilog2(PTRS_PER_PTE) 1313 static inline int page_level_shift(enum pg_level level) 1314 { 1315 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; 1316 } 1317 static inline unsigned long page_level_size(enum pg_level level) 1318 { 1319 return 1UL << page_level_shift(level); 1320 } 1321 static inline unsigned long page_level_mask(enum pg_level level) 1322 { 1323 return ~(page_level_size(level) - 1); 1324 } 1325 1326 /* 1327 * The x86 doesn't have any external MMU info: the kernel page 1328 * tables contain all the necessary information. 1329 */ 1330 static inline void update_mmu_cache(struct vm_area_struct *vma, 1331 unsigned long addr, pte_t *ptep) 1332 { 1333 } 1334 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1335 unsigned long addr, pmd_t *pmd) 1336 { 1337 } 1338 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1339 unsigned long addr, pud_t *pud) 1340 { 1341 } 1342 1343 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1344 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1345 { 1346 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1347 } 1348 1349 static inline int pte_swp_soft_dirty(pte_t pte) 1350 { 1351 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; 1352 } 1353 1354 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1355 { 1356 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); 1357 } 1358 1359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1360 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1361 { 1362 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1363 } 1364 1365 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1366 { 1367 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; 1368 } 1369 1370 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1371 { 1372 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); 1373 } 1374 #endif 1375 #endif 1376 1377 #define PKRU_AD_BIT 0x1 1378 #define PKRU_WD_BIT 0x2 1379 #define PKRU_BITS_PER_PKEY 2 1380 1381 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1382 extern u32 init_pkru_value; 1383 #else 1384 #define init_pkru_value 0 1385 #endif 1386 1387 static inline bool __pkru_allows_read(u32 pkru, u16 pkey) 1388 { 1389 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1390 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); 1391 } 1392 1393 static inline bool __pkru_allows_write(u32 pkru, u16 pkey) 1394 { 1395 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; 1396 /* 1397 * Access-disable disables writes too so we need to check 1398 * both bits here. 1399 */ 1400 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); 1401 } 1402 1403 static inline u16 pte_flags_pkey(unsigned long pte_flags) 1404 { 1405 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1406 /* ifdef to avoid doing 59-bit shift on 32-bit values */ 1407 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; 1408 #else 1409 return 0; 1410 #endif 1411 } 1412 1413 static inline bool __pkru_allows_pkey(u16 pkey, bool write) 1414 { 1415 u32 pkru = read_pkru(); 1416 1417 if (!__pkru_allows_read(pkru, pkey)) 1418 return false; 1419 if (write && !__pkru_allows_write(pkru, pkey)) 1420 return false; 1421 1422 return true; 1423 } 1424 1425 /* 1426 * 'pteval' can come from a PTE, PMD or PUD. We only check 1427 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the 1428 * same value on all 3 types. 1429 */ 1430 static inline bool __pte_access_permitted(unsigned long pteval, bool write) 1431 { 1432 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; 1433 1434 if (write) 1435 need_pte_bits |= _PAGE_RW; 1436 1437 if ((pteval & need_pte_bits) != need_pte_bits) 1438 return 0; 1439 1440 return __pkru_allows_pkey(pte_flags_pkey(pteval), write); 1441 } 1442 1443 #define pte_access_permitted pte_access_permitted 1444 static inline bool pte_access_permitted(pte_t pte, bool write) 1445 { 1446 return __pte_access_permitted(pte_val(pte), write); 1447 } 1448 1449 #define pmd_access_permitted pmd_access_permitted 1450 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1451 { 1452 return __pte_access_permitted(pmd_val(pmd), write); 1453 } 1454 1455 #define pud_access_permitted pud_access_permitted 1456 static inline bool pud_access_permitted(pud_t pud, bool write) 1457 { 1458 return __pte_access_permitted(pud_val(pud), write); 1459 } 1460 1461 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 1462 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); 1463 1464 static inline bool arch_has_pfn_modify_check(void) 1465 { 1466 return boot_cpu_has_bug(X86_BUG_L1TF); 1467 } 1468 1469 #define arch_faults_on_old_pte arch_faults_on_old_pte 1470 static inline bool arch_faults_on_old_pte(void) 1471 { 1472 return false; 1473 } 1474 1475 #include <asm-generic/pgtable.h> 1476 #endif /* __ASSEMBLY__ */ 1477 1478 #endif /* _ASM_X86_PGTABLE_H */ 1479